RESUMEN
In a patient with permanent neonatal syndromic diabetes clinically similar to cases with ONECUT1 biallelic mutations, we identified a disease-causing deletion located upstream of ONECUT1. Through genetic, genomic, and functional studies, we identified a crucial regulatory region acting as an enhancer of ONECUT1 specifically during pancreatic development. This enhancer region contains a low-frequency variant showing a strong association with type 2 diabetes and other glycemic traits, thus extending the contribution of this region to common forms of diabetes. Clinical relevance is provided by experimentally tailored therapy options for patients carrying ONECUT1 coding or regulatory mutations.
RESUMEN
SOFT syndrome (Short stature-Onychodysplasia-Facial dysmorphism-hypoTrichosis) is a rare primordial dwarfism syndrome caused by biallelic variants in POC1A encoding a centriolar protein. To refine the phenotypic spectrum of SOFT syndrome, recently shown to include metabolic features, we conducted a systematic review of all published cases (19 studies, including 42 patients). The SOFT tetrad affected only 24 patients (57%), while all cases presented with short stature from birth (median height: -5.5SDS([-8.5]-[-2.8])/adult height: 132.5 cm(103.5-148)), which was most often disproportionate (90.5%), with relative macrocephaly. Bone involvement resulted in short hands and feet (100%), brachydactyly (92.5%), metaphyseal (92%) or epiphyseal (84%) anomalies, and/or sacrum/pelvis hypoplasia (58%). Serum IGF-I was increased (median IGF-I level: + 2 SDS ([-0.5]-[+ 3])). Recombinant human growth hormone (rhGH) therapy was stopped for absence/poor growth response (7/9 patients, 78%) and/or hyperglycemia (4/9 patients, 45%). Among 11 patients evaluated, 10 (91%) presented with central distribution of fat (73%), clinical (64%) and/or biological insulin resistance (IR) (100%, median HOMA-IR: 18), dyslipidemia (80%), and hepatic steatosis (100%). Glucose tolerance abnormalities affected 58% of patients aged over 10 years. Patients harbored biallelic missense (52.4%) or truncating (45.2%) POC1A variants. Biallelic null variants, affecting 36% of patients, were less frequently associated with the SOFT tetrad (33% vs 70% respectively, p = 0.027) as compared to other variants, without difference in the prevalence of metabolic abnormalities. POC1A should be sequenced in children with short stature, altered glucose/insulin homeostasis and/or centripetal fat distribution. In patients with SOFT syndrome, rhGH treatment is not indicated, and IR-related complications should be regularly screened and monitored.PROSPERO registration: CRD42023460876.
Asunto(s)
Ciliopatías , Trastornos del Crecimiento , Resistencia a la Insulina , Niño , Humanos , Proteínas de Ciclo Celular , Ciliopatías/complicaciones , Ciliopatías/genética , Trastornos del Crecimiento/genética , Resistencia a la Insulina/genéticaRESUMEN
Human pluripotent stem cells, with their ability to proliferate indefinitely and to differentiate into virtually all cell types of the human body, provide a novel resource to study human development and to implement relevant disease models. Here, we employed a human pancreatic differentiation platform complemented with an shRNA screen in human pluripotent stem cells (PSCs) to identify potential drivers of early endoderm and pancreatic development. Deep sequencing followed by abundancy ranking pinpointed six top hit genes potentially associated with either improved or impaired endodermal differentiation, which were selected for functional validation in CRISPR-Cas9 mediated knockout (KO) lines. Upon endoderm differentiation (DE), particularly the loss of SLC22A1 and DSC2 led to impaired differentiation efficiency into CXCR4/KIT-positive DE cells. qPCR analysis also revealed changes in differentiation markers CXCR4, FOXA2, SOX17, and GATA6. Further differentiation of PSCs to the pancreatic progenitor (PP) stage resulted in a decreased proportion of PDX1/NKX6-1-positive cells in SLC22A1 KO lines, and in DSC2 KO lines when differentiated under specific culture conditions. Taken together, our study reveals novel genes with potential roles in early endodermal development.
