Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Mol Oncol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567664

RESUMEN

In recent years, the discovery of functional and communicative cellular tumour networks has led to a new understanding of malignant primary brain tumours. In this review, the authors shed light on the diverse nature of cell-to-cell connections in brain tumours and propose an innovative treatment approach to address the detrimental connectivity of these networks. The proposed therapeutic outlook revolves around three main strategies: (a) supramarginal resection removing a substantial portion of the communicating tumour cell front far beyond the gadolinium-enhancing tumour mass, (b) morphological isolation at the single cell level disrupting structural cell-to-cell contacts facilitated by elongated cellular membrane protrusions known as tumour microtubes (TMs), and (c) functional isolation at the single cell level blocking TM-mediated intercellular cytosolic exchange and inhibiting neuronal excitatory input into the malignant network. We draw an analogy between the proposed therapeutic outlook and the Alcatraz Federal Penitentiary, where inmates faced an impassable sea barrier and experienced both spatial and functional isolation within individual cells. Based on current translational efforts and ongoing clinical trials, we propose the Alcatraz-Strategy as a promising framework to tackle the harmful effects of cellular brain tumour networks.

2.
Photodiagnosis Photodyn Ther ; 46: 104059, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38548041

RESUMEN

OBJECTIVE: Herein we describe initial results in a porcine model of a fully implantable device designed to allow closed, repetitive photodynamic treatment of glioblastoma (GBM). METHODS: This implant, Globus Lucidus, is a transparent quartz glass sphere with light-emitting diodes releasing wavelengths of 630 nm (19.5 mW/cm2), 405 nm (5.0 mW/cm2) or 275 nm (0.9 mW/cm2). 5-aminolevulinic acid was the photosensitizing prodrug chosen for use with Globus Lucidus, hence the implants illuminated at 630 nm or 405 nm. An additional 275 nm wavelength-emittance was included to explore the effects of photochemical therapy (PCT) by ultraviolet (UV) light. Twenty healthy domestic pigs underwent right-frontal craniotomies. The Globus Lucidus device was inserted into a surgically created right-frontal lobe cavity. After postoperative recovery, irradiation for up to 30 min daily for up to 14 d, or continuous irradiation for up to 14.6 h was conducted. RESULTS: Surgery, implants, and repeated irradiations using the different wavelengths were generally well tolerated. Social behavior, wound healing, body weight, and temperature remained unaffected. Histopathological analyses revealed consistent leukocyte infiltration around the intracerebral implant sites with no significant differences between experimental and control groups. CONCLUSION: This Globus Lucidus porcine study prepares the groundwork for adjuvant, long-term, repeated PDT of the GBM infiltration zone. This is the first report of a fully implantable PDT/PCT device for the potential treatment of GBM. A preclinical effectivity study of Globus Lucidus PDT/PCT is warranted and in advanced stages of planning.

3.
JCI Insight ; 9(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483541

RESUMEN

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Asunto(s)
Compuestos de Anilina , Caprilatos , Glioblastoma , Complejo Cetoglutarato Deshidrogenasa , Sulfuros , Sulfonamidas , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína bcl-X , Animales , Humanos , Ratones , Factor de Transcripción Activador 4/metabolismo , Factor de Transcripción Activador 4/genética , Compuestos de Anilina/farmacología , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Ciclo del Ácido Cítrico/efectos de los fármacos , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología
4.
Br J Cancer ; 130(8): 1365-1376, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396172

