Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mamm Genome ; 35(2): 149-159, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658415

RESUMEN

The petit (pet) locus is associated with dwarfism, testicular anomalies, severe thymic hypoplasia, and high postnatal lethality, which are inherited in autosomal recessive mode of inheritance in rats with a Wistar strain genetic background. Linkage analysis localized the pet locus between 98.7 Mb and 101.2 Mb on rat chromosome 9. Nucleotide sequence analysis identified 2 bp deletion in exon 2 of the Thap4 gene as the causative mutation for pet. This deletion causes a frameshift and premature termination codon, resulting in a truncated THAP4 protein lacking approximately two-thirds of the C-terminal side. Thap4 is expressed in various organs, including the testis and thymus in rats. To elucidate the biological function of THAP4 in other species, we generated Thap4 knockout mice lacking exon 2 of the Thap4 gene through genome editing. Thap4 knockout mice also exhibited dwarfism and small testis but did not show high postnatal lethality. Thymus weights of adult Thap4 knockout male mice were significantly higher compared to wild-type male mice. Although Thap4 knockout male mice were fertile, their testis contained seminiferous tubules with spermatogenesis and degenerative seminiferous tubules lacking germ cells. Additionally, we observed vacuoles in seminiferous tubules, and clusters of cells in the lumen in seminiferous tubules in Thap4 knockout male mice. These results demonstrate that spontaneous mutation of Thap4 gene in rats and knockout of Thap4 gene in mice both cause dwarfism and testicular anomalies. Thap4 gene in rats and mice is essential for normal testicular development, maintaining spermatogenesis throughout the entire region of seminiferous tubules.


Asunto(s)
Enanismo , Ratones Noqueados , Testículo , Animales , Masculino , Enanismo/genética , Enanismo/patología , Testículo/metabolismo , Testículo/patología , Ratones , Ratas , Mutación , Ratas Wistar
2.
Biology (Basel) ; 10(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356489

RESUMEN

The kidneys participate in the regulation of systemic glucose metabolism via gluconeogenesis, insulin degradation, and the tubular reabsorption of glucose. The present study characterized rats from a strain of a novel type 2 diabetes model with enlarged kidneys (DEK). Histological and biochemical analyses of DEK rats were performed to assess the relationships between their kidneys and hyperglycemia. The kidney weight of diabetic DEK (DEK-DM) gradually increased over time from the onset of diabetes, with the glomerular number being higher in DEK-DM than in normal DEK (DEK-cont). A positive correlation between blood glucose level and kidney weight was observed in DEK-DM. The similar glomerular size and single glomerular creatinine clearance in DEK-cont and DEK-DM indicated that glomerular hypertrophy and hyperfiltration were not involved in the renal enlargement. Uninephrectomy (1/2Nx) in DEK-DM resulted in a reduction in blood glucose level at 7-28 post-operation days, with this concentration remaining lower than in Sham group until 84 days post-operation. 1/2Nx also improved systemic conditions, including reduced body weight gain, polyuria, polydipsia, and hyperphagia. Plasma concentrations of Na, total cholesterol, albumin, and total protein were higher, and urinary excretion of glucose, urea nitrogen, and proteins were lower, in the 1/2Nx than in the Sham group. Remnant kidney weight was two-fold higher in the 1/2Nx than in the Sham group 84 days later. In addition, 1/2Nx resulted in renal tubular dilatation but not in the progression of fibrosis or glomerular lesions. Taken together, these findings indicate that enlarged kidneys were associated with the onset of diabetes and with the resistance to diabetic nephropathy in DEK-DM.

3.
Int J Parasitol Parasites Wildl ; 15: 199-207, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34141567

RESUMEN

Hyaloklossia Labbé ,1896 (Alveolata: Apicomplexa) is a monotypic genus of renal coccidia found in anurans, particularly in the edible frog Pelophylax kl. esculentus (Amphibia: Anura: Ranidae), distributed in different parts of Europe. Here we propose a new Hyaloklossia species from the Tokyo daruma pond frog, Pelophylax porosus porosus. The coccidium detected in the renal tissue of P. p. porosus shared some morphological characteristics with the type species, Hyaloklossia lieberkuehni (Labbé, 1894), reported from P. kl. esculentus. However, in addition to size differences in several oocyst and sporocyst features between these parasites, phylogenetic analysis of gene fragments from two nuclear ribosomal loci and the mitochondrial cytochrome c oxidase subunit 1, exposed distinct genetic differences between H. lieberkuehni and our new species. Although our analysis validated the monophyly of Hyaloklossia with some members of the Toxoplasmatinae Biocca, 1957, Cystoisosporinae Frenkel et al., 1987, and Eumonosporinae Chou et al., 2021 (Sarcocystidae Poche, 1913), comparison of genetic differences between Hyaloklossia species from P. p. porosus and H. lieberkuehni revealed the presence of a greater number of polymorphisms than that observed when comparing inter-species (Heydornia spp., Besnoisita spp.) or inter-genus (Toxoplasma vs. Neospora, Neospora vs. Hammondia, and Neospora vs. Heydornia) variabilities among members of the Sarcocystidae. This indicates that Hyaloklossia, as re-erected and defined by Modrý et al. (2001, Int. J. Syst. Evol. Microbiol. 51, 767-772), with its homoxenous life cycle, requires placement in its own subfamily. Thus, we propose a new subfamily, Hyaloklossiinae n. subfam., to accommodate two species, H. lieberkuehni from Europe and Hyaloklossia kasumienesis n. sp. which we describe here from P. p. porosus in Japan.