Asunto(s)
Endodermo , Células Madre Pluripotentes , Diferenciación Celular/genética , Genómica , Humanos , Páncreas/metabolismo , Células Madre Pluripotentes/metabolismoRESUMEN
Cell type specification during pancreatic development is tightly controlled by a transcriptional and epigenetic network. The precise role of most transcription factors, however, has been only described in mice. To convey such concepts to human pancreatic development, alternative model systems such as pancreatic in vitro differentiation of human pluripotent stem cells can be employed. Here, we analyzed stage-specific RNA-, ChIP-, and ATAC-sequencing data to dissect transcriptional and regulatory mechanisms during pancreatic development. Transcriptome and open chromatin maps of pancreatic differentiation from human pluripotent stem cells provide a stage-specific pattern of known pancreatic transcription factors and indicate ONECUT1 as a crucial fate regulator in pancreas progenitors. Moreover, our data suggest that ONECUT1 is also involved in preparing pancreatic progenitors for later endocrine specification. The dissection of the transcriptional and regulatory circuitry revealed an important role for ONECUT1 within such network and will serve as resource to study human development and disease.
Asunto(s)
Factor Nuclear 6 del Hepatocito/genética , Páncreas/fisiología , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 6 del Hepatocito/metabolismo , Células Madre Embrionarias Humanas , Humanos , Transcripción GenéticaRESUMEN
Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Factor Nuclear 6 del Hepatocito/genética , Páncreas/embriología , Diferenciación Celular/genética , Anomalías Congénitas/genética , Retardo del Crecimiento Fetal/genética , Vesícula Biliar/anomalías , Proteína Homeobox Nkx-2.2/biosíntesis , Proteínas de Homeodominio/biosíntesis , Humanos , Lactante , Recién Nacido , Masculino , Herencia Multifactorial/genética , Organogénesis/genética , Páncreas/anomalías , Enfermedades Pancreáticas/congénito , Enfermedades Pancreáticas/genética , Células Madre Pluripotentes/citología , Transcripción Genética/genéticaRESUMEN
Diabetes, as one of the major diseases in industrial countries, affects over 350 million people worldwide. Type 1 (T1D) and type 2 diabetes (T2D) are the most common forms with both types having invariable genetic influence. It is accepted that a subset of all diabetes patients, generally estimated to account for 1-2% of all diabetic cases, is attributed to mutations in single genes. As only a subset of these genes has been identified and fully characterized, there is a dramatic need to understand the pathophysiological impact of genetic determinants on ß-cell function and pancreatic development but also on cell replacement therapies. Pluripotent stem cells differentiated along the pancreatic lineage provide a valuable research platform to study such genes. This review summarizes current perspectives in applying this platform to study monogenic diabetes variants.
Asunto(s)
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Mutación , Células Madre Pluripotentes/citología , Animales , Sistemas CRISPR-Cas , Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Epigénesis Genética , Edición Génica , Variación Genética , Heterocigoto , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Páncreas/embriología , Páncreas/patología , Fenotipo , RegeneraciónRESUMEN
The common co-occurrence of autoimmune systemic diseases in patients with neurological disorders and antibodies against glutamic acid decarboxylase 65 (GAD65) suggests a shared genetic predisposition to these disorders. However, the nature and frequency of familial aggregation of autoimmune diseases, which might also support this hypothesis, have been poorly investigated. Herein, an exploratory, interview-based study was conducted with the aim of describing the autoimmune diseases displayed by the relatives of GAD65 neurological patients, their frequency, kinship, and potential patterns of inheritance. Patients were enrolled only if they had GAD65 antibodies in the cerebrospinal fluid and typical clinical phenotypes associated with such antibodies (stiff-person syndrome, cerebellar ataxia, limbic encephalitis, or temporal lobe epilepsy). A total of 65 patients were included in the study, and 44/65 (67.7%) reported family history of autoimmunity, including first-degree relatives in 36/65 (55.4%); the sibling recurrence risk (λS) was 5.5, reinforcing the hypothesis of an underlying strong genetic predisposition. Most pedigrees with familial autoimmunity (38/44, 86.4%) showed multiple autoimmune diseases, all but 2 of them with diabetes mellitus or autoimmune thyroid disease, therefore resembling autoimmune polyendocrine syndromes. Inheritance patterns were diverse, possibly autosomal dominant in 17/44 (38.6%) pedigrees or autosomal recessive in 5/44 (11.4%), and un-defined or complex in 24/44 (54.5%). However, a total of 21/65 (32.3%) patients had no identified family history of autoimmunity. In conclusion, these results suggest a variable and heterogeneous genetic predisposition to GAD65 neurological disorders, possibly involving multiple loci and modes of inheritance with different contribution in each family.