RESUMEN

BACKGROUND: Glioblastoma represents a brain tumor with a notoriously poor prognosis. First-line therapy may include adjunctive Tumor Treating Fields (TTFields) which are electric fields that are continuously delivered to the brain through non-invasive arrays. On a different note, CUSP9v3 represents a drug repurposing strategy that includes 9 repurposed drugs plus metronomic temozolomide. Here, we examined whether TTFields enhance the antineoplastic activity of CUSP9v3 against this disease. METHODS: We performed preclinical testing of a multimodal approach of TTFields and CUSP9v3 in different glioblastoma models. RESULTS: TTFields had predominantly synergistic inhibitory effects on the cell viability of glioblastoma cells and non-directed movement was significantly impaired when combined with CUSP9v3. TTFields plus CUSP9v3 significantly enhanced apoptosis, which was associated with a decreased mitochondrial outer membrane potential (MOMP), enhanced cleavage of effector caspase 3 and reduced expression of Bcl-2 and Mcl-1. Moreover, oxidative phosphorylation and expression of respiratory chain complexes I, III and IV was markedly reduced. CONCLUSION: TTFields strongly enhance the CUSP9v3-mediated anti-glioblastoma activity. TTFields are currently widely used for the treatment of glioblastoma patients and CUSP9v3 was shown to have a favorable safety profile in a phase Ib/IIa trial (NCT02770378) which facilitates transition of this multimodal approach to the clinical setting.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Terapia por Estimulación Eléctrica , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Reposicionamiento de Medicamentos , Reprogramación Metabólica , Temozolomida/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Terapia Combinada
5.
Oncotarget ; 14: 419-425, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37141415

RESUMEN

While glycolysis is abundant in malignancies, mitochondrial metabolism is significant as well. Mitochondria harbor the enzymes relevant for cellular respiration, which is a critical pathway for both regeneration of reduction equivalents and energy production in the form of ATP. The oxidation of NADH2 and FADH2 are fundamental since NAD and FAD are the key components of the TCA-cycle that is critical to entertain biosynthesis in cancer cells. The TCA-cycle itself is predominantly fueled through carbons from glucose, glutamine, fatty acids and lactate. Targeting mitochondrial energy metabolism appears feasible through several drug compounds that activate the CLPP protein or interfere with NADH-dehydrogenase, pyruvate-dehydrogenase, enzymes of the TCA-cycle and mitochondrial matrix chaperones. While these compounds have demonstrated anti-cancer effects in vivo, recent research suggests which patients most likely benefit from such treatments. Here, we provide a brief overview of the status quo of targeting mitochondrial energy metabolism in glioblastoma and highlight a novel combination therapy.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , NAD/metabolismo , Ciclo del Ácido Cítrico , Metabolismo Energético , Respiración de la Célula , Glucólisis , Glucosa/metabolismo , Oxidorreductasas
6.
Cells ; 11(19)2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36230918

RESUMEN

Glioblastoma WHO IV (GBM), the most common primary brain tumor in adults, is a heterogenous malignancy that displays a reprogrammed metabolism with various fuel sources at its disposal. Tumor cells primarily appear to consume glucose to entertain their anabolic and catabolic metabolism. While less effective for energy production, aerobic glycolysis (Warburg effect) is an effective means to drive biosynthesis of critical molecules required for relentless growth and resistance to cell death. Targeting the Warburg effect may be an effective venue for cancer treatment. However, past and recent evidence highlight that this approach may be limited in scope because GBM cells possess metabolic plasticity that allows them to harness other substrates, which include but are not limited to, fatty acids, amino acids, lactate, and acetate. Here, we review recent key findings in the literature that highlight that GBM cells substantially reprogram their metabolism upon therapy. These studies suggest that blocking glycolysis will yield a concomitant reactivation of oxidative energy pathways and most dominantly beta-oxidation of fatty acids.


Asunto(s)
Glioblastoma , Aminoácidos/metabolismo , Ácidos Grasos/uso terapéutico , Glioblastoma/metabolismo , Glucosa , Humanos , Ácido Láctico/metabolismo , Fosforilación Oxidativa
7.
Mol Cell ; 82(16): 3061-3076.e6, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35948010

RESUMEN

Lactate accumulates to a significant amount in glioblastomas (GBMs), the most common primary malignant brain tumor with an unfavorable prognosis. However, it remains unclear whether lactate is metabolized by GBMs. Here, we demonstrated that lactate rescued patient-derived xenograft (PDX) GBM cells from nutrient-deprivation-mediated cell death. Transcriptome analysis, ATAC-seq, and ChIP-seq showed that lactate entertained a signature of oxidative energy metabolism. LC/MS analysis demonstrated that U-13C-lactate elicited substantial labeling of TCA-cycle metabolites, acetyl-CoA, and histone protein acetyl-residues in GBM cells. Lactate enhanced chromatin accessibility and histone acetylation in a manner dependent on oxidative energy metabolism and the ATP-citrate lyase (ACLY). Utilizing orthotopic PDX models of GBM, a combined tracer experiment unraveled that lactate carbons were substantially labeling the TCA-cycle metabolites. Finally, pharmacological blockage of oxidative energy metabolism extended overall survival in two orthotopic PDX models in mice. These results establish lactate metabolism as a novel druggable pathway for GBM.


