Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACG Case Rep J ; 11(1): e01253, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274302

RESUMEN

Cyclin-dependent kinase 4/6 inhibitors are targeted therapies demonstrated to significantly improve overall survival as adjuvant treatment of estrogen receptor-positive breast cancers. Although intended to preferentially arrest cell cycle transitions in tumor cells, these agents can have undesirable systemic side effects, including hepatotoxicity. We report the first case of cyclin-dependent kinase 4/6 inhibitor therapy leading to acute-on-chronic liver failure requiring liver transplantation. Our case highlights the multidisciplinary approach required to manage acute-on-chronic liver failure induced by cancer-directed therapies in those with extrahepatic malignancies.

2.
Proc Natl Acad Sci U S A ; 120(4): e2212694120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652481

RESUMEN

Multidrug-resistant Acinetobacter baumannii infections are an urgent clinical problem and can cause difficult-to-treat nosocomial infections. During such infections, like catheter-associated urinary tract infections (CAUTI), A. baumannii rely on adhesive, extracellular fibers, called chaperone-usher pathway (CUP) pili for critical binding interactions. The A. baumannii uropathogenic strain, UPAB1, and the pan-European subclone II isolate, ACICU, use the CUP pili Abp1 and Abp2 (previously termed Cup and Prp, respectively) in tandem to establish CAUTIs, specifically to facilitate bacterial adherence and biofilm formation on the implanted catheter. Abp1 and Abp2 pili are tipped with two domain tip adhesins, Abp1D and Abp2D, respectively. We discovered that both adhesins bind fibrinogen, a critical host wound response protein that is released into the bladder upon catheterization and is subsequently deposited on the catheter. The crystal structures of the Abp1D and Abp2D receptor-binding domains were determined and revealed that they both contain a large, distally oriented pocket, which mediates binding to fibrinogen and other glycoproteins. Genetic, biochemical, and biophysical studies revealed that interactions with host proteins are governed by several critical residues in and along the edge of the binding pocket, one of which regulates the structural stability of an anterior loop motif. K34, located outside of the pocket but interacting with the anterior loop, also regulates the binding affinity of the protein. This study illuminates the mechanistic basis of the critical fibrinogen-coated catheter colonization step in A. baumannii CAUTI pathogenesis.


Asunto(s)
Acinetobacter baumannii , Infecciones Urinarias , Humanos , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Infecciones Urinarias/microbiología , Catéteres , Acinetobacter baumannii/genética , Fibrinógeno/metabolismo
3.
PLoS One ; 16(12): e0261082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34910746

RESUMEN

INTRODUCTION: Multiple previous studies have shown the monoclonal antibody Das-1 (formerly called 7E12H12) is specifically reactive towards metaplastic and carcinomatous lesions in multiple organs of the gastrointestinal system (e.g. Barrett's esophagus, intestinal-type metaplasia of the stomach, gastric adenocarcinoma, high-grade pancreatic intraepithelial neoplasm, and pancreatic ductal adenocarcinoma) as well as in other organs (bladder and lung carcinomas). Beyond being a useful biomarker in tissue, mAb Das-1 has recently proven to be more accurate than current paradigms for identifying cysts harboring advanced neoplasia. Though this antibody has been used extensively for clinical, basic science, and translational applications for decades, its epitope has remained elusive. METHODS: In this study, we chemically deglycosylated a standard source of antigen, which resulted in near complete loss of the signal as measured by western blot analysis. The epitope recognized by mAb Das-1 was determined by affinity to a comprehensive glycan array and validated by inhibition of a direct ELISA. RESULTS: The epitope recognized by mAb Das-1 is 3'-Sulfo-Lewis A/C (3'-Sulfo-LeA/C). 3'-Sulfo-LeA/C is broadly reexpressed across numerous GI epithelia and elsewhere during metaplastic and carcinomatous transformation. DISCUSSION: 3'-Sulfo-LeA/C is a clinically important antigen that can be detected both intracellularly in tissue using immunohistochemistry and extracellularly in cyst fluid and serum by ELISA. The results open new avenues for tumorigenic risk stratification of various gastrointestinal lesions.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Transformación Celular Neoplásica/inmunología , Epítopos de Linfocito B/inmunología , Neoplasias Gastrointestinales/inmunología , Mucosa Intestinal/inmunología , Antígenos del Grupo Sanguíneo de Lewis/inmunología , Oligosacáridos/inmunología , Especificidad de Anticuerpos , Biomarcadores de Tumor/inmunología , Línea Celular Tumoral , Humanos , Inmunohistoquímica
5.
mBio ; 11(5)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994329

RESUMEN

Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC pathogenesis requires passage through a severe population bottleneck involving intracellular bacterial communities (IBCs) that are clonal expansions of a single invading UPEC bacterium in a urothelial superficial facet cell. IBCs occur only during acute pathogenesis. The bacteria in IBCs form the founder population that develops into persistent extracellular infections. Only a small fraction of UPEC organisms proceed through the IBC cycle, regardless of the inoculum size. This dramatic reduction in population size precludes the utility of genomic mutagenesis technologies for identifying genes important for persistence. To circumvent this bottleneck, we previously identified 29 positively selected genes (PSGs) within UPEC and hypothesized that they contribute to virulence. Here, we show that 8 of these 29 PSGs are required for fitness during persistent bacteriuria. Conversely, 7/8 of these PSG mutants showed essentially no phenotype in acute UTI. Deletion of the PSG argI leads to arginine auxotrophy. Relative to the other arg genes, argI in the B2 clade (which comprises most UPEC strains) of E. coli has diverged from argI in other E. coli clades. Replacement of argI in a UPEC strain with a non-UPEC argI allele complemented the arginine auxotrophy but not the persistent bacteriuria defect, showing that the UPEC argI allele contributes to persistent infection. These results highlight the complex roles of metabolic pathways during infection and demonstrate that evolutionary approaches can identify infection-specific gene functions downstream of population bottlenecks, shedding light on virulence and the genetic evolution of pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) is the most common cause of human urinary tract infection (UTI). Population bottlenecks during early stages of UTI make high-throughput screens impractical for understanding clinically important later stages of UTI, such as persistence and recurrence. As UPEC is hypothesized to be adapted to these later pathogenic stages, we previously identified 29 genes evolving under positive selection in UPEC. Here, we found that 8 of these genes, including argI (which is involved in arginine biosynthesis), are important for persistence in a mouse model of UTI. Deletion of argI and other arginine synthesis genes resulted in (i) arginine auxotrophy and (ii) defects in persistent UTI. Replacement of a B2 clade argI with a non-B2 clade argI complemented arginine auxotrophy, but the resulting strain remained attenuated in its ability to cause persistent bacteriuria. Thus, argI may have a second function during UTI that is not related to simple arginine synthesis. This study demonstrates how variation in metabolic genes can impact virulence and provides insight into the mechanisms and evolution of bacterial virulence.


Asunto(s)
Adaptación Fisiológica , Arginina/biosíntesis , Evolución Molecular , Filogenia , Sistema Urinario/microbiología , Escherichia coli Uropatógena/metabolismo , Animales , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Femenino , Aptitud Genética , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos C3H , Escherichia coli Uropatógena/genética , Virulencia/genética
6.
J Med Chem ; 62(2): 467-479, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30540910

RESUMEN

The F9/Yde/Fml pilus, tipped with the FmlH adhesin, has been shown to provide uropathogenic Escherichia coli (UPEC) a fitness advantage in urinary tract infections (UTIs). Here, we used X-ray structure guided design to optimize our previously described ortho-biphenyl Gal and GalNAc FmlH antagonists such as compound 1 by replacing the carboxylate with a sulfonamide as in 50. Other groups which can accept H-bonds were also tolerated. We pursued further modifications to the biphenyl aglycone resulting in significantly improved activity. Two of the most potent compounds, 86 (IC50 = 0.051 µM) and 90 (IC50 = 0.034 µM), exhibited excellent metabolic stability in mouse plasma and liver microsomes but showed only limited oral bioavailability (<1%) in rats. Compound 84 also showed a good pharmacokinetic (PK) profile in mice after IP dosing with compound exposure above the IC50 for 6 h. These new FmlH antagonists represent new antivirulence drugs for UTIs.


Asunto(s)
Adhesinas de Escherichia coli/química , Compuestos de Bifenilo/química , Diseño de Fármacos , Galactosamina/química , Galactosa/química , Adhesinas de Escherichia coli/metabolismo , Administración Oral , Animales , Galactosamina/farmacocinética , Galactosamina/uso terapéutico , Galactosa/farmacocinética , Semivida , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Ratas , Relación Estructura-Actividad , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena
7.
Proc Natl Acad Sci U S A ; 115(12): E2819-E2828, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507247

RESUMEN

Treatment of bacterial infections is becoming a serious clinical challenge due to the global dissemination of multidrug antibiotic resistance, necessitating the search for alternative treatments to disarm the virulence mechanisms underlying these infections. Uropathogenic Escherichia coli (UPEC) employs multiple chaperone-usher pathway pili tipped with adhesins with diverse receptor specificities to colonize various host tissues and habitats. For example, UPEC F9 pili specifically bind galactose or N-acetylgalactosamine epitopes on the kidney and inflamed bladder. Using X-ray structure-guided methods, virtual screening, and multiplex ELISA arrays, we rationally designed aryl galactosides and N-acetylgalactosaminosides that inhibit the F9 pilus adhesin FmlH. The lead compound, 29ß-NAc, is a biphenyl N-acetyl-ß-galactosaminoside with a Ki of ∼90 nM, representing a major advancement in potency relative to the characteristically weak nature of most carbohydrate-lectin interactions. 29ß-NAc binds tightly to FmlH by engaging the residues Y46 through edge-to-face π-stacking with its A-phenyl ring, R142 in a salt-bridge interaction with its carboxylate group, and K132 through water-mediated hydrogen bonding with its N-acetyl group. Administration of 29ß-NAc in a mouse urinary tract infection (UTI) model significantly reduced bladder and kidney bacterial burdens, and coadministration of 29ß-NAc and mannoside 4Z269, which targets the type 1 pilus adhesin FimH, resulted in greater elimination of bacteria from the urinary tract than either compound alone. Moreover, FmlH specifically binds healthy human kidney tissue in a 29ß-NAc-inhibitable manner, suggesting a key role for F9 pili in human kidney colonization. Thus, these glycoside antagonists of FmlH represent a rational antivirulence strategy for UPEC-mediated UTI treatment.


Asunto(s)
Adhesinas de Escherichia coli/química , Antibacterianos/química , Antibacterianos/farmacología , Adhesión Bacteriana/efectos de los fármacos , Infecciones Urinarias/microbiología , Adhesinas de Escherichia coli/metabolismo , Animales , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Femenino , Galactósidos/síntesis química , Galactósidos/química , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/microbiología , Ligandos , Ratones Endogámicos C3H , Simulación del Acoplamiento Molecular , Imitación Molecular , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/patogenicidad
8.
Sci Adv ; 3(2): e1601944, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246638

RESUMEN

Positive selection in the two-domain type 1 pilus adhesin FimH enhances Escherichia coli fitness in urinary tract infection (UTI). We report a comprehensive atomic-level view of FimH in two-state conformational ensembles in solution, composed of one low-affinity tense (T) and multiple high-affinity relaxed (R) conformations. Positively selected residues allosterically modulate the equilibrium between these two conformational states, each of which engages mannose through distinct binding orientations. A FimH variant that only adopts the R state is severely attenuated early in a mouse model of uncomplicated UTI but is proficient at colonizing catheterized bladders in vivo or bladder transitional-like epithelial cells in vitro. Thus, the bladder habitat has barrier(s) to R state-mediated colonization possibly conferred by the terminally differentiated bladder epithelium and/or decoy receptors in urine. Together, our studies reveal the conformational landscape in solution, binding mechanisms, and adhesive strength of an allosteric two-domain adhesin that evolved "moderate" affinity to optimize persistence in the bladder during UTI.


Asunto(s)
Adhesinas de Escherichia coli , Infecciones por Escherichia coli , Escherichia coli , Proteínas Fimbrias , Interacciones Huésped-Parásitos/fisiología , Vejiga Urinaria , Infecciones Urinarias , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/metabolismo , Animales , Escherichia coli/química , Escherichia coli/patogenicidad , Escherichia coli/fisiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Femenino , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Ratones , Dominios Proteicos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Vejiga Urinaria/fisiología , Infecciones Urinarias/genética , Infecciones Urinarias/metabolismo , Infecciones Urinarias/microbiología , Infecciones Urinarias/patología
9.
J Med Chem ; 59(20): 9390-9408, 2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27689912

RESUMEN

Gram-negative uropathogenic Escherichia coli (UPEC) bacteria are a causative pathogen of urinary tract infections (UTIs). Previously developed antivirulence inhibitors of the type 1 pilus adhesin, FimH, demonstrated oral activity in animal models of UTI but were found to have limited compound exposure due to the metabolic instability of the O-glycosidic bond (O-mannosides). Herein, we disclose that compounds having the O-glycosidic bond replaced with carbon linkages had improved stability and inhibitory activity against FimH. We report on the design, synthesis, and in vivo evaluation of this promising new class of carbon-linked C-mannosides that show improved pharmacokinetic (PK) properties relative to O-mannosides. Interestingly, we found that FimH binding is stereospecifically modulated by hydroxyl substitution on the methylene linker, where the R-hydroxy isomer has a 60-fold increase in potency. This new class of C-mannoside antagonists have significantly increased compound exposure and, as a result, enhanced efficacy in mouse models of acute and chronic UTI.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Manósidos/administración & dosificación , Manósidos/farmacología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Administración Oral , Animales , Antibacterianos/administración & dosificación , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Femenino , Manósidos/química , Ratones , Ratones Endogámicos C3H , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Virulencia/efectos de los fármacos
10.
Cell Host Microbe ; 20(4): 482-492, 2016 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-27667696

RESUMEN

Uropathogenic E. coli (UPEC) is the dominant cause of urinary tract infections, clinically described as cystitis. UPEC express CUP pili, which are extracellular fibers tipped with adhesins that bind mucosal surfaces of the urinary tract. Here we identify the role of the F9/Yde/Fml pilus for UPEC persistence in the inflamed urothelium. The Fml adhesin FmlH binds galactose ß1-3 N-acetylgalactosamine found in core-1 and -2 O-glycans. Deletion of fmlH had no effect on UPEC virulence in an acute mouse model of cystitis. However, FmlH provided a fitness advantage during chronic cystitis, which is manifested as persistent bacteriuria, high bladder bacterial burdens, and chronic inflammation. In situ binding confirmed that FmlH bound avidly to the inflamed, but not the naive bladder. In accordance with its pathogenic profile, vaccination with FmlH significantly protected mice from chronic cystitis. Thus, UPEC employ separate CUP pili to adapt to the rapidly changing niche during bladder infection.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana , Cistitis/microbiología , Infecciones por Escherichia coli/microbiología , Glucanos/metabolismo , Receptores de Superficie Celular/metabolismo , Escherichia coli Uropatógena/fisiología , Animales , Cistitis/patología , Cistitis/prevención & control , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/prevención & control , Vacunas contra Escherichia coli/administración & dosificación , Vacunas contra Escherichia coli/inmunología , Eliminación de Gen , Interacciones Huésped-Patógeno , Ratones , Escherichia coli Uropatógena/crecimiento & desarrollo , Virulencia
11.
ChemMedChem ; 11(4): 367-73, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26812660

RESUMEN

Uropathogenic E. coli (UPEC) employ the mannose-binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half-life in vivo. In a rational design strategy, we obtained an X-ray structure of lead mannosides and then designed mannosides with improved drug-like properties. We show that cyclizing the carboxamide onto the biphenyl B-ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2-methyl-4-(1-oxo-1,2-dihydroisoquinolin-7-yl)phenyl α-d-mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N-Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria-mediated hemagglutination and prevent biofilm formation by UPEC with single-digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Antibacterianos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas Fimbrias/metabolismo , Manósidos/farmacología , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/efectos de los fármacos , Antibacterianos/química , Enfermedad Crónica , Infecciones por Escherichia coli/microbiología , Humanos , Isoquinolinas/química , Isoquinolinas/farmacología , Manósidos/química , Simulación del Acoplamiento Molecular , Vejiga Urinaria/microbiología , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(51): 20741-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297893

RESUMEN

Extracellular fibers called chaperone-usher pathway pili are critical virulence factors in a wide range of Gram-negative pathogenic bacteria that facilitate binding and invasion into host tissues and mediate biofilm formation. Chaperone-usher pathway ushers, which catalyze pilus assembly, contain five functional domains: a 24-stranded transmembrane ß-barrel translocation domain (TD), a ß-sandwich plug domain (PLUG), an N-terminal periplasmic domain, and two C-terminal periplasmic domains (CTD1 and 2). Pore gating occurs by a mechanism whereby the PLUG resides stably within the TD pore when the usher is inactive and then upon activation is translocated into the periplasmic space, where it functions in pilus assembly. Using antibiotic sensitivity and electrophysiology experiments, a single salt bridge was shown to function in maintaining the PLUG in the TD channel of the P pilus usher PapC, and a loop between the 12th and 13th beta strands of the TD (ß12-13 loop) was found to facilitate pore opening. Mutation of the ß12-13 loop resulted in a closed PapC pore, which was unable to efficiently mediate pilus assembly. Deletion of the PapH terminator/anchor resulted in increased OM permeability, suggesting a role for the proper anchoring of pili in retaining OM integrity. Further, we introduced cysteine residues in the PLUG and N-terminal periplasmic domains that resulted in a FimD usher with a greater propensity to exist in an open conformation, resulting in increased OM permeability but no loss in type 1 pilus assembly. These studies provide insights into the molecular basis of usher pore gating and its roles in pilus biogenesis and OM permeability.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Proteínas Fimbrias , Fimbrias Bacterianas , Chaperonas Moleculares , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/química , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
13.
Proc Natl Acad Sci U S A ; 110(39): 15530-7, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24003161

RESUMEN

Chaperone-usher pathway pili are a widespread family of extracellular, Gram-negative bacterial fibers with important roles in bacterial pathogenesis. Type 1 pili are important virulence factors in uropathogenic Escherichia coli (UPEC), which cause the majority of urinary tract infections (UTI). FimH, the type 1 adhesin, binds mannosylated glycoproteins on the surface of human and murine bladder cells, facilitating bacterial colonization, invasion, and formation of biofilm-like intracellular bacterial communities. The mannose-binding pocket of FimH is invariant among UPEC. We discovered that pathoadaptive alleles of FimH with variant residues outside the binding pocket affect FimH-mediated acute and chronic pathogenesis of two commonly studied UPEC strains, UTI89 and CFT073. In vitro binding studies revealed that, whereas all pathoadaptive variants tested displayed the same high affinity for mannose when bound by the chaperone FimC, affinities varied when FimH was incorporated into pilus tip-like, FimCGH complexes. Structural studies have shown that FimH adopts an elongated conformation when complexed with FimC, but, when incorporated into the pilus tip, FimH can adopt a compact conformation. We hypothesize that the propensity of FimH to adopt the elongated conformation in the tip corresponds to its mannose binding affinity. Interestingly, FimH variants, which maintain a high-affinity conformation in the FimCGH tip-like structure, were attenuated during chronic bladder infection, implying that FimH's ability to switch between conformations is important in pathogenesis. Our studies argue that positively selected residues modulate fitness during UTI by affecting FimH conformation and function, providing an example of evolutionary tuning of structural dynamics impacting in vivo survival.


Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Proteínas Fimbrias/metabolismo , Infecciones Urinarias/microbiología , Adhesinas de Escherichia coli/química , Alelos , Secuencia de Aminoácidos , Animales , Enfermedad Crónica , Coinfección/microbiología , Coinfección/patología , Cistitis/microbiología , Cistitis/patología , Proteínas Fimbrias/química , Humanos , Manosa/metabolismo , Ratones , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Sistema Urinario/microbiología , Sistema Urinario/patología , Infecciones Urinarias/patología , Virulencia
14.
Proc Natl Acad Sci U S A ; 110(34): 13827-32, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23922390

RESUMEN

Insulin-degrading enzyme (IDE) selectively degrades the monomer of amyloidogenic peptides and contributes to clearance of amyloid ß (Aß). Thus, IDE retards the progression of Alzheimer's disease. IDE possesses an enclosed catalytic chamber that engulfs and degrades its peptide substrates; however, the molecular mechanism of IDE function, including substrate access to the chamber and recognition, remains elusive. Here, we captured a unique IDE conformation by using a synthetic antibody fragment as a crystallization chaperone. An unexpected displacement of a door subdomain creates an ~18-Å opening to the chamber. This swinging-door mechanism permits the entry of short peptides into the catalytic chamber and disrupts the catalytic site within IDE door subdomain. Given the propensity of amyloidogenic peptides to convert into ß-strands for their polymerization into amyloid fibrils, they also use such ß-strands to stabilize the disrupted catalytic site resided at IDE door subdomain for their degradation by IDE. Thus, action of the swinging door allows IDE to recognize amyloidogenicity by substrate-induced stabilization of the IDE catalytic cleft. Small angle X-ray scattering (SAXS) analysis revealed that IDE exists as a mixture of closed and open states. These open states, which are distinct from the swinging door state, permit entry of larger substrates (e.g., Aß, insulin) to the chamber and are preferred in solution. Mutational studies confirmed the critical roles of the door subdomain and hinge loop joining the N- and C-terminal halves of IDE for catalysis. Together, our data provide insights into the conformational changes of IDE that govern the selective destruction of amyloidogenic peptides.


Asunto(s)
Proteínas Amiloidogénicas/metabolismo , Insulisina/química , Insulisina/metabolismo , Modelos Moleculares , Conformación Proteica , Proteolisis , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Cristalización , Análisis Mutacional de ADN , Escherichia coli , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Insulisina/genética , Mutagénesis Sitio-Dirigida , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie
15.
J Mol Biol ; 406(3): 454-66, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21185309

RESUMEN

Insulin-degrading enzyme (IDE) can degrade insulin and amyloid-ß, peptides involved in diabetes and Alzheimer's disease, respectively. IDE selects its substrates based on size, charge, and flexibility. From these criteria, we predict that IDE can cleave and inactivate ubiquitin (Ub). Here, we show that IDE cleaves Ub in a biphasic manner, first, by rapidly removing the two C-terminal glycines (k(cat)=2 s(-1)) followed by a slow cleavage between residues 72 and 73 (k(cat)=0.07 s(-1)), thereby producing the inactive 1-74 fragment of Ub (Ub1-74) and 1-72 fragment of Ub (Ub1-72). IDE is a ubiquitously expressed cytosolic protein, where monomeric Ub is also present. Thus, Ub degradation by IDE should be regulated. IDE is known to bind the cytoplasmic intermediate filament protein nestin with high affinity. We found that nestin potently inhibits the cleavage of Ub by IDE. In addition, Ub1-72 has a markedly increased affinity for IDE (∼90-fold). Thus, the association of IDE with cellular regulators and product inhibition by Ub1-72 can prevent inadvertent proteolysis of cellular Ub by IDE. Ub is a highly stable protein. However, IDE instead prefers to degrade peptides with high intrinsic flexibility. Indeed, we demonstrate that IDE is exquisitely sensitive to Ub stability. Mutations that only mildly destabilize Ub (ΔΔG<0.6 kcal/mol) render IDE hypersensitive to Ub with rate enhancements greater than 12-fold. The Ub-bound IDE structure and IDE mutants reveal that the interaction of the exosite with the N-terminus of Ub guides the unfolding of Ub, allowing its sequential cleavages. Together, our studies link the control of Ub clearance with IDE.


Asunto(s)
Insulisina/metabolismo , Ubiquitina/metabolismo , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Sitios de Unión/genética , Humanos , Insulina/metabolismo , Insulisina/química , Insulisina/genética , Mutación , Unión Proteica , Especificidad por Sustrato , Ubiquitina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...