Asunto(s)
Enfermedades Autoinmunes , Síndrome de la Persona Rígida , Autoanticuerpos , Autoinmunidad/genética , Glutamato Descarboxilasa , HumanosRESUMEN
OBJECTIVE: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic ß-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of ß-cell failure in this syndrome. METHODS: Whole exome sequencing was performed and identified variants were confirmed by Sanger sequencing. DNAJC3 was silenced by RNAi in INS-1E cells, primary rat ß-cells, human islets, and induced pluripotent stem cell-derived ß-cells. ß-cell function and apoptosis were assessed, and potential mediators of apoptosis examined. RESULTS: The two patients presented with juvenile-onset diabetes, short stature, hypothyroidism, neurodegeneration, facial dysmorphism, hypoacusis, microcephaly and skeletal bone deformities. They were heterozygous compound and homozygous for novel loss-of-function mutations in DNAJC3. DNAJC3 silencing did not impair insulin content or secretion. Instead, the knockdown induced rat and human ß-cell apoptosis and further sensitized cells to endoplasmic reticulum stress, triggering mitochondrial apoptosis via the pro-apoptototic Bcl-2 proteins BIM and PUMA. CONCLUSIONS: This report confirms previously described features and expands the clinical spectrum of syndromic DNAJC3 diabetes, one of the five monogenic forms of diabetes pertaining to the PERK pathway of the endoplasmic reticulum stress response. DNAJC3 deficiency may lead to ß-cell loss through BIM- and PUMA-dependent activation of the mitochondrial pathway of apoptosis.
Asunto(s)
Apoptosis/genética , Diabetes Mellitus Tipo 1/genética , Proteínas del Choque Térmico HSP40/genética , Células Secretoras de Insulina/fisiología , Mitocondrias/metabolismo , Adolescente , Adulto , Factores de Edad , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Mutación con Pérdida de Función , Masculino , Ratones , Mitocondrias/patología , Linaje , Ratas , SíndromeRESUMEN
Neonatal diabetes is caused by single gene mutations reducing pancreatic ß cell number or impairing ß cell function. Understanding the genetic basis of rare diabetes subtypes highlights fundamental biological processes in ß cells. We identified 6 patients from 5 families with homozygous mutations in the YIPF5 gene, which is involved in trafficking between the endoplasmic reticulum (ER) and the Golgi. All patients had neonatal/early-onset diabetes, severe microcephaly, and epilepsy. YIPF5 is expressed during human brain development, in adult brain and pancreatic islets. We used 3 human ß cell models (YIPF5 silencing in EndoC-ßH1 cells, YIPF5 knockout and mutation knockin in embryonic stem cells, and patient-derived induced pluripotent stem cells) to investigate the mechanism through which YIPF5 loss of function affects ß cells. Loss of YIPF5 function in stem cell-derived islet cells resulted in proinsulin retention in the ER, marked ER stress, and ß cell failure. Partial YIPF5 silencing in EndoC-ßH1 cells and a patient mutation in stem cells increased the ß cell sensitivity to ER stress-induced apoptosis. We report recessive YIPF5 mutations as the genetic cause of a congenital syndrome of microcephaly, epilepsy, and neonatal/early-onset diabetes, highlighting a critical role of YIPF5 in ß cells and neurons. We believe this is the first report of mutations disrupting the ER-to-Golgi trafficking, resulting in diabetes.
Asunto(s)
Diabetes Mellitus , Estrés del Retículo Endoplásmico/genética , Enfermedades Genéticas Congénitas , Enfermedades del Recién Nacido , Microcefalia , Mutación , Proteínas de Transporte Vesicular , Línea Celular , Diabetes Mellitus/embriología , Diabetes Mellitus/genética , Diabetes Mellitus/patología , Femenino , Enfermedades Genéticas Congénitas/embriología , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/patología , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Recién Nacido , Enfermedades del Recién Nacido/embriología , Enfermedades del Recién Nacido/genética , Enfermedades del Recién Nacido/patología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Microcefalia/embriología , Microcefalia/genética , Microcefalia/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismoRESUMEN
Most genome-wide association studies used genetic-model-based tests assuming an additive mode of inheritance, leading to underpowered association tests in case of departure from additivity. The general regression model (GRM) association test proposed by Fisher and Wilson in 1980 makes no assumption on the genetic model. Interestingly, it also allows formal testing of the underlying genetic model. We conducted a simulation study of quantitative traits to compare the power of the GRM test to the classical linear regression tests, the maximum of the three statistics (MAX), and the allele-based (allelic) tests. Simulations were performed on two samples sizes, using a large panel of genetic models, varying genetic models, minor allele frequencies, and the percentage of explained variance. In case of departure from additivity, the GRM was more powerful than the additive regression tests (power gain reaching 80%) and had similar power when the true model is additive. GRM was also as or more powerful than the MAX or allelic tests. The true simulated model was mostly retained by the GRM test. Application of GRM to HbA1c illustrates its gain in power. To conclude, GRM increases power to detect association for quantitative traits, allows determining the genetic model and is easily applicable.
Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Genéticos , Alelos , Simulación por Computador , Frecuencia de los Genes , Hemoglobina Glucada/genética , Humanos , Modelos Lineales , Sitios de Carácter CuantitativoRESUMEN
Type 1 diabetes (T1D) results from autoimmune destruction of the pancreatic ßcells. Although all T1D patients require daily administration of exogenous insulin, their insulin requirement to achieve good glycaemic control may vary significantly. Glycated haemoglobin (HbA1c) level represents a stable indicator of glycaemic control and is a reliable predictor of long-term complications of T1D. The purpose of this article is to systematically review the role of non-genetic predictors and genetic factors of HbA1c level in T1D patients after the first year of T1D, to exclude the honeymoon period. A total of 1974 articles published since January 2011 were identified and 78 were finally included in the analysis of non-genetic predictors. For genetic factors, a total of 277 articles were identified and 14 were included. The most significantly associated factors with HbA1c level are demographic (age, ethnicity, and socioeconomic status), personal (family characteristics, parental care, psychological traits...) and features related to T1D (duration of T1D, adherence to treatment ). Only a few studies have searched for genetic factors influencing HbA1c level, most of which focused on candidate genes using classical genetic statistical methods, with generally limited power and incomplete adjustment for confounding factors and multiple testing. Our review shows the complexity of explaining HbA1c level variations, which involves numerous correlated predictors. Overall, our review underlines the lack of studies investigating jointly genetic and non-genetic factors and their interactions to better understand factors influencing glycaemic control for T1D patients.
Asunto(s)
Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Hemoglobina Glucada/genética , Hemoglobina Glucada/metabolismo , Adulto , Niño , Diabetes Mellitus Tipo 1/epidemiología , Predisposición Genética a la Enfermedad , Humanos , Pronóstico , Factores de Riesgo , Factores de Tiempo , Adulto JovenRESUMEN
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting ß-cells and neurons and underline the existence of transnosology pathways in diabetes and its co-morbidities.
Asunto(s)
Células Secretoras de Insulina/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Autofagia , Sitios de Unión , Línea Celular Tumoral , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Hipocampo/citología , Masculino , Neurogénesis , Neuronas/citología , Células PC12 , Polimorfismo Genético , Unión Proteica , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/química , Factores de Transcripción/genéticaRESUMEN
Monogenic forms of diabetes may account for 1-5% of all cases of diabetes, and may occur in the context of syndromic presentations. We investigated the case of a girl affected by insulin-dependent diabetes, diagnosed at 6 years old, associated with congenital cataract. Her consanguineous parents and her four other siblings did not have diabetes or cataract, suggesting a recessive syndrome. Using whole exome sequencing of the affected proband, we identified a heterozygous p.R825Q ABCC8 mutation, located at the exact same amino-acid position as the p.R825W recurring diabetes mutation, hence likely responsible for the diabetes condition, and a homozygous p.G71S mutation in CRYBB1, a gene known to be responsible for congenital cataract. Both mutations were predicted to be damaging and were absent or extremely rare in public databases. Unexpectedly, we found that the mother was also homozygous for the CRYBB1 mutation, and both the mother and one unaffected sibling were heterozygous for the ABCC8 mutation, suggesting incomplete penetrance of both mutations. Incomplete penetrance of ABCC8 mutations is well documented, but this is the first report of an incomplete penetrance of a CRYBB1 mutation, manifesting between susceptible subjects (unaffected mother vs. affected child) and to some extent within the patient herself, who had distinct cataract severities in both eyes. Our finding illustrates the importance of family studies to unmask the role of confounding factors such as double-gene mutations and incomplete penetrance that may mimic monogenic syndromes including in the case of strongly evocative family structure with consanguinity.
RESUMEN
We describe a new syndrome characterized by early-onset diabetes associated with bone marrow failure, affecting mostly the erythrocytic lineage. Using whole-exome sequencing in a remotely consanguineous patient from a family with two affected siblings, we identified a single homozygous missense mutation (chr15.hg19:g.48,626,619A>G) located in the dUTPase (DUT) gene (National Center for Biotechnology Information Gene ID 1854), affecting both the mitochondrial (DUT-M p.Y142C) and the nuclear (DUT-N p.Y54C) isoforms. We found the same homozygous mutation in an unrelated consanguineous patient with diabetes and bone marrow aplasia from a family with two affected siblings, whereas none of the >60,000 subjects from the Exome Aggregation Consortium (ExAC) was homozygous for this mutation. This replicated observation probability was highly significant, thus confirming the role of this DUT mutation in this syndrome. DUT is a key enzyme for maintaining DNA integrity by preventing misincorporation of uracil into DNA, which results in DNA toxicity and cell death. We showed that DUT silencing in human and rat pancreatic ß-cells results in apoptosis via the intrinsic cell death pathway. Our findings support the importance of tight control of DNA metabolism for ß-cell integrity and warrant close metabolic monitoring of patients treated by drugs affecting dUTP balance.
Asunto(s)
Anemia Aplásica/genética , Apoptosis/genética , Enfermedades de la Médula Ósea/genética , Diabetes Mellitus/genética , Hemoglobinuria Paroxística/genética , Pirofosfatasas/genética , ARN Mensajero/metabolismo , Adolescente , Adulto , Anciano , Animales , Western Blotting , Trastornos de Fallo de la Médula Ósea , Niño , Consanguinidad , Cristalografía por Rayos X , Femenino , Humanos , Islotes Pancreáticos/metabolismo , Masculino , Persona de Mediana Edad , Estructura Molecular , Mutación , ARN Interferente Pequeño , Ratas , Ratas Wistar , Análisis de Secuencia de ADN , Síndrome , Adulto JovenRESUMEN
Dysregulated endoplasmic reticulum stress and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) are associated with pancreatic ß-cell failure and diabetes. Here, we report the first homozygous mutation in the PPP1R15B gene (also known as constitutive repressor of eIF2α phosphorylation [CReP]) encoding the regulatory subunit of an eIF2α-specific phosphatase in two siblings affected by a novel syndrome of diabetes of youth with short stature, intellectual disability, and microcephaly. The R658C mutation in PPP1R15B affects a conserved amino acid within the domain important for protein phosphatase 1 (PP1) binding. The R658C mutation decreases PP1 binding and eIF2α dephosphorylation and results in ß-cell apoptosis. Our findings support the concept that dysregulated eIF2α phosphorylation, whether decreased by mutation of the kinase (EIF2AK3) in Wolcott-Rallison syndrome or increased by mutation of the phosphatase (PPP1R15B), is deleterious to ß-cells and other secretory tissues, resulting in diabetes associated with multisystem abnormalities.
Asunto(s)
Diabetes Mellitus/genética , Trastornos del Crecimiento/genética , Microcefalia/genética , Mutación Missense , Proteína Fosfatasa 1/genética , Adolescente , Adulto , Femenino , Humanos , Masculino , SíndromeRESUMEN
Wolcott-Rallison syndrome (WRS) is a very rare genetic disorder, which is transmitted by autosomal recessive inheritance and results from mutations in the gene encoding the eukaryotic initiation factor 2-α kinase-3 (EIF2AK3). The cardinal features of the syndrome include early-onset insulin-dependent diabetes mellitus, multiple epiphyseal dysplasia, and growth retardation. We present the case of a 13-year-old Greek boy with a known history of infancy-onset diabetes mellitus and was found to have WRS at the age of 4 years. He presented with acute liver and renal insufficiency in addition to skeletal dysplasia and neurodevelopmental retardation. The clinical suspicion of WRS was confirmed by molecular analysis of the EIF2AK3 gene. The patient was found to be a compound heterozygote with two different novel mutations (c.2776C>T, p.R902X and c.3038A>G, p.Y989C). The current patient is one of the longer survivors.
Asunto(s)
Diabetes Mellitus Tipo 1/diagnóstico , Epífisis/anomalías , Osteocondrodisplasias/diagnóstico , eIF-2 Quinasa/genética , Adolescente , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Humanos , Masculino , Mutación , Osteocondrodisplasias/genéticaRESUMEN
Insulin-dependent juvenile-onset diabetes may occur in the context of rare syndromic presentations suggesting monogenic inheritance rather than common multifactorial autoimmune type 1 diabetes. Here, we report the case of a Lebanese patient diagnosed with juvenile-onset insulin-dependent diabetes presenting ketoacidosis, early-onset retinopathy with optic atrophy, hearing loss, diabetes insipidus, epilepsy, and normal weight and stature, who later developed insulin resistance. Despite similarities with Wolfram syndrome, we excluded the WFS1 gene as responsible for this disease. Using combined linkage and candidate gene study, we selected ALMS1, responsible for Alström syndrome, as a candidate gene. We identified a novel splice mutation in intron 18 located 3 bp before the intron-exon junction (IVS18-3T>G), resulting in exon 19 skipping and consequent frameshift generating a truncated protein (V3958fs3964X). The clinical presentation of the patient significantly differed from typical Alström syndrome by the absence of truncal obesity and short stature, and by the presence of ketoacidotic insulin-dependent diabetes, optic atrophy and diabetes insipidus. Our observation broadens the clinical spectrum of Alström syndrome and suggests that ALMS1 mutations may be considered in patients who initially present with an acute onset of insulin-dependent diabetes.
Asunto(s)
Síndrome de Alstrom/genética , Diabetes Mellitus Tipo 1/genética , Isoformas de Proteínas/genética , Proteínas/genética , Edad de Inicio , Síndrome de Alstrom/patología , Proteínas de Ciclo Celular , Diabetes Insípida Neurogénica/complicaciones , Diabetes Insípida Neurogénica/genética , Diabetes Insípida Neurogénica/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/patología , Retinopatía Diabética/complicaciones , Retinopatía Diabética/genética , Retinopatía Diabética/patología , Ligamiento Genético , Humanos , Resistencia a la Insulina/genética , Cetosis/complicaciones , Cetosis/genética , Cetosis/patología , Masculino , Mutación , Obesidad/complicaciones , Obesidad/genética , Obesidad/patología , Isoformas de Proteínas/aislamiento & purificaciónRESUMEN
We describe a new syndrome of young onset diabetes, short stature and microcephaly with intellectual disability in a large consanguineous family with three affected children. Linkage analysis and whole exome sequencing were used to identify the causal nonsense mutation, which changed an arginine codon into a stop at position 127 of the tRNA methyltransferase homolog gene TRMT10A (also called RG9MTD2). TRMT10A mRNA and protein were absent in lymphoblasts from the affected siblings. TRMT10A is ubiquitously expressed but enriched in brain and pancreatic islets, consistent with the tissues affected in this syndrome. In situ hybridization studies showed that TRMT10A is expressed in human embryonic and fetal brain. TRMT10A is the mammalian ortholog of S. cerevisiae TRM10, previously shown to catalyze the methylation of guanine 9 (m(1)G9) in several tRNAs. Consistent with this putative function, in silico topology prediction indicated that TRMT10A has predominant nuclear localization, which we experimentally confirmed by immunofluorescence and confocal microscopy. TRMT10A localizes to the nucleolus of ß- and non-ß-cells, where tRNA modifications occur. TRMT10A silencing induces rat and human ß-cell apoptosis. Taken together, we propose that TRMT10A deficiency negatively affects ß-cell mass and the pool of neurons in the developing brain. This is the first study describing the impact of TRMT10A deficiency in mammals, highlighting a role in the pathogenesis of microcephaly and early onset diabetes. In light of the recent report that the type 2 diabetes candidate gene CDKAL1 is a tRNA methylthiotransferase, the findings in this family suggest broader relevance of tRNA methyltransferases in the pathogenesis of type 2 diabetes.
Asunto(s)
Diabetes Mellitus Tipo 2/genética , Discapacidad Intelectual/genética , Metiltransferasas/genética , Microcefalia/genética , ARNt Metiltransferasas/genética , Adulto , Edad de Inicio , Animales , Apoptosis/genética , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Ligamiento Genético , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/patología , Masculino , Microcefalia/complicaciones , Microcefalia/patología , Mutación , Linaje , Ratas , Proteínas de Saccharomyces cerevisiae/genética , ARNt Metiltransferasas/deficienciaRESUMEN
Mutations in human Gli-similar (GLIS) 3 protein cause neonatal diabetes. The GLIS3 gene region has also been identified as a susceptibility risk locus for both type 1 and type 2 diabetes. GLIS3 plays a role in the generation of pancreatic beta cells and in insulin gene expression, but there is no information on the role of this gene on beta cell viability and/or susceptibility to immune- and metabolic-induced stress. GLIS3 knockdown (KD) in INS-1E cells, primary FACS-purified rat beta cells, and human islet cells decreased expression of MafA, Ins2, and Glut2 and inhibited glucose oxidation and insulin secretion, confirming the role of this transcription factor for the beta cell differentiated phenotype. GLIS3 KD increased beta cell apoptosis basally and sensitized the cells to death induced by pro-inflammatory cytokines (interleukin 1ß + interferon-γ) or palmitate, agents that may contribute to beta cell loss in respectively type 1 and 2 diabetes. The increased cell death was due to activation of the intrinsic (mitochondrial) pathway of apoptosis, as indicated by cytochrome c release to the cytosol, Bax translocation to the mitochondria and activation of caspases 9 and 3. Analysis of the pathways implicated in beta cell apoptosis following GLIS3 KD indicated modulation of alternative splicing of the pro-apoptotic BH3-only protein Bim, favouring expression of the pro-death variant BimS via inhibition of the splicing factor SRp55. KD of Bim abrogated the pro-apoptotic effect of GLIS3 loss of function alone or in combination with cytokines or palmitate. The present data suggest that altered expression of the candidate gene GLIS3 may contribute to both type 1 and 2 type diabetes by favouring beta cell apoptosis. This is mediated by alternative splicing of the pro-apoptotic protein Bim and exacerbated formation of the most pro-apoptotic variant BimS.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Apoptosis/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/genética , Proteínas de la Membrana/genética , Proteínas Proto-Oncogénicas/genética , Factores de Transcripción/genética , Anciano , Empalme Alternativo/genética , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Proteínas de Unión al ADN , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 2/etiología , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Persona de Mediana Edad , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas/metabolismo , Ratas , Proteínas Represoras , TransactivadoresRESUMEN
The common genetic loci that independently influence the risk of type 1 diabetes have largely been determined. Their interactions with age-at-diagnosis of type 1 diabetes, sex, or the major susceptibility locus, HLA class II, remain mostly unexplored. A large collection of more than 14,866 type 1 diabetes samples (6,750 British diabetic individuals and 8,116 affected family samples of European descent) were genotyped at 38 confirmed type 1 diabetes-associated non-HLA regions and used to test for interaction of association with age-at-diagnosis, sex, and HLA class II genotypes using regression models. The alleles that confer susceptibility to type 1 diabetes at interleukin-2 (IL-2), IL2/4q27 (rs2069763) and renalase, FAD-dependent amine oxidase (RNLS)/10q23.31 (rs10509540), were associated with a lower age-at-diagnosis (P = 4.6 × 10â»6 and 2.5 × 10â»5, respectively). For both loci, individuals carrying the susceptible homozygous genotype were, on average, 7.2 months younger at diagnosis than those carrying the protective homozygous genotypes. In addition to protein tyrosine phosphatase nonreceptor type 22 (PTPN22), evidence of statistical interaction between HLA class II genotypes and rs3087243 at cytotoxic T-lymphocyte antigen 4 (CTLA4)/2q33.2 was obtained (P = 7.90 × 10â»5). No evidence of differential risk by sex was obtained at any loci (P ≥ 0.01). Statistical interaction effects can be detected in type 1 diabetes although they provide a relatively small contribution to our understanding of the familial clustering of the disease.