RESUMEN
Experimental NMR spectroscopy and theoretical molecular dynamics (MD) simulations provide complementary insights into protein conformational dynamics and hence into biological function. The present work describes an extensive set of backbone NH and side-chain methyl group generalized order parameters for the Escherichia coli ribonuclease HI (RNH) enzyme derived from 2-µs microsecond MD simulations using the OPLS4 and AMBER-FF19SB force fields. The simulated generalized order parameters are compared with values derived from NMR 15N and 13CH2D spin relaxation measurements. The squares of the generalized order parameters, S2 for the N-H bond vector and Saxis2 for the methyl group symmetry axis, characterize the equilibrium distribution of vector orientations in a molecular frame of reference. Optimal agreement between simulated and experimental results was obtained by averaging S2 or Saxis2 calculated by dividing the simulated trajectories into 50 ns blocks (â¼five times the rotational diffusion correlation time for RNH). With this procedure, the median absolute deviations (MAD) between experimental and simulated values of S2 and Saxis2 are 0.030 (NH) and 0.061 (CH3) for OPLS4 and 0.041 (NH) and 0.078 (CH3) for AMBER-FF19SB. The MAD between OPLS4 and AMBER-FF19SB are 0.021 (NH) and 0.072 (CH3). The generalized order parameters for the methyl group symmetry axis can be decomposed into contributions from backbone fluctuations, between-rotamer dihedral angle transitions, and within-rotamer dihedral angle fluctuations. Analysis of the simulation trajectories shows that (i) backbone and side chain conformational fluctuations exhibit little correlation and that (ii) fluctuations within rotamers are limited and highly uniform with values that depend on the number of dihedral angles considered. Low values of Saxis2, indicative of enhanced side-chain flexibility, result from between-rotamer transitions that can be enhanced by increased local backbone flexibility.
Asunto(s)
Escherichia coli , Simulación de Dinámica Molecular , Ribonucleasa H , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Conformación Proteica , Resonancia Magnética Nuclear BiomolecularRESUMEN
Structural genomics consortia established that protein crystallization is the primary obstacle to structure determination using x-ray crystallography. We previously demonstrated that crystallization propensity is systematically related to primary sequence, and we subsequently performed computational analyses showing that arginine is the most overrepresented amino acid in crystal-packing interfaces in the Protein Data Bank. Given the similar physicochemical characteristics of arginine and lysine, we hypothesized that multiple lysine-to-arginine (KR) substitutions should improve crystallization. To test this hypothesis, we developed software that ranks lysine sites in a target protein based on the redundancy-corrected KR substitution frequency in homologs. This software can be run interactively on the worldwide web at https://www.pxengineering.org/. We demonstrate that three unrelated single-domain proteins can tolerate 5-11 KR substitutions with at most minor destabilization, and, for two of these three proteins, the construct with the largest number of KR substitutions exhibits significantly enhanced crystallization propensity. This approach rapidly produced a 1.9 Å crystal structure of a human protein domain refractory to crystallization with its native sequence. Structures from Bulk KR-substituted domains show the engineered arginine residues frequently make hydrogen-bonds across crystal-packing interfaces. We thus demonstrate that Bulk KR substitution represents a rational and efficient method for probabilistic engineering of protein surface properties to improve crystallization.
Asunto(s)
Lisina , Proteínas , Humanos , Lisina/química , Cristalización , Proteínas/genética , Aminoácidos/química , Cristalografía por Rayos X , Arginina/metabolismoRESUMEN
Multiple paralogous ABCF ATPases are encoded in most genomes, but the physiological functions remain unknown for most of them. We herein compare the four Escherichia coli K12 ABCFs - EttA, Uup, YbiT, and YheS - using assays previously employed to demonstrate EttA gates the first step of polypeptide elongation on the ribosome dependent on ATP/ADP ratio. A Δ uup knockout, like Δ ettA , exhibits strongly reduced fitness when growth is restarted from long-term stationary phase, but neither Δ ybiT nor Δ yheS exhibits this phenotype. All four proteins nonetheless functionally interact with ribosomes based on in vitro translation and single-molecule fluorescence resonance energy transfer experiments employing variants harboring glutamate-to-glutamine active-site mutations (EQ 2 ) that trap them in the ATP-bound conformation. These variants all strongly stabilize the same global conformational state of a ribosomal elongation complex harboring deacylated tRNA Val in the P site. However, EQ 2 -Uup uniquely exchanges on/off the ribosome on a second timescale, while EQ 2 -YheS-bound ribosomes uniquely sample alternative global conformations. At sub-micromolar concentrations, EQ 2 -EttA and EQ 2 -YbiT fully inhibit in vitro translation of an mRNA encoding luciferase, while EQ 2 -Uup and EQ 2 -YheS only partially inhibit it at ~10-fold higher concentrations. Moreover, tripeptide synthesis reactions are not inhibited by EQ 2 -Uup or EQ 2 -YheS, while EQ 2 -YbiT inhibits synthesis of both peptide bonds and EQ 2 -EttA specifically traps ribosomes after synthesis of the first peptide bond. These results support the four E. coli ABCF paralogs all having different activities on translating ribosomes, and they suggest that there remains a substantial amount of functionally uncharacterized "dark matter" involved in mRNA translation.
RESUMEN
The evolutionary benefit accounting for widespread conservation of oligomeric structures in proteins lacking evidence of intersubunit cooperativity remains unclear. Here, crystal and cryo-EM structures, and enzymological data, demonstrate that a conserved tetramer interface maintains the active-site structure in one such class of proteins, the short-chain dehydrogenase/reductase (SDR) superfamily. Phylogenetic comparisons support a significantly longer polypeptide being required to maintain an equivalent active-site structure in the context of a single subunit. Oligomerization therefore enhances evolutionary fitness by reducing the metabolic cost of enzyme biosynthesis. The large surface area of the structure-stabilizing oligomeric interface yields a synergistic gain in fitness by increasing tolerance to activity-enhancing yet destabilizing mutations. We demonstrate that two paralogous SDR superfamily enzymes with different specificities can form mixed heterotetramers that combine their individual enzymological properties. This suggests that oligomerization can also diversify the functions generated by a given metabolic investment, enhancing the fitness advantage provided by this architectural strategy.
Asunto(s)
Evolución Biológica , Oxidorreductasas , Secuencia de Aminoácidos , Dominio Catalítico , Oxidorreductasas/metabolismo , FilogeniaRESUMEN
GPR158 is an orphan G proteincoupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown. We used single-particle cryoelectron microscopy (cryo-EM) to determine the structures of human GPR158 alone and bound to an RGS signaling complex. The structures reveal a homodimeric organization stabilized by a pair of phospholipids and the presence of an extracellular Cache domain, an unusual ligand-binding domain in GPCRs. We further demonstrate the structural basis of GPR158 coupling to RGS7-Gß5. Together, these results provide insights into the unusual biology of orphan receptors and the formation of GPCR-RGS complexes.
Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Proteínas RGS/química , Receptores Acoplados a Proteínas G/química , Sitios de Unión , Microscopía por Crioelectrón , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Humanos , Ligandos , Modelos Moleculares , Fosfolípidos/química , Unión Proteica , Conformación Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Subunidades de Proteína/química , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de SeñalRESUMEN
YhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall-acting antibiotics, even in the stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septum development. The Z-ring is essential for the positioning of the septa and the initiation of cell division. We found that YhcB interacts with proteins of the divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). Seven of these interactions are also conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we mapped the amino acid residues likely involved in the interactions of YhcB with FtsI and RodZ. The 2.8 Å crystal structure of the cytosolic domain of Haemophilus ducreyi YhcB shows a unique tetrameric α-helical coiled-coil structure likely to be involved in linking the Z-ring to the septal peptidoglycan-synthesizing complexes. In summary, YhcB is a conserved and conditionally essential protein that plays a role in cell division and consequently affects envelope biogenesis. Based on these findings, we propose to rename YhcB to ZapG (Z-ring-associated protein G). This study will serve as a starting point for future studies on this protein family and on how cells transit from exponential to stationary survival.
Asunto(s)
Proteínas Bacterianas/metabolismo , Peptidoglicano/biosíntesis , Proteobacteria/citología , Proteobacteria/metabolismo , Proteínas Bacterianas/química , División Celular , Cristalografía por Rayos X , Modelos Moleculares , Conformación ProteicaRESUMEN
Cystic Fibrosis (CF) is caused by mutations to the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) chloride channel. CFTR is composed of two membrane spanning domains, two cytosolic nucleotide-binding domains (NBD1 and NBD2) and a largely unstructured R-domain. Multiple CF-causing mutations reside in the NBDs and some are known to compromise the stability of these domains. The ability to predict the effect of mutations on the stability of the cytosolic domains of CFTR and to shed light on the mechanisms by which they exert their effect is therefore important in CF research. With this in mind, we have predicted the effect on domain stability of 59 mutations in NBD1 and NBD2 using 15 different algorithms and evaluated their performances via comparison to experimental data using several metrics including the correct classification rate (CCR), and the squared Pearson correlation (R2) and Spearman's correlation (ρ) calculated between the experimental ΔTm values and the computationally predicted ΔΔG values. Overall, the best results were obtained with FoldX and Rosetta. For NBD1 (35 mutations), FoldX provided R2 and ρ values of 0.64 and -0.71, respectively, with an 86% correct classification rate (CCR). For NBD2 (24 mutations), FoldX R2, ρ, and CCR were 0.51, -0.73, and 75%, respectively. Application of the Rosetta high-resolution protocol (Rosetta_hrp) to NBD1 yielded R2, ρ, and CCR of 0.64, -0.75, and 69%, respectively, and for NBD2 yielded R2, ρ, and CCR of 0.29, -0.27, and 50%, respectively. The corresponding numbers for the Rosetta's low-resolution protocol (Rosetta_lrp) were R2 = 0.47, ρ = -0.69, and CCR = 69% for NBD1 and R2 = 0.27, ρ = -0.24, and CCR = 63% for NBD2. For NBD1, both algorithms suggest that destabilizing mutations suffer from destabilizing vdW clashes, whereas stabilizing mutations benefit from favorable H-bond interactions. Two triple consensus approaches based on FoldX, Rosetta_lpr, and Rosetta_hpr were attempted using either "majority-voting" or "all-voting". The all-voting consensus outperformed the individual predictors, albeit on a smaller data set. In summary, our results suggest that the effect of mutations on the stability of CFTR's NBDs could be largely predicted. Since NBDs are common to all ABC transporters, these results may find use in predicting the effect and mechanism of the action of multiple disease-causing mutations in other proteins.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Adenosina Trifosfato/metabolismo , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Humanos , Transporte Iónico , MutaciónRESUMEN
Energy-dependent translational throttle A (EttA) from Escherichia coli is a paradigmatic ABC-F protein that controls the first step in polypeptide elongation on the ribosome according to the cellular energy status. Biochemical and structural studies have established that ABC-F proteins generally function as translation factors that modulate the conformation of the peptidyl transferase center upon binding to the ribosomal tRNA exit site. These factors, present in both prokaryotes and eukaryotes but not in archaea, use related molecular mechanisms to modulate protein synthesis for heterogenous purposes, ranging from antibiotic resistance and rescue of stalled ribosomes to modulation of the mammalian immune response. Here, we review the canonical studies characterizing the phylogeny, regulation, ribosome interactions, and mechanisms of action of the bacterial ABC-F proteins, and discuss the implications of these studies for the molecular function of eukaryotic ABC-F proteins, including the three human family members.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Farmacorresistencia Bacteriana/inmunología , Proteínas de Escherichia coli/inmunología , Escherichia coli/inmunología , Biosíntesis de Proteínas/inmunología , Ribosomas/inmunología , Animales , HumanosRESUMEN
Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.
Asunto(s)
Bacillus/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Bacillus/genética , Proteínas Bacterianas/genética , Emparejamiento Base , Catálisis , Evolución Molecular , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas/métodosRESUMEN
Metalloproteins comprise over one-third of proteins, with approximately half of all enzymes requiring metal to function. Accurate identification of these metal atoms and their environment is a prerequisite to understanding biological mechanism. Using ion beam analysis through particle induced X-ray emission (PIXE), we have quantitatively identified the metal atoms in 30 previously structurally characterized proteins using minimal sample volume and a high-throughput approach. Over half of these metals had been misidentified in the deposited structural models. Some of the PIXE detected metals not seen in the models were explainable as artifacts from promiscuous crystallization reagents. For others, using the correct metal improved the structural models. For multinuclear sites, anomalous diffraction signals enabled the positioning of the correct metals to reveal previously obscured biological information. PIXE is insensitive to the chemical environment, but coupled with experimental diffraction data deposited alongside the structural model it enables validation and potential remediation of metalloprotein models, improving structural and, more importantly, mechanistic knowledge.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Metaloproteínas/química , Cristalografía por Rayos X , Bases de Datos de Proteínas , Conformación ProteicaRESUMEN
Structural biology and functional studies are a powerful combination to elucidate fundamental knowledge about the cystic fibrosis transmembrane conductance regulator (CFTR). Here, we discuss the latest findings, including how clinically-approved drugs restore function to mutant CFTR, leading to better clinical outcomes for people with cystic fibrosis (CF). Despite the prospect of regulatory approval of a CFTR-targeting therapy for most CF mutations, strenuous efforts are still needed to fully comprehend CFTR structure-and-function for the development of better drugs to enable people with CF to live full and active lives.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística , Terapia Molecular Dirigida/métodos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/fisiopatología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/genética , Mutación , Resultado del TratamientoRESUMEN
The ATP binding cassette protein superfamily comprises ATPase enzymes which are, for the most part, involved in transmembrane transport. Within this superfamily however, some protein families have other functions unrelated to transport. One example is the ABC-F family, which comprises an extremely diverse set of cytoplasmic proteins. All of the proteins in the ABC-F family characterized to date act on the ribosome and are translation factors. Their common function is ATP-dependent modulation of the stereochemistry of the peptidyl transferase center (PTC) in the ribosome coupled to changes in its global conformation and P-site tRNA binding geometry. In this review, we give an overview of the function, structure, and theories for the mechanisms-of-action of microbial proteins in the ABC-F family, including those involved in mediating resistance to ribosome-binding antibiotics.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Farmacorresistencia Bacteriana Múltiple/fisiología , Escherichia coli/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Ribosomas/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Antibacterianos/metabolismo , Antibacterianos/farmacología , Transporte Biológico/fisiología , Cristalografía por Rayos X , Farmacorresistencia Bacteriana Múltiple/genética , Biosíntesis de Proteínas/genética , Conformación Proteica , Dominios Proteicos , Ribosomas/metabolismoRESUMEN
Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.
Asunto(s)
Proteínas Fúngicas/química , Microbiología Industrial , Lipasa/química , Péptidos/química , Rhizopus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólisis , Cinética , Lipasa/genética , Lipasa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Péptidos/genética , Péptidos/metabolismo , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Recombinant proteins are essential for biotechnology. Here we review some of the key points for improving the production of heterologous proteins, and what can be the future of the field.
Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Biotecnología/métodos , Ingeniería Metabólica/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Biotecnología/tendencias , Ingeniería Metabólica/tendenciasRESUMEN
Many disease-causing mutations impair protein stability. Here, we explore a thermodynamic strategy to correct the disease-causing F508del mutation in the human cystic fibrosis transmembrane conductance regulator (hCFTR). F508del destabilizes nucleotide-binding domain 1 (hNBD1) in hCFTR relative to an aggregation-prone intermediate. We developed a fluorescence self-quenching assay for compounds that prevent aggregation of hNBD1 by stabilizing its native conformation. Unexpectedly, we found that dTTP and nucleotide analogs with exocyclic methyl groups bind to hNBD1 more strongly than ATP and preserve electrophysiological function of full-length F508del-hCFTR channels at temperatures up to 37 °C. Furthermore, nucleotides that increase open-channel probability, which reflects stabilization of an interdomain interface to hNBD1, thermally protect full-length F508del-hCFTR even when they do not stabilize isolated hNBD1. Therefore, stabilization of hNBD1 itself or of one of its interdomain interfaces by a small molecule indirectly offsets the destabilizing effect of the F508del mutation on full-length hCFTR. These results indicate that high-affinity binding of a small molecule to a remote site can correct a disease-causing mutation. We propose that the strategies described here should be applicable to identifying small molecules to help manage other human diseases caused by mutations that destabilize native protein conformation.
Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Nucleótidos de Timina/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Humanos , Enlace de Hidrógeno , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Estabilidad Proteica , Desplegamiento Proteico , TermodinámicaRESUMEN
BACKGROUND: An association of acetaminophen use and asthma was observed in the International Study of Asthma and Allergies in Childhood study. However there are no clear mechanisms to explain an association between acetaminophen use and immunologic pathology. In acidic conditions like those in the stomach and inflamed airway, tyrosine residues are nitrated by nitrous and peroxynitrous acids. The resulting nitrotyrosine is structurally similar to 2,4-dinitrophenol and 2,4-dinitrochlorobenzene, known haptens that enhance immune responses by covalently binding proteins. Nitrated acetaminophen shares similar molecular structure. OBJECTIVE: We hypothesized the acetaminophen phenol ring undergoes nitration under acidic conditions, producing 3-nitro-acetaminophen which augments allergic responses by acting as a hapten for environmental allergens. METHODS: 3-nitro-acetaminophen was formed from acetaminophen in the presence of acidified nitrite, purified by high performance liquid chromatography, and assayed by gas-chromatography mass spectrometry. Purified 3-nitro-acetaminophen was reacted with Dermatophagoides pteronyssinus (Der p1) and analyzed by mass spectrometry to identify the modification site. Human peripheral blood mononuclear cells proliferation response was measured in response to 3-nitro-acetaminophen and to 3-nitro-acetaminophen-modified Der p1. RESULTS: Acetaminophen was modified by nitrous acid forming 3-nitro-acetaminophen over a range of different acidic conditions consistent with airway inflammation and stomach acidity. The Der p1 protein-hapten adduct creation was confirmed by liquid chromatography-mass spectrometry proteomics modifying cysteine 132. Peripheral blood mononuclear cells exposed to 3-nitro-acetaminophen-modified Der p1 had increased proliferation and cytokine production compared to acetaminophen and Der p1 alone (n = 7; p < 0.05). CONCLUSION: These data suggests 3-nitro-acetaminophen formation and reaction with Der p1 provides a mechanism by which stomach acid or infection-induced low airway pH in patients could enhance the allergic response to proteins such as Der p1.
Asunto(s)
Acetaminofén/química , Antígenos Dermatofagoides/inmunología , Proteínas de Artrópodos/inmunología , Cisteína Endopeptidasas/inmunología , Monocitos/inmunología , Nitratos/química , Animales , Antígenos Dermatofagoides/química , Proteínas de Artrópodos/química , Asma/inmunología , Cisteína Endopeptidasas/química , Dermatophagoides pteronyssinus/inmunología , HumanosRESUMEN
This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications.
RESUMEN
Carbon metabolism of Crabtree-negative yeast Pichia pastoris was profiled using 13 C nuclear magnetic resonance (NMR) to delineate regulation during exponential growth and to study the import of two precursors for branched-chain amino acid biosynthesis, α-ketoisovalerate and α-ketobutyrate. Cells were grown in aerobic batch cultures containing (a) only glucose, (b) glucose along with the precursors, or (c) glucose and Val. The study provided the following new insights. First, 13 C flux ratio analyses of central metabolism reveal an unexpectedly high anaplerotic supply of the tricarboxylic acid cycle for a Crabtree-negative yeast, and show that a substantial fraction of glucose catabolism proceeds through the pentose phosphate pathway. A comparison with previous flux ratio analyses for batch cultures of Crabtree-negative Pichia stipitis and Crabtree-positive Saccharomyces cerevisiae indicate that the overall regulation of central carbon metabolism in P. pastoris is intermediate in between P. stipitis and S. cerevisiae. Second, excess α-ketoisovalerate in the medium is not transported into the cytoplasm indicating that P. pastoris lacks a suitable transporter. In contrast, excess Val is efficiently taken up and largely fulfills demands for both Val and Leu for protein synthesis. Third, excess α-ketobutyrate is transported into the mitochondria for Ile biosynthesis. However, the import does not efficiently inhibit the synthesis of α-ketobutyrate from pyruvate indicating that P. pastoris has not been optimized evolutionarily to take full advantage of this carbon source. These findings have direct implications for preparing uniformly 2 H,13 C,15 N-labeled proteins containing protonated Ile, Val, and Leu methyl groups in P. pastoris for NMR-based structural biology. ENZYMES: Acetohydroxy acid isomeroreductase (EC 1.1.1.86), branched-chain amino acid aminotransferase (BCAT, EC 2.6.1.42), fumarase (EC 4.2.1.2), malic enzyme (EC 1.1.1.39/1.1.1.40), phosphoenolpyruvate carboxykinase (EC 4.1.1.49), pyruvate carboxylase (EC 6.4.1.1), pyruvate kinase (EC 2.7.1.40), l-serine hydroxymethyltransferase (EC 2.1.2.1), threonine aldolase (EC 4.1.2.5), threonine dehydratase (EC 4.3.1.19); transketolase (EC 2.2.1.1), transaldolase (EC 2.2.1.2).
Asunto(s)
Glucosa/metabolismo , Isoleucina/metabolismo , Leucina/metabolismo , Metaboloma/fisiología , Pichia/metabolismo , Valina/metabolismo , Aerobiosis/fisiología , Técnicas de Cultivo Celular por Lotes , Butiratos/metabolismo , Isótopos de Carbono , Ciclo del Ácido Cítrico/fisiología , Hemiterpenos , Cetoácidos/metabolismo , Espectroscopía de Resonancia Magnética , Mitocondrias/metabolismo , Vía de Pentosa Fosfato/fisiología , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
Synonymous variations in protein-coding sequences alter protein expression dynamics, which has important implications for cellular physiology and evolutionary fitness, but disentangling the underlying molecular mechanisms remains challenging.
Asunto(s)
Evolución Biológica , Codón , Expresión Génica , Sistemas de Lectura AbiertaRESUMEN
DUF1537 is a novel family of kinases identified by comparative genomic approaches. The family is widespread and found in all sequenced plant genomes and 16% of sequenced bacterial genomes. DUF1537 is not a monofunctional family and contains subgroups that can be separated by phylogenetic and genome neighborhood context analyses. A subset of the DUF1537 proteins is strongly associated by physical clustering and gene fusion with the PdxA2 family, demonstrated here to be a functional paralog of the 4-phosphohydroxy-l-threonine dehydrogenase enzyme (PdxA), a central enzyme in the synthesis of pyridoxal-5'-phosphate (PLP) in proteobacteria. Some members of this DUF1537 subgroup phosphorylate l-4-hydroxythreonine (4HT) into 4-phosphohydroxy-l-threonine (4PHT), the substrate of PdxA, in vitro and in vivo. This provides an alternative route to PLP from the toxic antimetabolite 4HT that can be directly generated from the toxic intermediate glycolaldehyde. Although the kinetic and physical clustering data indicate that these functions in PLP synthesis are not the main roles of the DUF1537-PdxA2 enzymes, genetic and physiological data suggest these side activities function has been maintained in diverse sets of organisms.