4.
PLoS One ; 16(5): e0251135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33945582

RESUMEN

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to reduce hyperglycemia. The present study investigated the effects of a SGLT2 inhibitor, empagliflozin, on hyperglycemia in a novel rat model of non-obesity type 2 diabetes with enlarged kidney (DEK). METHODS: Male DEK rats with non-fasting blood glucose concentrations ≤300 mg/dl and >300 mg/dl were classified as nondiabetic and diabetic, respectively. Groups of nondiabetic (control) and diabetic (DM-cont) rats were fed standard chow for 12 weeks, whereas another group of diabetic (DM-empa) rats was fed standard chow containing empagliflozin (300 mg/kg/day) for 12 weeks. Blood glucose, body weight, glucose tolerance, food and water intake, urinary volume, plasma and urinary biochemical parameters, and bone mineral density were measured, and their kidneys and pancreas histologically analyzed. RESULTS: Treatment with empagliflozin reduced blood glucose concentration and food intake in diabetic rats, but inhibited loss of adeps renis and led to body weight gain. Empagliflozin attenuated polyuria and polydipsia but increased plasma concentrations of total cholesterol, sodium and total protein toward normal level. Empagliflozin also significantly reduced urinary excretion of proteins and electrolytes and restored bone mineral density and plasma concentrations of valine and isoleucine to normal levels. Moreover, dilation of renal tubules and kidney enlargement were not attenuated in the DM-empa group. CONCLUSION: The response of DEK rats to empagliflozin differed from that of other diabetic animal models, suggesting that DEK rats have unique characters for studying and evaluating the multiple biological effects of SGLT2 inhibitors. These findings also indicted that empagliflozin could ameliorate systemic metabolism and improve renal tubule function in diabetic condition.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucósidos/farmacología , Enfermedades Renales/tratamiento farmacológico , Riñón/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Riñón/metabolismo , Enfermedades Renales/metabolismo , Masculino , Ratas , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
5.
J Histochem Cytochem ; 69(4): 257-270, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565365

RESUMEN

A well-known putative tumor suppressor WW domain-containing oxidoreductase (Wwox) is highly expressed in hormonally regulated tissues and is considered important for the normal development and function of reproductive organs. In this study, we investigated the cellular and subcellular localization of Wwox in normal testes during postnatal days 0-70 using Western blotting and immunohistochemistry. Wwox is expressed in testes at all ages. Immunohistochemistry showed that fetal-type and adult-type Leydig cells, immature and mature Sertoli cells, and germ cells (from gonocytes to step 17 spermatids) expressed Wwox except peritubular myoid cells, step 18-19 spermatids, and mature sperm. Wwox localized diffusely in the cytoplasm with focal intense signals in all testicular cells. These signals gradually condensed in germ cells with their differentiation and colocalized with giantin for cis-Golgi marker and partially with golgin-97 for trans-Golgi marker. Biochemically, Wwox was detected in isolated Golgi-enriched fractions. But Wwox was undetectable in the nucleus. This subcellular localization pattern of Wwox was also confirmed in single-cell suspension. These findings indicate that Wwox is functional in most cell types of testis and might locate into Golgi apparatus via interaction with Golgi proteins. These unique localizations might be related to the function of Wwox in testicular development and spermatogenesis.


Asunto(s)
Espermatogénesis/genética , Testículo/química , Proteínas Supresoras de Tumor/análisis , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/análisis , Oxidorreductasa que Contiene Dominios WW/genética , Animales , Inmunohistoquímica , Masculino , Ratas , Testículo/citología , Testículo/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Oxidorreductasa que Contiene Dominios WW/metabolismo
6.
J Diabetes Res ; 2019: 8153140, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467929

RESUMEN

A variety of animal models of diabetes mellitus (DM) are required to study the genetics and pathophysiology of DM. We established a novel rat strain showing nonobese type 2 diabetes with enlarged kidneys from the LEA.PET-pet congenic strain and named it Diabetes with Enlarged Kidney (DEK). The body growth of DEK affected rats was similar to that of normal rats before the development of DM but was attenuated with the deterioration of DM. There was a marked difference in the etiology of DEK by gender: DM phenotypes including polyuria, polydipsia, and hyperglycemia (nonfasting blood glucose over 300 mg/dl) were found in male rats aged over 10 weeks but not in female rats. The cumulative incidence of DM in DEK males at the age of 30 weeks was 44.8%. Oral glucose tolerance tests showed glucose intolerance and decreased insulin secretion in response to glucose loading in affected males, features which were exacerbated with age. Affected males exhibited disorganized architecture of pancreatic islets, decreased numbers of ß cells, and markedly decreased expression of insulin, despite no pathological findings of hemorrhage or infiltration of inflammatory cells in the pancreatic islet. Age-related islet fibrosis appeared similar in normal and affected males. Affected males also showed enlarged kidneys with dilation of renal tubules in both the cortex and medulla, but no obvious glomerular lesions typical of diabetic nephropathy (DN) at the age of 30 weeks. Plasma levels of urea nitrogen and creatinine were normal, but hypoalbuminemia was detected. These pathophysiological features in affected males indicated that their renal function was almost maintained despite severe DM. Taken together, these findings indicate that the affected males of the DEK strain are a novel nonobese type 2 diabetes rat model useful for studying the mechanisms underlying ß cell loss and identifying genetic factors protective against DN.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/patología , Nefropatías Diabéticas/etiología , Riñón/patología , Animales , Animales Congénicos , Glucemia/análisis , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Nefropatías Diabéticas/patología , Femenino , Prueba de Tolerancia a la Glucosa , Hiperglucemia/complicaciones , Hiperglucemia/patología , Hipertrofia/sangre , Hipertrofia/etiología , Masculino , Polidipsia/etiología , Polidipsia/patología , Poliuria/etiología , Poliuria/patología , Ratas , Ratas Endogámicas
7.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340538

RESUMEN

WW domain-containing oxidoreductase (Wwox) is a putative tumor suppressor. Several germline mutations of Wwox have been associated with infant neurological disorders characterized by epilepsy, growth retardation, and early death. Less is known, however, about the pathological link between Wwox mutations and these disorders or the physiological role of Wwox in brain development. In this study, we examined age-related expression and histological localization of Wwox in forebrains as well as the effects of loss of function mutations in the Wwox gene in the immature cortex of a rat model of lethal dwarfism with epilepsy (lde/lde). Immunostaining revealed that Wwox is expressed in neurons, astrocytes, and oligodendrocytes. lde/lde cortices were characterized by a reduction in neurite growth without a reduced number of neurons, severe reduction in myelination with a reduced number of mature oligodendrocytes, and a reduction in cell populations of astrocytes and microglia. These results indicate that Wwox is essential for normal development of neurons and glial cells in the cerebral cortex.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/deficiencia , Antiportadores/deficiencia , Corteza Cerebral/metabolismo , Enanismo/genética , Epilepsia/genética , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Enfermedades Mitocondriales/genética , Neurogénesis/genética , Trastornos Psicomotores/genética , Proteínas Supresoras de Tumor/genética , Oxidorreductasa que Contiene Dominios WW/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , 2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Animales , Antiportadores/genética , Antiportadores/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Recuento de Células , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Enanismo/metabolismo , Enanismo/patología , Epilepsia/metabolismo , Epilepsia/patología , Regulación del Desarrollo de la Expresión Génica , Mutación de Línea Germinal , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteína Básica de Mielina/genética , Proteína Básica de Mielina/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oligodendroglía/metabolismo , Oligodendroglía/patología , Prosencéfalo/crecimiento & desarrollo , Prosencéfalo/metabolismo , Prosencéfalo/patología , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología , Ratas , Ratas Transgénicas , Transducción de Señal , Proteínas Supresoras de Tumor/deficiencia , Oxidorreductasa que Contiene Dominios WW/deficiencia
8.
Biochem Biophys Res Commun ; 499(3): 459-465, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29577904