Asunto(s)
Glioblastoma , Acetilación , Animales , Línea Celular Tumoral , Epigénesis Genética , Glioblastoma/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones
8.
Expert Opin Drug Discov ; 17(10): 1081-1094, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35997138

RESUMEN

INTRODUCTION: Death due to cancer is mostly associated with therapy ineffectiveness, i.e. tumor cells no longer responding to treatment. The underlying dynamics that facilitate this mutational escape from selective pressure are well studied in several other fields and several interesting approaches exist to combat this phenomenon, for example in the context of antibiotic-resistance in bacteria. AREAS COVERED: Ninety percent of all cancer-related deaths are associated with treatment failure. Here, we discuss the common treatment modalities and prior attempts to overcome acquired resistance to therapy. The underlying molecular mechanisms are discussed and the implications of emerging resistance in other systems, such as bacteria, are discussed in the context of cancer. EXPERT OPINION: Reevaluating emerging therapy resistance in tumors as an evolutionary mechanism to survive in a rapidly and drastically altering fitness landscape leads to novel treatment strategies and distinct requirements for new drugs. Here, we propose a scheme of considerations that need to be applied prior to the discovery of novel therapeutic drugs.


Asunto(s)
Diseño de Fármacos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Mutación , Bacterias
9.
Cancers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35626167

RESUMEN

In part one of this two-part paper, we present eight principles that we believe must be considered for more effective treatment of the currently incurable cancers. These are addressed by multidrug adjunctive cancer treatment (MDACT), which uses multiple repurposed non-oncology drugs, not primarily to kill malignant cells, but rather to reduce the malignant cells' growth drives. Previous multidrug regimens have used MDACT principles, e.g., the CUSP9v3 glioblastoma treatment. MDACT is an amalgam of (1) the principle that to be effective in stopping a chain of events leading to an undesired outcome, one must break more than one link; (2) the principle of Palmer et al. of achieving fractional cancer cell killing via multiple drugs with independent mechanisms of action; (3) the principle of shaping versus decisive operations, both being required for successful cancer treatment; (4) an idea adapted from Chow et al., of using multiple cytotoxic medicines at low doses; (5) the idea behind CUSP9v3, using many non-oncology CNS-penetrant drugs from general medical practice, repurposed to block tumor survival paths; (6) the concept from chess that every move creates weaknesses and strengths; (7) the principle of mass-by adding force to a given effort, the chances of achieving the goal increase; and (8) the principle of blocking parallel signaling pathways. Part two gives an example MDACT regimen, gMDACT, which uses six repurposed drugs-celecoxib, dapsone, disulfiram, itraconazole, pyrimethamine, and telmisartan-to interfere with growth-driving elements common to cholangiocarcinoma, colon adenocarcinoma, glioblastoma, and non-small-cell lung cancer. gMDACT is another example of-not a replacement for-previous multidrug regimens already in clinical use, such as CUSP9v3. MDACT regimens are designed as adjuvants to be used with cytotoxic drugs.

10.
Clin Cancer Res ; 28(9): 1881-1895, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35417530

RESUMEN

PURPOSE: Novel therapeutic targets are critical to unravel for the most common primary brain tumor in adults, glioblastoma (GBM). We have identified a novel synthetic lethal interaction between ClpP activation and HDAC1/2 inhibition that converges on GBM energy metabolism. EXPERIMENTAL DESIGN: Transcriptome, metabolite, and U-13C-glucose tracing analyses were utilized in patient-derived xenograft (PDX) models of GBM. Orthotopic GBM models were used for in vivo studies. RESULTS: We showed that activation of the mitochondrial ClpP protease by mutant ClpP (Y118A) or through utilization of second-generation imipridone compounds (ONC206 and ONC212) in combination with genetic interference of HDAC1 and HDAC2 as well as with global (panobinostat) or selective (romidepsin) HDAC inhibitors caused synergistic reduction of viability in GBM model systems, which was mediated by interference with tricarboxylic acid cycle activity and GBM cell respiration. This effect was partially mediated by activation of apoptosis along with activation of caspases regulated chiefly by Bcl-xL and Mcl-1. Knockdown of the ClpP protease or ectopic expression of a ClpP D190A mutant substantially rescued from the inhibition of oxidative energy metabolism as well as from the reduction of cellular viability by ClpP activators and the combination treatment, respectively. Finally, utilizing GBM PDX models, we demonstrated that the combination treatment of HDAC inhibitors and imipridones prolonged host survival more potently than single treatments or vehicle in vivo. CONCLUSIONS: Collectively, these observations suggest that the efficacy of HDAC inhibitors might be significantly enhanced through ClpP activators in model systems of human GBM.


Asunto(s)
Glioblastoma , Humanos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Péptido Hidrolasas/genética , Mutaciones Letales Sintéticas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Curr Oncol ; 29(1): 392-401, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35049709

RESUMEN

The surgical treatment of recurrent adenomas can be challenging. Intraoperative magnetic resonance imaging (iMRI) can improve the orientation and increase the safe extent of resection. We conducted a quantitative and qualitative retrospective analysis of recurrent adenomas treated by endoscopic or microscopic iMRI-assisted transsphenoidal surgery. A total number of 59 resections were selected. Detailed volumetric measurements, tumor characteristics, and MRI features of intraoperative remnants were evaluated. Intraoperative MRI increased the gross total resection (GTR) rate from 33.9% to 49.2%. Common locations of tumor remnants after iMRI were the clivus, the wall of the cavernous sinus or the perforation of the diaphragm. Increasing tumor volume and the microscopic technique were significantly associated with further resection after iMRI in the univariate analysis (p = 0.004, OR 1.6; p = 0.009, OR 4.4). Only the increasing tumor volume was an independent predictor for further resection (p = 0.007, OR 1.5). A significantly higher proportion of GTRs was achieved with the endoscopic technique (p = 0.001). Patients with a large recurrent pituitary adenoma who underwent microscopic transsphenoidal resection were the most likely to benefit from iMRI regarding the extent of resection. Occult invasions of the cavernous sinus and/or the clivus were the most common findings leading to further resection of tumor remnants after iMRI.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Adenoma/diagnóstico por imagen , Adenoma/cirugía , Endoscopía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/cirugía , Estudios Retrospectivos
12.
Methods Mol Biol ; 2445: 305-328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34973000

RESUMEN

Glioblastoma (GBM), a highly malignant primary brain tumor, inevitably leads to death. In the last decade, a variety of novel molecular characteristics of GBMs were unraveled. The identification of the mutation in the IDH1 and less commonly IDH2 gene was surprising and ever since has nurtured research in the field of GBM metabolism. While initially thought that mutated IDH1 were to act as a loss of function mutation it became clear that it conferred the production of an oncometabolite that in turn substantially reprograms GBM metabolism. While mutated IDH1 represents truly the tip of the iceberg, there are numerous other related observations in GBM that are of significant interest to the field, including the notion that oxidative metabolism appears to play a more critical role than believed earlier. Metabolic zoning is another important hallmark of GBM since it was found that the infiltrative margin that drives GBM progression reveals enrichment of fatty acid derivatives. Consistently, fatty acid metabolism appears to be a novel therapeutic target for GBM. How metabolism in GBM intersects is another pivotal issue that appears to be important for its progression and response and resistance to therapies. In this review, we will summarize some of the most relevant findings related to GBM metabolism and cell death and how these observations are influencing the field. We will provide current approaches that are applied in the field to measure metabolomic changes in GBM models, including the detection of unlabeled and labeled metabolites as well as extracellular flux analysis.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Mutación
13.
Neurosurg Rev ; 45(2): 1701-1708, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34855027

RESUMEN

INTRODUCTION: Intraoperative magnetic resonance imaging (iMRI) improves the intraoperative detection of adenoma remnants in transsphenoidal surgery. iMRI might be redundant in endoscopic pituitary surgery in non-invasive tumors (Knosp 0-2) due to a superior visualization of anatomical structures in the periphery of the sella turcica compared to the microscopic technique. We identified the anatomical location of tumor remnants in iMRI and evaluated risk factors for secondary resection after iMRI and hereby selected patients with pituitary adenomas who may benefit from iMRI-assisted resection. METHODS: We conducted a retrospective monocenter study of patients who underwent iMRI-assisted transsphenoidal surgical resection of pituitary adenomas at our department between 2012 and 2020. A total number of 190 consecutive iMRI-assisted transsphenoidal surgeries of pituitary adenomas graded as Knosp 0-2 were selected for analysis. Exclusion criteria were missing iMRI availability or pathologies other than adenomas. Of these 190 cases, 46.3% (N = 88) were treated with microscopic, 48.4% (N = 92) with endoscopic, and 5.3% (N = 10) with endoscopic-assisted technique. Volumetric measurement of preoperative, intraoperative, and postoperative tumor extension was performed. Demographic data, tumor characteristics, and MRI features were evaluated. Additionally, analysis of adenoma remnants identified by iMRI was performed. RESULTS: An additional resection after iMRI was performed in 16.3% (N = 31). iMRI helped to reach gross total resection (GTR) in 83.9% (26/31) of these cases. False-positive resection was found in 1 patient (0.5%). Multivariable logistic analysis identified tumor volume (OR = 1.2, p = 0.007) recurrence (OR = 11.3, p = 0.002) and microscopic technique (OR = 2.8, p = 0.029) as independent risk factors for additional resection. Simultaneously, the endoscopic technique was significantly associated with GTR as evaluated by iMRI (OR = 2.8, p = 0.011) and postoperative MRI (OR = 5.8, p = 0.027). The detailed analysis of adenoma remnants on iMRI revealed the suprasellar location in a diaphragm fold, penetrating tumor above the diaphragm, or undetected invasion of cavernous sinus as well as in case of microscopic resection tumor location outside the line of sight as the main reasons for incomplete resections. CONCLUSION: Tumor volume, recurrence, and microscopic technique were identified as independent predictors for additional resection in patients with Knosp 0-2 adenomas. iMRI might increase the extent of resection (EOR) safely even after the endoscopic visualization of the sella with very low risk for false-positive findings. Remnants of tumors hidden within the diaphragmic folds, intrathecally, or behind the infiltrated wall of cavernous sinus not recognized on preoperative MRI were the most common findings in iMRI.


Asunto(s)
Adenoma , Neoplasias Hipofisarias , Adenoma/diagnóstico por imagen , Adenoma/patología , Adenoma/cirugía , Endoscopía/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Hipofisarias/diagnóstico por imagen , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/cirugía , Estudios Retrospectivos , Resultado del Tratamiento
14.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34959641

RESUMEN

BACKGROUND: Glioblastoma represents the most common primary brain tumor in adults. Despite technological advances, patients with this disease typically die within 1-2 years after diagnosis. In the search for novel therapeutics, drug repurposing has emerged as an alternative to traditional drug development pipelines, potentially facilitating and expediting the transition from drug discovery to clinical application. In a drug repurposing effort, the original CUSP9 and its derivatives CUSP9* and CUSP9v3 were developed as combinations of nine non-oncological drugs combined with metronomic low-dose temozolomide. METHODS: In this work, we performed pre-clinical testing of CUSP9v3 in different established, primary cultured and stem-like glioblastoma models. In addition, eight patients with heavily pre-treated recurrent glioblastoma received the CUSP9v3 regime on a compassionate use basis in a last-ditch effort. RESULTS: CUSP9v3 had profound antiproliferative and pro-apoptotic effects across all tested glioblastoma models. Moreover, the cells' migratory capacity and ability to form tumor spheres was drastically reduced. In vitro, additional treatment with temozolomide did not significantly enhance the antineoplastic activity of CUSP9v3. CUSP9v3 was well-tolerated with the most frequent grade 3 or 4 adverse events being increased hepatic enzyme levels. CONCLUSIONS: CUSP9v3 displays a strong anti-proliferative and anti-migratory activity in vitro and seems to be safe to apply to patients. These data have prompted further investigation of CUSP9v3 in a phase Ib/IIa clinical trial (NCT02770378).

15.
Front Cell Dev Biol ; 9: 734699, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34900991

RESUMEN

The purpose of this study was to examine whether the imipridone ONC201/TIC10 affects the metabolic and proliferative activity of medulloblastoma cells in vitro. Preclinical drug testing including extracellular flux analyses (agilent seahorse), MTT assays and Western blot analyses were performed in high and low c-myc-expressing medulloblastoma cells. Our data show that treatment with the imipridone ONC201/TIC10 leads to a significant inihibitory effect on the cellular viability of different medulloblastoma cells independent of c-myc expression. This effect is enhanced by glucose starvation. While ONC201/TIC10 decreases the oxidative consumption rates in D458 (c-myc high) and DAOY (c-myc low) cells extracellular acidification rates experienced an increase in D458 and a decrease in DAOY cells. Combined treatment with ONC201/TIC10 and the glycolysis inhibitor 2-Deoxyglucose led to a synergistic inhibitory effect on the cellular viability of medulloblastoma cells including spheroid models. In conclusion, our data suggest that ONC201/TIC10 has a profound anti-proliferative activity against medulloblastoma cells independent of c-myc expression. Metabolic targeting of medulloblastoma cells by ONC201/TIC10 can be significantly enhanced by an additional treatment with the glycolysis inhibitor 2-Deoxyglucose. Further investigations are warranted.

16.
Front Pharmacol ; 12: 737637, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34744721

RESUMEN

Background: Tumor therapeutics are aimed to affect tumor cells selectively while sparing healthy ones. For this purpose, a huge variety of different drugs are in use. Recently, also blockers of voltage-gated sodium channels (VGSCs) have been recognized to possess potentially beneficial effects in tumor therapy. As these channels are a frequent target of numerous drugs, we hypothesized that currently used tumor therapeutics might have the potential to block VGSCs in addition to their classical anti-cancer activity. In the present work, we have analyzed the imipridone TIC10, which belongs to a novel class of anti-cancer compounds, for its potency to interact with VGSCs. Methods: Electrophysiological experiments were performed by means of the patch-clamp technique using heterologously expressed human heart muscle sodium channels (hNav1.5), which are among the most common subtypes of VGSCs occurring in tumor cells. Results: TIC10 angular inhibited the hNav1.5 channel in a state- but not use-dependent manner. The affinity for the resting state was weak with an extrapolated Kr of about 600 µM. TIC10 most probably did not interact with fast inactivation. In protocols for slow inactivation, a half-maximal inhibition occurred around 2 µM. This observation was confirmed by kinetic studies indicating that the interaction occurred with a slow time constant. Furthermore, TIC10 also interacted with the open channel with an affinity of approximately 4 µM. The binding site for local anesthetics or a closely related site is suggested as a possible target as the affinity for the well-characterized F1760K mutant was reduced more than 20-fold compared to wild type. Among the analyzed derivatives, ONC212 was similarly effective as TIC10 angular, while TIC10 linear more selectively interacted with the different states. Conclusion: The inhibition of VGSCs at low micromolar concentrations might add to the anti-tumor properties of TIC10.

17.
Nat Commun ; 12(1): 5203, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471141

RESUMEN

Aurora kinase A (AURKA) has emerged as a drug target for glioblastoma (GBM). However, resistance to therapy remains a critical issue. By integration of transcriptome, chromatin immunoprecipitation sequencing (CHIP-seq), Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq), proteomic and metabolite screening followed by carbon tracing and extracellular flux analyses we show that genetic and pharmacological AURKA inhibition elicits metabolic reprogramming mediated by inhibition of MYC targets and concomitant activation of Peroxisome Proliferator Activated Receptor Alpha (PPARA) signaling. While glycolysis is suppressed by AURKA inhibition, we note an increase in the oxygen consumption rate fueled by enhanced fatty acid oxidation (FAO), which was accompanied by an increase of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Combining AURKA inhibitors with inhibitors of FAO extends overall survival in orthotopic GBM PDX models. Taken together, these data suggest that simultaneous targeting of oxidative metabolism and AURKAi might be a potential novel therapy against recalcitrant malignancies.


Asunto(s)
Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Efecto Warburg en Oncología , Línea Celular Tumoral , Proliferación Celular , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Humanos , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteómica , Transducción de Señal/efectos de los fármacos , Transcriptoma , Efecto Warburg en Oncología/efectos de los fármacos
18.
Cancers (Basel) ; 13(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439278

RESUMEN

The purpose of this study was to assess in vitro whether the biological effects of 5-aminolevulinic acid (5-ALA)-based photodynamic therapy are enhanced by inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL in different glioblastoma models. Pre-clinical testing of a microcontroller-based device emitting light of 405 nm wavelength in combination with exposure to 5-ALA (PDT) and the Bcl-2/Bcl-xL inhibitor ABT-263 (navitoclax) was performed in human established and primary cultured glioblastoma cells as well as glioma stem-like cells. We applied cell count analyses to assess cellular proliferation and Annexin V/PI staining to examine pro-apoptotic effects. Western blot analyses and specific knockdown experiments using siRNA were used to examine molecular mechanisms of action. Bcl-2/Bcl-xL inhibition synergistically enhanced apoptosis in combination with PDT. This effect was caspase-dependent. On the molecular level, PDT caused an increased Noxa/Mcl-1 ratio, which was even more pronounced when combined with ABT-263 in a Usp9X-independent manner. Our data showed that Bcl-2/Bcl-xL inhibition increases the response of glioblastoma cells toward photodynamic therapy. This effect can be partly attributed to cytotoxicity and is likely related to a pro-apoptotic shift because of an increased Noxa/Mcl-1 ratio. The results of this study warrant further investigation.

19.
Neurooncol Adv ; 3(1): vdab075, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34377985

RESUMEN

BACKGROUND: The dismal prognosis of glioblastoma (GBM) may be related to the ability of GBM cells to develop mechanisms of treatment resistance. We designed a protocol called Coordinated Undermining of Survival Paths combining 9 repurposed non-oncological drugs with metronomic temozolomide-version 3-(CUSP9v3) to address this issue. The aim of this phase Ib/IIa trial was to assess the safety of CUSP9v3. METHODS: Ten adults with histologically confirmed GBM and recurrent or progressive disease were included. Treatment consisted of aprepitant, auranofin, celecoxib, captopril, disulfiram, itraconazole, minocycline, ritonavir, and sertraline added to metronomic low-dose temozolomide. Treatment was continued until toxicity or progression. Primary endpoint was dose-limiting toxicity defined as either any unmanageable grade 3-4 toxicity or inability to receive at least 7 of the 10 drugs at ≥ 50% of the per-protocol doses at the end of the second treatment cycle. RESULTS: One patient was not evaluable for the primary endpoint (safety). All 9 evaluable patients met the primary endpoint. Ritonavir, temozolomide, captopril, and itraconazole were the drugs most frequently requiring dose modification or pausing. The most common adverse events were nausea, headache, fatigue, diarrhea, and ataxia. Progression-free survival at 12 months was 50%. CONCLUSIONS: CUSP9v3 can be safely administered in patients with recurrent GBM under careful monitoring. A randomized phase II trial is in preparation to assess the efficacy of the CUSP9v3 regimen in GBM.

20.
Oncotarget ; 12(13): 1309-1313, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34194627

RESUMEN

The concept that tumor cells demand a distinct form of metabolism was appreciated almost a century ago when the German biochemist Otto Warburg realized that tumor cells heavily utilize glucose and produce lactic acid while relatively reducing oxidative metabolism. How this phenomenon is orchestrated and regulated is only partially understood and seems to involve certain transcription factors, including c-Myc, HIF1A and others. The epigenome eintails the posttranslational modification of histone proteins which in turn are involved in regulation of transcription. Recently, it was found that cis-regulatory elements appear to facilitate the Warburg effects since several genes encoding for glycolysis and associated pathways are surrounded by enhancer/super-enhancer regions. Disruption of these regions by FDA-approved HDAC inhibitors suppressed the transcription of these genes and elicited a reversal of the Warburg effect with activation of transcription factors facilitating oxidative energy metabolism with increases in transcription factors that are part of the PPARA family. Therefore, combined targeting of HDACs and oxidative metabolism suppressed tumor growth in patient-derived xenograft models of solid tumors, including glioblastoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA