Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Pharm Res ; 37(3): 33, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31942659

RESUMEN

PURPOSE: Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo. However, to satisfy regulatory requirements and be utilized in clinical applications, cytotoxicity of the base polymers should also be thoroughly characterized. This study systematically investigated the cytotoxicity of several important carbohydrate-based base polymers used for production of MNAs, including carboxymethyl cellulose (CMC), maltodextrin (MD), trehalose (Treh), glucose (Gluc), and hyaluronic acid (HA). METHODS: Each material was evaluated using in vitro cell-culture methods on relevant mouse and human cells, including MPEK-BL6 mouse keratinocytes, NIH-3T3 mouse fibroblasts, HaCaT human keratinocytes, and NHDF human fibroblasts. A common laboratory cell line, human embryonic kidney cells HEK-293, was also used to allow comparisons to various cytotoxicity studies in the literature. Dissolvable MNA materials were evaluated at concentrations ranging from 3 mg/mL to 80 mg/mL. RESULTS: Qualitative and quantitative analyses of cytotoxicity were performed using optical microscopy, confocal fluorescence microscopy, and flow cytometry-based assays for cell morphology, viability, necrosis and apoptosis. Results from different methods consistently demonstrated negligible in vitro cytotoxicity of carboxymethyl cellulose, maltodextrin, trehalose and hyaluronic acid. Glucose was observed to be toxic to cells at concentrations higher than 50 mg/mL. CONCLUSIONS: It is concluded that CMC, MD, Treh, HA, and glucose (at low concentrations) do not pose challenges in terms of cytotoxicity, and thus, are good candidates as MNA materials for creating clinically-relevant and well-tolerated biodissolvable MNAs.


Asunto(s)
Carbohidratos/química , Carbohidratos/toxicidad , Polímeros/química , Animales , Apoptosis/efectos de los fármacos , Carboximetilcelulosa de Sodio/química , Carboximetilcelulosa de Sodio/toxicidad , Línea Celular , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Glucosa/química , Glucosa/toxicidad , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/toxicidad , Ratones , Microinyecciones , Agujas , Preparaciones Farmacéuticas/química , Polisacáridos/química , Polisacáridos/toxicidad , Solubilidad , Trehalosa/química , Trehalosa/toxicidad
2.
Bioconjug Chem ; 30(1): 63-69, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30543409

RESUMEN

We demonstrate selective labeling of cell surface proteins using fluorogen-activating proteins (FAPs) conjugated to standard immunoglobulins (IgGs). Conjugation was achieved with a polypeptide reagent comprised of an N-terminal photoactivatable Fc-binding domain and a C-terminal FAP domain. The resulting FAP-antibody conjugates were effective agents for protein detection and cell ablation in cultured mammalian cells and for visualizing cell-cell contacts using a tethered fluorogen assay. Because our approach allows FAP-antibody conjugates to be generated for most currently available IgGs, it should have broad utility for experimental and therapeutic applications.


Asunto(s)
Cetuximab/metabolismo , Colorantes Fluorescentes/química , Proteínas de la Membrana/metabolismo , Trastuzumab/metabolismo , Adhesión Celular , Línea Celular , Receptores ErbB/metabolismo , Humanos , Fármacos Fotosensibilizantes/química , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
3.
J Cell Sci ; 130(15): 2644-2653, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28615413

RESUMEN

A novel bi-partite fluorescence platform exploits the high affinity and selectivity of antibody scaffolds to capture and activate small-molecule fluorogens. In this report, we investigated the property of multi-selectivity activation by a single antibody against diverse cyanine family fluorogens. Our fluorescence screen identified three cell-impermeant fluorogens, each with unique emission spectra (blue, green and red) and nanomolar affinities. Most importantly, as a protein fusion tag to G-protein-coupled receptors, the antibody biosensor retained full activity - displaying bright fluorogen signals with minimal background on live cells. Because fluorogen-activating antibodies interact with their target ligands via non-covalent interactions, we were able to perform advanced multi-color detection strategies on live cells, previously difficult or impossible with conventional reporters. We found that by fine-tuning the concentrations of the different color fluorogen molecules in solution, a user may interchange the fluorescence signal (onset versus offset), execute real-time signal exchange via fluorogen competition, measure multi-channel fluorescence via co-labeling, and assess real-time cell surface receptor traffic via pulse-chase experiments. Thus, here we inform of an innovative reporter technology based on tri-color signal that allows user-defined fluorescence tuning in live-cell applications.


Asunto(s)
Técnicas Biosensibles/métodos , Técnica del Anticuerpo Fluorescente/métodos , Anticuerpos de Cadena Única/química , Línea Celular , Humanos
4.
Bioconjug Chem ; 28(5): 1356-1362, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28414915

RESUMEN

We describe proof-of-concept for a novel approach for visualizing regions of close apposition between the surfaces of living cells. A membrane-anchored protein with high affinity for a chemical ligand is expressed on the surface of one set of cells, and the cells are co-cultured with a second set of cells that express a membrane-anchored fluorogen-activating protein (FAP). The co-cultured cells are incubated with a bivalent reagent composed of fluorogen linked to the high-affinity ligand, with the concentration of the bivalent reagent chosen to be less than the binding constant for the FAP-fluorogen pair but greater than the binding constant for the ligand-high-affinity protein pair. In these conditions, strong FAP signal is observed only in regions of close proximity between membranes of the two classes of cell, where high local concentration of fluorogen favors binding to the FAP.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Bioensayo/métodos , Técnicas Biosensibles/métodos , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células HEK293 , Humanos , Microscopía Fluorescente , Unión Proteica
5.
Artículo en Inglés | MEDLINE | ID: mdl-27055753

RESUMEN

We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.


Asunto(s)
Técnicas Biosensibles/métodos , Proteínas de la Membrana/análisis , Mapas de Interacción de Proteínas , Carbocianinas , Colorantes Fluorescentes , Células HeLa , Humanos , Indoles , Ligandos , Métodos , Multimerización de Proteína
6.
J Biomol Screen ; 21(1): 74-87, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26442911

RESUMEN

A new class of biosensors, fluorogen activating proteins (FAPs), has been successfully used to track receptor trafficking in live cells. Unlike the traditional fluorescent proteins (FPs), FAPs do not fluoresce unless bound to their specific small-molecule fluorogens, and thus FAP-based assays are highly sensitive. Application of the FAP-based assay for protein trafficking in high-throughput flow cytometry resulted in the discovery of a new class of compounds that interferes with the binding between fluorogens and FAP, thus blocking the fluorescence signal. These compounds are high-affinity, nonfluorescent analogs of fluorogens with little or no toxicity to the tested cells and no apparent interference with the normal function of FAP-tagged receptors. The most potent compound among these, N,4-dimethyl-N-(2-oxo-2-(4-(pyridin-2-yl)piperazin-1-yl)ethyl)benzenesulfonamide (ML342), has been investigated in detail. X-ray crystallographic analysis revealed that ML342 competes with the fluorogen, sulfonated thiazole orange coupled to diethylene glycol diamine (TO1-2p), for the same binding site on a FAP, AM2.2. Kinetic analysis shows that the FAP-fluorogen interaction is more complex than a homogeneous one-site binding process, with multiple conformational states of the fluorogen and/or the FAP, and possible dimerization of the FAP moiety involved in the process.


Asunto(s)
Unión Proteica/efectos de los fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bioensayo/métodos , Técnicas Biosensibles , Línea Celular Tumoral , Fluorescencia , Colorantes Fluorescentes/metabolismo , Humanos , Cinética , Transporte de Proteínas/efectos de los fármacos , Células U937
7.
Protein Eng Des Sel ; 28(10): 327-37, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25843939

RESUMEN

A recently described fluorescence biosensor platform utilizes single-chain Fv (scFvs) that selectively bind and activate fluorogen molecules. In this report we investigated the display of tandem scFv biosensors at the surface of mammalian cells with the aim of advancing current fluorescence detection strategies. We initially screened different peptide linkers to separate each scFv unit, and discovered that tandem proteins joined by either flexible or α-helical linkers properly fold and display at the surface of mammalian cells. Accordingly, we performed a combinatorial scFv-dimer study and identified that fluorescence activation correlated with the cellular location (membrane distal versus proximal) and selections of the different scFvs. Furthermore, in vitro measurements showed that the stability of each scFv monomer unit influenced the folding and cell surface activities of tandem scFvs. Additionally, we investigated the absence or poor signals from some scFv-dimer combinations and discovered that intramolecular and intermolecular scFv chain mispairings led to protein misfolding and/or secretory-pathway-mediated degradation. Furthermore, when tandem scFvs were utilized as fluorescence reporter tags with surface receptors, the biosensor unit and target protein showed independent activities. Thus, the live cell application of tandem scFvs permitted advanced detection of target proteins via fluorescence signal amplification, Förster resonance energy transfer resulting in the increase of Stokes shift and multi-color vesicular traffic of surface receptors.


Asunto(s)
Ingeniería de Proteínas/métodos , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética , Secuencia de Aminoácidos , Animales , Colorantes Fluorescentes/química , Datos de Secuencia Molecular , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Espectrometría de Fluorescencia
8.
Protein Pept Lett ; 21(12): 1289-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24939660

RESUMEN

Current advancements in biological protein discovery utilize bi-partite methods of fluorescence detection where chromophore and scaffold are uncoupled. One such technology, called fluorogen-activating proteins (FAPs), consists of single-chain-variable-fragments (scFvs) selected against small organic molecules (fluorogens) that are non-fluorescent in solution, but highly fluorescent when bound to the scFv. In unusual circumstances a scFv may activate similar fluorogens from a single chemical family. In this report we identified a scFv biosensor with fluorescence activity against multiple fluorogens from two structurally dissimilar families. In-vitro analysis revealed highly selective scFv-ligand interactions at sub-micromolar ranges. Additionally, each scFv-fluorogen complex possesses unique excitation and emission spectra, which allows broader detection limits from the biosensor. Further analysis indicated that ligand activation, regardless of chemical family, occurs at a common scFv binding region that proves flexible, yet selective for fluorogen binding. As a protein reporter at the surface of mammalian cells, the scFv revealed bright signal detection and minimal background. Additionally, when tagged to a G-protein-coupled receptor, we observed agonist dependent signaling leading to protein traffic from cell surface to endosomes via multi-color fluorescence tracking. In summary, this report unveils a noncanonical scFv biosensor with properties of high ligand affinity and multi-channel fluorescence detection, which consequently offers expanded opportunities for cellular protein discovery.


Asunto(s)
Técnicas Biosensibles/instrumentación , Colorantes Fluorescentes/química , Anticuerpos de Cadena Única/química , Colorantes Fluorescentes/metabolismo , Células HEK293 , Humanos , Anticuerpos de Cadena Única/metabolismo
9.
J Biomol Screen ; 19(8): 1220-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24820110

RESUMEN

G protein-coupled receptors (GPCRs) play stimulatory or modulatory roles in numerous physiological states and processes, including growth and development, vision, taste and olfaction, behavior and learning, emotion and mood, inflammation, and autonomic functions such as blood pressure, heart rate, and digestion. GPCRs constitute the largest protein superfamily in the human and are the largest target class for prescription drugs, yet most are poorly characterized, and of the more than 350 nonolfactory human GPCRs, over 100 are orphans for which no endogenous ligand has yet been convincingly identified. We here describe new live-cell assays that use recombinant GPCRs to quantify two general features of GPCR cell biology-receptor desensitization and resensitization. The assays employ a fluorogen-activating protein (FAP) reporter that reversibly complexes with either of two soluble organic molecules (fluorogens) whose fluorescence is strongly enhanced when complexed with the FAP. Both assays require no wash or cleanup steps and are readily performed in microwell plates, making them adaptable to high-throughput drug discovery applications.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Acoplados a Proteínas G/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/metabolismo , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Ligandos , Microscopía Fluorescente , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética
10.
Bioinformatics ; 29(18): 2343-9, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23836142

RESUMEN

MOTIVATION: Evaluation of previous systems for automated determination of subcellular location from microscope images has been done using datasets in which each location class consisted of multiple images of the same representative protein. Here, we frame a more challenging and useful problem where previously unseen proteins are to be classified. RESULTS: Using CD-tagging, we generated two new image datasets for evaluation of this problem, which contain several different proteins for each location class. Evaluation of previous methods on these new datasets showed that it is much harder to train a classifier that generalizes across different proteins than one that simply recognizes a protein it was trained on. We therefore developed and evaluated additional approaches, incorporating novel modifications of local features techniques. These extended the notion of local features to exploit both the protein image and any reference markers that were imaged in parallel. With these, we obtained a large accuracy improvement in our new datasets over existing methods. Additionally, these features help achieve classification improvements for other previously studied datasets. AVAILABILITY: The datasets are available for download at http://murphylab.web.cmu.edu/data/. The software was written in Python and C++ and is available under an open-source license at http://murphylab.web.cmu.edu/software/. The code is split into a library, which can be easily reused for other data and a small driver script for reproducing all results presented here. A step-by-step tutorial on applying the methods to new datasets is also available at that address. CONTACT: murphy@cmu.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Proteínas/análisis , Células HeLa , Humanos , Espacio Intracelular/química , Microscopía Confocal , Microscopía Fluorescente , Programas Informáticos
11.
Mol Med ; 18: 685-96, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22396015

RESUMEN

Numerous human diseases arise because of defects in protein folding, leading to their degradation in the endoplasmic reticulum. Among them is cystic fibrosis (CF), caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR ), an epithelial anion channel. The most common mutation, F508del, disrupts CFTR folding, which blocks its trafficking to the plasma membrane. We developed a fluorescence detection platform using fluorogen-activating proteins (FAPs) to directly detect FAP-CFTR trafficking to the cell surface using a cell-impermeant probe. By using this approach, we determined the efficacy of new corrector compounds, both alone and in combination, to rescue F508del-CFTR to the plasma membrane. Combinations of correctors produced additive or synergistic effects, improving the density of mutant CFTR at the cell surface up to ninefold over a single-compound treatment. The results correlated closely with assays of stimulated anion transport performed in polarized human bronchial epithelia that endogenously express F508del-CFTR. These findings indicate that the FAP-tagged constructs faithfully report mutant CFTR correction activity and that this approach should be useful as a screening assay in diseases that impair protein trafficking to the cell surface.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Evaluación Preclínica de Medicamentos/métodos , Microscopía Fluorescente , Mutación , Línea Celular , Membrana Celular/metabolismo , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Expresión Génica , Genes Reporteros , Humanos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado
12.
Methods ; 57(3): 308-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22366230

RESUMEN

The use of fluorescent proteins, particularly when genetically fused to proteins of biological interest, have greatly advanced many flow cytometry research applications. However, there remains a major limitation to this methodology in that only total cellular fluorescence is measured. Commonly used fluorescent proteins (e.g., EGFP and its variants) are fluorescent whether the fusion protein exists on the surface or in sub-cellular compartments. A flow cytometer cannot distinguish between these separate sources of fluorescence. This can be of great concern when using flow cytometry, plate readers or microscopy to quantify cell surface receptors or other surface proteins genetically fused to fluorescent proteins. Recently developed fluorogen activating proteins (FAPs) solve many of these issues by allowing the selective visualization of only those cell surface proteins that are exposed to the extracellular milieu. FAPs are GFP-sized single chain antibodies that specifically bind to and generate fluorescence from otherwise non-fluorescent dyes ('activate the fluorogen'). Like the fluorescent proteins, FAPs can be genetically fused to proteins of interest. When exogenously added fluorogens bind FAPs, fluorescence immediately increases by as much as 20,000-fold, rendering the FAP fusion proteins highly fluorescent. Moreover, since fluorogens can be made membrane impermeant, fluorescence can be limited to only those receptors expressed on the cell surface. Using cells expressing beta-2 adrenergic receptor (ß2AR) fused at its N-terminus to a FAP, flow cytometry based receptor internalization assays have been developed and characterized. The fluorogen/FAP system is ideally suited to the study of cell surface proteins by fluorescence and avoids drawbacks of using receptor/fluorescent protein fusions, such as internal accumulation. We also briefly comment on extending FAP-based technologies to the study of events occurring inside of the cell as well.


Asunto(s)
Receptores Adrenérgicos beta 2/metabolismo , Anticuerpos de Cadena Única/metabolismo , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Bioensayo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citometría de Flujo , Fluorescencia , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Humanos , Isoproterenol/farmacología , Cinética , Ratones , Propranolol/farmacología , Unión Proteica , Receptores Adrenérgicos beta 2/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Anticuerpos de Cadena Única/química
13.
Drug Discov Today Ther Strateg ; 8(3-4): 61-69, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22368688

RESUMEN

Academia and small business research units are poised to play an increasing role in drug discovery, with drug repurposing as one of the major areas of activity. Here we summarize project status for a number of drugs or classes of drugs: raltegravir, cyclobenzaprine, benzbromarone, mometasone furoate, astemizole, R-naproxen, ketorolac, tolfenamic acid, phenothiazines, methylergonovine maleate and beta-adrenergic receptor drugs, respectively. Based on this multi-year, multi-project experience we discuss strengths and weaknesses of academic-based drug repurposing research. Translational, target and disease foci are strategic advantages fostered by close proximity and frequent interactions between basic and clinical scientists, which often result in discovering new modes of action for approved drugs. On the other hand, lack of integration with pharmaceutical sciences and toxicology, lack of appropriate intellectual coverage and issues related to dosing and safety may lead to significant drawbacks. The development of a more streamlined regulatory process world-wide, and the development of pre-competitive knowledge transfer systems such as a global healthcare database focused on regulatory and scientific information for drugs world-wide, are among the ideas proposed to improve the process of academic drug discovery and repurposing, and to overcome the "valley of death" by bridging basic to clinical sciences.

14.
Cytometry A ; 77(8): 776-82, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20653017

RESUMEN

This study explores the general utility of a new class of biosensor that allows one to selectively visualize molecules of a chosen membrane protein that are at the cell surface. These biosensors make use of recently described bipartite fluoromodules comprised of a fluorogen-activating protein (FAP) and a small molecule (fluorogen) whose fluorescence increases dramatically when noncovalently bound by the FAP (Szent-Gyorgyi et al., Nat Biotechnol 2010;00:000-000).


Asunto(s)
Técnicas Biosensibles/métodos , Colorantes Fluorescentes/metabolismo , Proteínas de la Membrana/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Animales , Membrana Celular/metabolismo , Supervivencia Celular , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endocitosis , Colorantes Fluorescentes/química , Transportador de Glucosa de Tipo 4/metabolismo , Humanos , Proteínas de la Membrana/química , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Estructura Terciaria de Proteína , Receptores Adrenérgicos beta 2/metabolismo
15.
J Biomol Screen ; 15(6): 703-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20488980

RESUMEN

Ligand-dependent receptor internalization is a feature of numerous signaling systems. In this article, the authors describe a new kind of live-cell biosensor of receptor internalization that takes advantage of fluorogen-activating protein (FAP) technology. Recombinant genes that express the human beta2 adrenergic receptor (beta2AR) with FAP domains at their extracellular N-termini were transduced into mammalian cells. Exposure of the cells to membrane-impermeant fluorogens led to a strong fluorescent signal from the cell surface. Agonist-dependent translocation of the receptor from the surface to the cell interior was readily observed and quantified by fluorescence microscopy or flow cytometry in a homogeneous format without wash or separation steps. The approach described here is generalizable to other receptors and cell surface proteins and is adaptable to a variety of fluorescence-based high-throughput screening platforms.


Asunto(s)
Técnicas Biosensibles/métodos , Endocitosis , Colorantes Fluorescentes/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2 , Antagonistas de Receptores Adrenérgicos beta 2 , Animales , Bioensayo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Endocitosis/efectos de los fármacos , Fluorescencia , Humanos , Isoproterenol/farmacología , Cinética , Ratones , Células 3T3 NIH , Propranolol/farmacología , Coloración y Etiquetado , Propiedades de Superficie/efectos de los fármacos , Factores de Tiempo
16.
Artículo en Inglés | MEDLINE | ID: mdl-19963740

RESUMEN

Protein subcellular location is one of the most important determinants of protein function during cellular processes. Changes in protein behavior during the cell cycle are expected to be involved in cellular reprogramming during disease and development, and there is therefore a critical need to understand cell-cycle dependent variation in protein localization which may be related to aberrant pathway activity. With this goal, it would be useful to have an automated method that can be applied on a proteomic scale to identify candidate proteins showing cell-cycle dependent variation of location. Fluorescence microscopy, and especially automated, high-throughput microscopy, can provide images for tens of thousands of fluorescently-tagged proteins for this purpose. Previous work on analysis of cell cycle variation has traditionally relied on obtaining time-series images over an entire cell cycle; these methods are not applicable to the single time point images that are much easier to obtain on a large scale. Hence a method that can infer cell cycle-dependence of proteins from asynchronous, static cell images would be preferable. In this work, we demonstrate such a method that can associate protein pattern variation in static images with cell cycle progression. We additionally show that a one-dimensional parameterization of cell cycle progression and protein feature pattern is sufficient to infer association between localization and cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Ciclo Celular/fisiología , Interpretación de Imagen Asistida por Computador/métodos , Microscopía Fluorescente/métodos , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Animales , Células HeLa , Humanos , Ratones , Células 3T3 NIH
17.
Nat Biotechnol ; 26(2): 235-40, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18157118

RESUMEN

Imaging of live cells has been revolutionized by genetically encoded fluorescent probes, most famously green and other fluorescent proteins, but also peptide tags that bind exogenous fluorophores. We report here the development of protein reporters that generate fluorescence from otherwise dark molecules (fluorogens). Eight unique fluorogen activating proteins (FAPs) have been isolated by screening a library of human single-chain antibodies (scFvs) using derivatives of thiazole orange and malachite green. When displayed on yeast or mammalian cell surfaces, these FAPs bind fluorogens with nanomolar affinity, increasing green or red fluorescence thousands-fold to brightness levels typical of fluorescent proteins. Spectral variation can be generated by combining different FAPs and fluorogen derivatives. Visualization of FAPs on the cell surface or within the secretory apparatus of mammalian cells can be achieved by choosing membrane permeant or impermeant fluorogens. The FAP technique is extensible to a wide variety of nonfluorescent dyes.


Asunto(s)
Anticuerpos Monoclonales , Colorantes Fluorescentes , Genes Reporteros , Proteínas de la Membrana/metabolismo , Microscopía Fluorescente/métodos , Técnicas de Sonda Molecular , Fragmentos de Inmunoglobulinas , Proteínas de la Membrana/ultraestructura
18.
Mol Genet Metab ; 82(1): 38-47, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15110320

RESUMEN

Congenital adrenal hyperplasia (CAH) is a common inborn error of steroidogenesis. The clinical spectrum of CAH ranges from the severe classical form, which can be fatal in the newborn, to simple virilizing forms or a milder non-classical form which is often not diagnosed until puberty. Recessive mutations in the autosomal gene encoding 21-hydroxylase (CYP21) are responsible for approximately 95% of CAH cases. Since CYP21 genotype is generally predictive of the presence and severity of the disorder, accurate CYP21 genotyping is of clear medical significance. Determining the CYP21 genotype of an individual, using standard methods, is difficult due to the presence of a nearly identical pseudogene (CYP21P) in close proximity to the functional gene. To address the need for a comprehensive test for mutations in the CYP21 gene, we developed a multiplexed peptide mass signature genotyping (PMSG) assay and applied the assay to 151 DNA samples. CAH patients had been previously characterized for the 10 most common mutations. The PMSG assay detected all common mutations; in addition it identified six known rare mutations and also discovered four new mutations (two frameshifts in the first half of the gene, P42fs and S171fs, and two point mutations, H365Y and R479L). This assay has the potential to provide high-throughput, cost-effective analysis of the CYP21 gene to detect known mutations and identify novel variants in samples obtained from patients with CAH, individuals suspected to have CAH, and heterozygous carriers.


Asunto(s)
Hiperplasia Suprarrenal Congénita/genética , Mutación/genética , Péptidos/química , Análisis de Secuencia de ADN/métodos , Esteroide 21-Hidroxilasa/genética , Hiperplasia Suprarrenal Congénita/diagnóstico , Alelos , Análisis Mutacional de ADN/métodos , Exones/genética , Genotipo , Humanos , Recién Nacido , Péptidos/genética , Polimorfismo Genético/genética , Sistemas de Lectura/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
Genome Res ; 13(8): 1944-51, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902384

RESUMEN

Peptide mass-signature genotyping (PMSG) is a scanning genotyping method that identifies mutations and polymorphisms by translating the sequence of interest in more than one reading frame and measuring the masses of the resulting peptides by mass spectrometry. PMSG was applied to the RDS/peripherin gene of 16 individuals from a family exhibiting autosomal dominant macular degeneration. The method revealed an A-->T transversion in the 5' splice site of intron 2 that is the likely cause of the disease. It also revealed four different minihaplotypes in exon 3 that represent particular combinations of SNPs at four different locations. This study demonstrates the utility of PMSG for identifying and characterizing point mutations and local minihaplotypes that are not readily analyzed by other approaches.


Asunto(s)
Proteínas del Ojo/genética , Haplotipos , Proteínas de Filamentos Intermediarios/genética , Glicoproteínas de Membrana/genética , Mutación , Proteínas del Tejido Nervioso/genética , Péptidos/genética , Degeneración Retiniana/genética , Análisis Mutacional de ADN/métodos , Proteínas del Ojo/química , Femenino , Genotipo , Humanos , Proteínas de Filamentos Intermediarios/química , Masculino , Glicoproteínas de Membrana/química , Proteínas del Tejido Nervioso/química , Linaje , Péptidos/química , Periferinas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
20.
Clin Chem ; 49(8): 1318-30, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12881448

RESUMEN

BACKGROUND: The diversity of genetic mutations and polymorphisms calls for the development of practical detection methods capable of assessing more than one patient/one nucleotide position per analysis. METHODS: We developed a new method, based on peptide mass signature genotyping (PMSG), for the detection of DNA mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Exons of the gene were amplified, cloned, and expressed in Escherichia coli as peptide fusions, in natural as well as unnatural reading frames. Peptide analytes were purified by immobilized metal affinity chromatography and analyzed by matrix-assisted, laser desorption/ionization time-of-flight mass spectrometry. Synthetic and natural DNA samples with the 25 mutations recommended for CFTR carrier screening (Grody et al. Genet Med 2001;3:149-54) were assessed using the PMSG test for the CFTR gene. RESULTS: Peptide analytes ranged from 6278 to 17 454 Da and varied 30-fold in expression; highly expressing peptides were observed by electron microscopy to accumulate as inclusion bodies. Peptides were reliably recovered from whole-cell lysates by a simple purification method. CFTR mutations caused detectable changes in resulting mass spectrometric profiles, which were >95% reliably detected in blinded testing of replicate synthetic heterozygous DNA samples. Mutation detection was possible with both sample pooling and multiplexing. The PMSG CFTR test was used to determine compound heterozygous mutations in DNA samples from cystic fibrosis patients, which were confirmed by direct DNA sequencing. CONCLUSIONS: The PMSG test of the CFTR gene demonstrates unique capabilities for determining the sequence status of a DNA target by sensitively monitoring the mass of peptides, natural or unnatural, generated from that target.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Tamizaje Masivo/métodos , Péptidos/genética , Clonación Molecular , Genotipo , Humanos , Microscopía Electrónica , Peso Molecular , Mutación , Péptidos/química , Péptidos/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...