RESUMEN

Extracellular matrix (ECM) constitutes a proper micro-environment for cell proliferation, migration and differentiation, as well as playing pivotal roles in developmental processes including endochondral ossification. Cartilage ECM is mainly composed of fibrous proteins, including collagen, proteoglycan, and hyaluronan. Because almost all ECM components are transported by intracellular vesicular transport systems, molecules that mediate vesicle transport are also important for endochondral ossification. Giantin, encoded by the Golgb1 gene, is a tethering factor for coatomer 1 (COPI) vesicles and functions in the cis-medial Golgi compartments. An insertion mutation in the Golgb1 gene, resulting in a lack of giantin protein expression, has been detected in ocd/ocd rats that exhibit a pleiotropic phenotype including osteochondrodysplasia. To reveal the function of giantin in chondrogenesis, the present study assessed the effects of loss of giantin expression on cartilage ECM and Golgi morphology. Giantin was expressed in normal, but not in ocd/ocd, chondrocytes in the epiphyseal areas of embryonic femurs, whereas GM130 was expressed in both normal and ocd/ocd chondrocytes. The staining intensities of safranin O and azan (aniline blue) were reduced and enhanced, respectively, in epiphyseal cartilage of ocd/ocd femurs. Immunostaining showed that levels of type II collagen and fibronectin were comparable in normal and ocd/ocd cartilage. Levels of type XI collagen were higher, while levels of aggrecan, link protein and hyaluronan were lower, in ocd/ocd than in normal cartilage, although semi-quantitative RT-PCR showed similar levels of type XI collagen, aggrecan and link protein mRNAs in normal and ocd/ocd cartilage. Isolated chondrocytes of ocd/ocd and normal rats showed similar immunostaining patterns for cis-, medial-, and trans-Golgi marker proteins, whereas monolayers of ocd/ocd chondrocytes showed reduced levels of aggrecan and link protein and increased level of type XI collagen in spite of similar transcripts levels. These findings suggest that giantin plays a pivotal role in coordinated production of aggrecan, link protein and type XI collagen in chondrocytes, and that loss of giantin causes osteochondrodysplasia with disturbance of these ECM components.


Asunto(s)
Agrecanos/metabolismo , Condrogénesis , Colágeno Tipo XI/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteoglicanos/metabolismo , Animales , Autoantígenos/metabolismo , Cartílago/metabolismo , Proliferación Celular , Separación Celular , Condrocitos/citología , Condrocitos/metabolismo , Matriz Extracelular/metabolismo , Femenino , Fémur/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Fenotipo , Transporte de Proteínas , Ratas
9.
Biochem Biophys Res Commun ; 486(4): 958-964, 2017 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-28351621

RESUMEN

Male hypogonadism (hgn/hgn) rats show testicular hypoplasia accompanied by dysplastic development of seminiferous tubules due to loss-of-function mutation of the gene encoding Astrin, which is required for mitotic progression in the division cycle of HeLa cells. In the present study, we examined the cytological base leading to the decrease of Sertoli cells in hgn/hgn testes. In hgn/hgn testes on postnatal day 3, anti-phospho-histone H3 (Ser10) (pH3)-positive mitotic phase and TUNEL-positive apoptosis increased in GATA4-positive Sertoli cells. Isolated immature Sertoli cells from hgn/hgn testes showed increased pH3-assessed mitotic index accompanied by decreased 5-bromo-2'-deoxyuridine-incorporation and increased TUNEL-positive apoptosis, suggesting mitotic delay and cell death. In the visualization of mitotic progression by nocodazole (NOC)-mediated cell cycle arrest and subsequent release, hgn/hgn rat-derived Sertoli cells failed to make the transition from prometaphase to metaphase, and the cells with micronuclei and TUNEL-positive cells gradually increased in a time-dependent manner. Western blot analysis detected ≈142 kDa protein expected as Astrin in extracts of +/+ and +/hgn testes and cultured normal Sertoli cells but not in extracts of hgn/hgn testes. CLASP1 was detected in extracts of both normal and hgn/hgn testes, whereas it was localized in kinetochore of normal mitotic Sertoli cells but diffused in cytoplasm of hgn/hgn Sertoli cells. These results indicate that Astrin is required for normal mitotic progression in immature Sertoli cells and that the most severe type of testicullar dysplasia in hgn/hgn rats is caused by mitotic cell death of immature Sertoli cells due to lack of Astrin.


Asunto(s)
Azul Alcián/metabolismo , Apoptosis/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/fisiología , Fenazinas/metabolismo , Fenotiazinas/metabolismo , Resorcinoles/metabolismo , Células de Sertoli/fisiología , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Masculino , Ratones Endogámicos , Ratas
10.
Exp Toxicol Pathol ; 69(5): 245-258, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28185787

RESUMEN

A congenital reduction in the number of nephrons is a critical risk factor for both onset of chronic kidney disease (CKD) and its progression to end-stage kidney disease (ESKD). Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and show progressive CKD. This study used an immunohistological method to assess glomerular and interstitial pathogenesis in male HPK rats aged 35-210days. CD68 positive-macrophages were found to infiltrate into glomeruli in HPK rats aged 35 and 70days and to infiltrate into interstitial tissue in rats aged 140 and 210days. HPK rats aged 35 and 70days showed glomerular hypertrophy, loss of normal linear immunostaining of podocine, and increased expression of PDGFr-ß, TGF-ß, collagens, and fibronectin, with all of these alterations gradually deteriorating with age. α-SMA-positive myofibroblasts were rarely detected in glomerular tufts, whereas α-SMA-positive glomerular parietal epithelium (GPE) cells were frequently observed along Bowman's capsular walls. The numbers of PDGFr-ß-positive fibroblasts in interstitial tissue were increased in rats aged 35days and older, whereas interstitial fibrosis, characterized by the increased expression of tubular PDGF-BB, the appearance of myofibroblasts doubly positive for PDGFr-ß and α-SMA, and increased expression of collagens and fibronectin, were observed in rats aged 70 and older. These results clearly indicate that congenital CKD with only 20% of nephrons cause renal fibrosis in rats.


Asunto(s)
Insuficiencia Renal Crónica/congénito , Insuficiencia Renal Crónica/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis/patología , Masculino , Nefronas/patología , Ratas
11.
Comp Med ; 66(1): 10-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26884405

RESUMEN

Renal hypoplasia due to a congenitally reduced number of nephrons progresses to chronic kidney disease and may cause renal anemia, given that the kidneys are a major source of erythropoietin in adults. Hypoplastic kidney (HPK) rats have only about 20% of the normal number of nephrons and develop CKD. This study assessed the renal function and hematologic changes in HPK rats from 70 to 210 d of age. HPK rats demonstrated deterioration of renal excretory function, slightly macrocytic erythropenia at all days examined, age-related increases in splenic hemosiderosis accompanied by a tendency toward increased hemolysis, normal plasma erythropoietin levels associated with increased hepatic and decreased renal erythropoietin production, and maintenance of the response for erythropoietin production to hypoxic conditions, with increased interstitial fibrosis at 140 d of age. These results indicate that increases in splenic hemosiderosis and the membrane fragility of RBC might be associated with erythropenia and that hepatic production of erythropoietin might contribute to maintaining the blood Hgb concentration in HPK rats.


Asunto(s)
Anemia/fisiopatología , Enfermedades Renales/fisiopatología , Riñón/fisiopatología , Insuficiencia Renal Crónica/fisiopatología , Factores de Edad , Anemia/sangre , Anemia/etiología , Animales , Biomarcadores/sangre , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Eritrocitos/metabolismo , Eritrocitos/patología , Eritropoyetina/sangre , Fibrosis , Predisposición Genética a la Enfermedad , Hemólisis , Hemosiderosis/sangre , Hemosiderosis/etiología , Hemosiderosis/fisiopatología , Hierro/sangre , Riñón/anomalías , Riñón/metabolismo , Enfermedades Renales/sangre , Enfermedades Renales/congénito , Masculino , Mutación , Fragilidad Osmótica , Fenotipo , Ratas , Ratas Endogámicas , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/etiología , Bazo/metabolismo , Bazo/patología
12.
Congenit Anom (Kyoto) ; 56(4): 172-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26718736

RESUMEN

Homeobox genes play important roles in craniofacial morphogenesis. However, the characteristics of the transcription factor Hoxc during palate formation remain unclear. We examined the immunolocalization patterns of Hoxc5, Hoxc4, and Hoxc6 in palatogenesis of cleft palate (Eh/Eh) mice. On the other hand, mutations in the FGF/FGFR pathway are exclusively associated with syndromic forms of cleft palate. We also examined the immunolocalization of Fgfr1 and Erk1/2 to clarify their relationships with Hoxc in palatogenesis. Some palatal epithelial cells showed Hoxc5 labeling, while almost no labeling of mesenchymal cells was observed in +/+ mice. As palate formation progressed in +/+ mice, Hoxc5, Hoxc4, and Hoxc6 were observed in medial epithelial seam cells. Hoxc5 and Hoxc6 were detected in the oral epithelium. The palatal mesenchyme also showed intense staining for Fgfr1 and Erk1/2 with progression of palate formation. In contrast, the palatal shelves of Eh/Eh mice exhibited impaired horizontal growth and failed to fuse, resulting in a cleft. Hoxc5 was observed in a few epithelial cells and diffusely in the mesenchyme of Eh/Eh palatal shelves. No or little labeling of Fgfr1 and Erk1/2 was detected in the cleft palate of Eh/Eh mice. These findings suggest that Hoxc genes are involved in palatogenesis. Furthermore, there may be the differences in the localization pattern between Hoxc5, Hoxc4, and Hoxc6. Additionally, Hoxc distribution in palatal cells during palate development may be correlated with FGF signaling. (228/250 words) © 2016 Japanese Teratology Society.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Organogénesis , Hueso Paladar/embriología , Hueso Paladar/metabolismo , Animales , Fisura del Paladar/genética , Fisura del Paladar/patología , Modelos Animales de Enfermedad , Expresión Génica Ectópica , Femenino , Expresión Génica , Proteínas de Homeodominio/genética , Inmunohistoquímica , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Familia de Multigenes , Organogénesis/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transporte de Proteínas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo
13.
Exp Anim ; 63(1): 11-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24521859

RESUMEN

The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs.


Asunto(s)
Tipificación del Cuerpo/genética , Infertilidad/genética , Mutación , Costillas/anomalías , Costillas/embriología , Columna Vertebral/anomalías , Columna Vertebral/embriología , Animales , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Femenino , Gametogénesis/genética , Genes Recesivos/genética , Masculino , Ratones , Ratones Mutantes , Fenotipo , Esqueleto
14.
J Biol Chem ; 288(44): 31830-41, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24045954

RESUMEN

Skeletal fusions with sterility (sks) is an autosomal recessive mutation of mouse that results in male and female sterility because of defects in gametogenesis. The mutants also have skeletal malformations with fused vertebrae and ribs. We examined testicular phenotypes of sks/sks mice to investigate the defects in spermatogenesis. Histological and immunocytochemical analyses and expression analyses of the marker genes demonstrated that spermatogenesis is arrested at mid to late pachytene stage of meiotic prophase with defective synapsis of the homologous chromosomes. Next, we determined the precise chromosomal localization of the sks locus on a 0.3-Mb region of mouse chromosome 4 by linkage analysis. By sequencing the positional candidate genes in this region and whole exome sequencing, we found a GG to TT nucleotide substitution in exon 6 of the Tmem48 gene that encodes a putative transmembrane protein with six transmembrane domains. The nucleotide substitution causes aberrant splicing, which deletes exon 6 of the Tmem48 transcript. Specific expression of TMEM48 was observed in germ cells of males and females. Furthermore, the phenotypes of the sks mutant were completely rescued by the transgenesis of a genomic fragment containing the wild-type Tmem48 gene. These findings indicate that the Tmem48 mutation is responsible for the gametogenesis defects and skeletal malformations in the sks mice. The TMEM48 protein is a nuclear membrane protein comprising the nuclear pore complex; its exact function in the nuclear pore complex is still unknown. Our finding suggested that the nuclear pore complex plays an important role in mammalian gametogenesis and skeletal development.


Asunto(s)
Enfermedades Óseas , Enfermedades Genéticas Congénitas , Infertilidad Femenina , Infertilidad Masculina , Proteínas de Complejo Poro Nuclear , Espermatogénesis/genética , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Emparejamiento Cromosómico/genética , Análisis Mutacional de ADN , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Sitios Genéticos , Infertilidad Femenina/genética , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Masculino , Ratones , Ratones Mutantes , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Mutación Puntual
15.
J Cell Sci ; 126(Pt 22): 5189-97, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24046448

RESUMEN

The correct formation of primary cilia is central to the development and function of nearly all cells and tissues. Cilia grow from the mother centriole by extension of a microtubule core, the axoneme, which is then surrounded with a specialized ciliary membrane that is continuous with the plasma membrane. Intraflagellar transport moves particles along the length of the axoneme to direct assembly of the cilium and is also required for proper cilia function. The microtubule motor, cytoplasmic dynein-2 mediates retrograde transport along the axoneme from the tip to the base; dynein-2 is also required for some aspects of cilia formation. In most cells, the Golgi lies adjacent to the centrioles and key components of the cilia machinery localize to this organelle. Golgi-localized proteins have also been implicated in ciliogenesis and in intraflagellar transport. Here, we show that the transmembrane Golgi matrix protein giantin (GOLGB1) is required for ciliogenesis. We show that giantin is not required for the Rab11-Rabin8-Rab8 pathway that has been implicated in the early stages of ciliary membrane formation. Instead we find that suppression of giantin results in mis-localization of WDR34, the intermediate chain of dynein-2. Highly effective depletion of giantin or WDR34 leads to an inability of cells to form primary cilia. Partial depletion of giantin or of WDR34 leads to an increase in cilia length consistent with the concept that giantin acts through dynein-2. Our data implicate giantin in ciliogenesis through control of dynein-2 localization.


Asunto(s)
Cilios/metabolismo , Dineínas/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Centriolos/genética , Cilios/fisiología , Dineínas/genética , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi , Humanos , Proteínas de la Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo
16.
Biomed Res Int ; 2013: 760236, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23509775

RESUMEN

Palatogenesis is directed by epithelial-mesenchymal interactions and results partly from remodeling of the extracellular matrix (ECM) of the palatal shelves. Here, we assessed heparanase distribution in developing mouse palates. No heparanase was observed in the vertically oriented palatal shelves in early stages of palate formation. As palate formation progressed, the palatal shelves were reorganized and arranged horizontally above the tongue, and heparanase localized to the epithelial cells of these shelves. When the palatal bilateral shelves first made contact, the heparanase localized to epithelial cells at the tips of shelves. Later in fusing palatal shelves, the cells of the medial epithelial seam (MES) were labeled with intense heparanase signal. In contrast, the basement membrane heparan sulfate (HS) was scarcely observed in the palatal shelves in contact. Moreover, perlecan labeling was sparse in the basement membrane of the MES, on which laminin and type IV collagen were observed. Moreover, we assessed the distribution of matrix metalloproteinase- (MMP-) 9, MMP-2, and MMP-3 in developing mouse palates and these MMPs were observed in the MES. Our findings indicated that heparanase was important for palate formation because it mediated degradation of the ECM of palatal shelves. Heparanase may, in concert with other proteases, participate in the regression of the MES.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Glucuronidasa/biosíntesis , Hueso Paladar/embriología , Animales , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Femenino , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Laminina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Factores de Tiempo
17.
Bone ; 49(5): 1027-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21851869

RESUMEN

Homozygous rats (ocd/ocd) of a mutant inbred strain, OCD (osteochondrodysplasia), show osteochondrodysplasia, systemic edema, cleft palate, protruding tongue, disproportionate dwarfism, and lethality immediately after birth. Their epiphyses show decreased levels of glycosaminoglycans and weak staining for extracellular matrix proteins. The epiphyseal chondrocytes have large vesicles and expanded endoplasmic reticulum and Golgi apparatus. These phenotypic features are inherited in an autosomal recessive manner, and the ocd locus responsible for these phenotypes has been mapped close to D11Mgh3 on rat chromosome 11. In the present study, we characterized the embryonic pathogenesis of ocd/ocd rats and identified the mutant gene. Subcutaneous edema in the dorsal portion was found at embryonic day (E) 16.5, and the other anomalies described above were apparent after E18.5 in ocd/ocd. Whole mount immunohistochemistry for Sox9 revealed that mesenchymal condensation was delayed in limb bud in ocd/ocd, and skeletal preparation showed that the progression of whole-body chondrogenesis was delayed in ocd/ocd. Histological and immunohistological analyses of the femur showed that cell proliferations of resting and proliferative zones of growth plate were significantly reduced in ocd/ocd embryos. Fine linkage mapping localized the ocd locus within 84kb of positions 65,584-65,668kb containing a part of Golgb1 gene on chromosome 11. Expression of Golgb1 mRNA was found in limb buds, somite derivatives and calvaria. Sequence analysis identified a 10-bp insertion in exon 13 of the Golgb1 gene in ocd/ocd rats. The Golgb1 gene encodes the COPI vesicle tethering factor, giantin. This insertion mutation causes a frame shift, and introduces a premature termination codon at codon 1082, leading to truncation of the C-terminal two thirds of giantin. By in-gel Western analysis using anti-giantin antibody that recognizes an epitope within 200 aa of the C-terminus, the expression of giantin was not detected in ocd/ocd embryos. As the C-terminal region of giantin is required for localization to the Golgi apparatus, these results strongly suggested that giantin is functionally defective in ocd/ocd rats. Therefore, we concluded that mutation of the Golgb1 gene is responsible for the phenotypic characteristics including osteochondrodysplasia of ocd/ocd, and that giantin plays a pivotal role in multiple aspects of chondrogenesis.


Asunto(s)
Edema/genética , Proteínas de la Membrana/genética , Mutagénesis Insercional , Osteocondrodisplasias/genética , Animales , Modelos Animales de Enfermedad , Proteínas de la Matriz de Golgi , Inmunohistoquímica , Hibridación in Situ , Reacción en Cadena de la Polimerasa , Ratas
18.
J Vet Med Sci ; 73(6): 787-95, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21307619

RESUMEN

Affected rats of the unilateral urogenital anomalies (UUA) strain show renal agenesis restricted to the left side. To determine whether unilateral renal agenesis is a risk factor for the progression of renal insufficiency, we studied age-related pathophysiological alterations in affected rats. Although body growth and food intake were normal, polydipsia and polyuria with low specific gravity were present at 10 weeks and deteriorated further with age. Blood hemoglobin concentrations were normal, though there was slight erythropenia with increased MCV and MCH. Although hypoalbuminemia, hypercholesterolemia, azotemia, and hypermagnesemia were manifested after age 20 weeks, neither hyperphosphatemia nor hypocalcemia was observed. Plasma Cre and UN concentrations gradually increased with age. Cre clearance was almost normal, whereas fractional UN excretion was consistently lower than normal. Proteinuria increased with age, and albumin was the major leakage protein. In addition to cortical lesions, dilated tubules, cast formation, and interstitial fibrosis were observed in the renal medulla of 50 week-old affected rats. Renal weight was increased 1.7-fold and glomerular number 1.2-fold compared with normal rats. These findings show that the remaining kidney in UUA rats is involved not only in compensatory reactions but experiences pathophysiological alterations associated with progressive renal insufficiency.


Asunto(s)
Anomalías Congénitas/fisiopatología , Glomérulos Renales/fisiopatología , Factores de Edad , Animales , Peso Corporal/fisiología , Anomalías Congénitas/sangre , Anomalías Congénitas/orina , Modelos Animales de Enfermedad , Ingestión de Alimentos/fisiología , Histocitoquímica , Riñón/anomalías , Riñón/fisiopatología , Enfermedades Renales/congénito , Masculino , Tamaño de los Órganos/fisiología , Ratas
19.
J Vet Med Sci ; 73(4): 495-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21127392

RESUMEN

The petit rat (pet/pet) is a new semi-lethal dwarf mutant with anomalies in the thymus and testes, defects inherited as a single autosomal recessive trait. At birth, these pet/pet rats show low birth weight and extremely small thymuses; at 140 days of age, their thymuses show abnormal involution. In the present study, we examined early postnatal development of hypoplastic pet/pet thymuses. In addition to being hypoplastic at birth, pet/pet thymus growth was almost completely impaired during the early postnatal period. As shown by cellular incorporation of BrdU, the mitotic activity was lower in pet/pet than in normal thymuses, and terminal deoxynucleotidyl transferase dUTP nick end labeling assays showed that apoptosis occurred more often in pet/pet than in normal thymus cells during the first few days after birth. These results indicate that postnatal development of the hypoplastic pet/pet thymus is defective due to the reduced proliferation and increased apoptosis of thymic cells.


Asunto(s)
Anomalías Múltiples/patología , Enanismo/genética , Timo/anomalías , Timo/crecimiento & desarrollo , Anomalías Múltiples/genética , Animales , Masculino , Mitosis , Ratas , Timo/citología
20.
BMC Genet ; 10: 60, 2009 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-19772620

RESUMEN

BACKGROUND: Koala (Koa) is a dominant mutation in mice causing bushy muzzle and pinna, and is associated with a chromosomal inversion on the distal half of chromosome 15. To identify the gene responsible for the Koa phenotypes, we investigated phenotypes of Koa homozygous mice and determined the breakpoints of the inversion with a genetic method using recombination between two different chromosomal inversions. RESULTS: Skeletal preparation of Koa homozygotes showed marked deformity of the ribs and a wider skull with extended zygomatic arches, in addition to a general reduction in the lengths of long bones. They also had open eyelids at birth caused by a defect in the extension of eyelid anlagen during the embryonic stages. The proximal and distal breakpoints of the Koa inversion were determined to be 0.8-Mb distal to the Trsps1 gene and to 0.1-Mb distal to the Hoxc4 gene, respectively, as previously reported. The phenotypes of mice with the recombinant inverted chromosomes revealed the localization of the gene responsible the Koa phenotype in the vicinity of the proximal recombinant breakpoint. Expression of the Trsps1 gene in this region was significantly reduced in the Koa homozygous and heterozygous embryos. CONCLUSION: While no gene was disrupted by the chromosomal inversion, an association between the Koa phenotype and the proximal recombinant breakpoint, phenotypic similarities with Trps1-deficient mice or human patients with TRSP1 mutations, and the reduced expression of the Trsps1 gene in Koa mice, indicated that the phenotypes of the Koa mice are caused by the altered expression of the Trps1 gene.


Asunto(s)
Huesos/anomalías , Rotura Cromosómica , Inversión Cromosómica , Animales , Cromosomas de los Mamíferos , Embrión de Mamíferos/anomalías , Factores de Transcripción GATA/genética , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Ratones , Ratones Mutantes/genética , Repeticiones de Microsatélite , Fenotipo , Proteínas Represoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA