Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Med Oncol ; 41(7): 169, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839666

RESUMEN

To investigate extracellular vesicles (EVs), biomarkers for predicting lymph node invasion (LNI) in patients with high-risk prostate cancer (HRPCa), plasma, and/or urine samples were prospectively collected from 45 patients with prostate cancer (PCa) and five with benign prostatic hyperplasia (BPH). Small RNA sequencing was performed to identify miRNAs in the EVs. All patients with PCa underwent radical prostatectomy and extended pelvic lymph node dissection. Differentially expressed miRNAs were identified in patients with and without pathologically-verified LNI. The candidate miRNAs were validated in low-risk prostate cancer (LRPCa) and BPH. Four miRNA species (e.g., miR-126-3p) and three miRNA species (e.g., miR-27a-3p) were more abundant in urinary and plasma EVs, respectively, of patients with PCa. None of these miRNA species were shared between urinary and plasma EVs. miR-126-3p was significantly more abundant in patients with HR PCa with LNI than in those without (P = 0.018). miR-126-3p was significantly more abundant in the urinary EVs of patients with HRPCa than in those with LRPCa (P = 0.017) and BPH (P = 0.011). In conclusion, urinary EVs-derived miR-126-3p may serve as a good biomarker for predicting LNI in patients with HRPCa.


Asunto(s)
Biomarcadores de Tumor , Vesículas Extracelulares , Metástasis Linfática , MicroARNs , Neoplasias de la Próstata , Humanos , Masculino , MicroARNs/orina , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/orina , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Anciano , Persona de Mediana Edad , Metástasis Linfática/genética , Metástasis Linfática/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/orina , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Hiperplasia Prostática/orina , Ganglios Linfáticos/patología , Prostatectomía , Estudios Prospectivos
2.
Int J Biol Sci ; 20(6): 2130-2148, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617541

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Lovastatina/farmacología , Lovastatina/uso terapéutico , Proteínas Ribosómicas/genética , Proteínas Nucleares , Ribosomas/genética , Proteínas Mitocondriales
3.
Res Sq ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38585988

RESUMEN

To investigate extracellular vesicles (EVs) biomarkers for predicting lymph node invasion (LNI) in patients with high-risk prostate cancer (HRPCa), plasma and/or urine samples were prospectively collected from 45 patients with prostate cancer (PCa) and five with benign prostatic hyperplasia (BPH). Small RNA sequencing was performed to identify miRNAs in the EVs. All patients with PCa underwent radical prostatectomy and extended pelvic lymph node dissection. Differentially-expressed miRNAs were identified in patients with and without pathologically-verified LNI. The candidate miRNAs were validated in low-risk prostate cancer (LRPCa) and BPH. Four miRNA species (e.g. miR-126-3p) and three miRNA species (e.g. miR-27a-3p) were more abundant in urinary and plasma EVs, respectively, of patients with PCa. None of these miRNA species were shared between urinary and plasma EVs. miR-126-3p was significantly more abundant in patients with HR PCa with LNI than in those without (P = 0.018). miR-126-3p was significantly more abundant in the urinary EVs of patients with HRPCa than in those with LRPCa (P = 0.017) and BPH (P = 0.011). In conclusion, urinary EVs-derived miR-126-3p may serve as a good biomarker for predicting LNI in patients with HRPCa.

4.
Prostate ; 83(13): 1247-1254, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37244751

RESUMEN

BACKGROUND: Prostate cancer (PCa) bone metastases have been shown to be more resistant to docetaxel than soft tissue metastases. The proinflammatory chemokine receptor CXCR4 has been shown to confer resistance to docetaxel (DOC) in PCa cells. Balixafortide (BLX) is a protein epitope mimetic inhibitor of CXCR4. Accordingly, we hypothesized that BLX would enhance DOC-mediated antitumor activity in PCa bone metastases. METHODS: PC-3 luciferase-labeled cells were injected into the tibia of mice to model bone metastases. Four treatment groups were created: vehicle, DOC (5 mg/kg), BLX (20 mg/kg), and combo (receiving both DOC and BLX). Mice were injected twice daily subcutaneously with either vehicle or BLX starting on Day 1 and weekly intraperitoneally with DOC starting on Day 1. Tumor burden was measured weekly via bioluminescent imaging. At end of study (29 days), radiographs were taken of the tibiae and blood was collected. Serum levels of TRAcP, IL-2, and IFNγ levels were measured using ELISA. Harvested tibiae were decalcified and stained for Ki67, cleaved caspase-3, and CD34 positive cells or microvessels were quantified. RESULTS: Tumor burden was lower in the combo group compared to the DOC alone group. Treatment with the combination had no impact on the number of mice with osteolytic lesions, however the area of osteolytic lesions was lower in the combo group compared to the vehicle and BLX groups, but not the DOC group. Serum TRAcP levels were lower in the combo compared to vehicle group, but not the other groups. No significant difference in Ki67 staining was found among the groups; whereas, cleaved caspase-3 staining was lowest in the Combo group and highest in the BLX group. The DOC and combo groups had more CD34+ microvessels than the control and BLX groups. There was no difference between the treatment groups for IL-2, but the combo group had increased levels of IFNγ compared to the DOC group. CONCLUSIONS: Our data demonstrate that a combination of BAL and DOC has greater antitumor activity in a model of PCa bone metastases than either drug alone. These data support further evaluation of this combination in metastatic PCa.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Docetaxel/farmacología , Docetaxel/uso terapéutico , Caspasa 3 , Modelos Animales de Enfermedad , Interleucina-2 , Antígeno Ki-67 , Fosfatasa Ácida Tartratorresistente , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Receptores CXCR4
5.
Methods Mol Biol ; 2660: 85-94, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37191792

RESUMEN

Innate resistance and therapeutic-driven development of resistance to anticancer drugs is a common complication of cancer therapy. Understanding mechanisms of drug resistance can lead to development of alternative therapies. One strategy is to subject drug-sensitive and drug-resistant variants to single-cell RNA-seq (scRNA-seq) and to subject the scRNA-seq data to network analysis to identify pathways associated with drug resistance. This protocol describes a computational analysis pipeline to study drug resistance by subjecting scRNA-seq expression data to Passing Attributes between Networks for Data Assimilation (PANDA), an integrative network analysis tool that incorporates protein-protein interactions (PPI) and transcription factor (TF)-binding motifs.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Perfilación de la Expresión Génica/métodos , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
6.
Res Sq ; 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36945465

RESUMEN

Intestinal stem cells (ISC) encounter inflammatory insults in immune mediated gastro-intestinal (GI) diseases. It remains unknown whether, and how, they adapt, and if the adaptation leaves scars on the ISCs that affects their subsequent regeneration capacity. We investigated the consequences of inflammation on Lgr5+ISCs in well-defined clinically relevant models of gastro-intestinal acute graft-versus-host disease (GI GVHD). Utilizing single cell transcriptomics, organoid, metabolic, epigenomic and in vivo models we found that Lgr5+ISCs undergo metabolic changes that lead to accumulation of succinate, which reprograms its epigenome. These changes reduced the ability of ISCs to differentiate and regenerate ex vivo in serial organoid cultures demonstrating the persistence of the maladaptive impact of an in vivo inflammatory encounter by the ISCs. Thus, inflammation from GI GVHD leaves a memory of its effects on ISCs that persist and are likely to affect their sensitivity to adapt to future stress or challenges.

7.
Biosensors (Basel) ; 13(3)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36979615

RESUMEN

Evaluating the aggressiveness of prostate cancer (PCa) is crucial for PCa diagnosis and prognosis. Previously, studies have shown that photoacoustic spectral analysis (PASA) can assess prostate tissue microarchitecture for evaluating the aggressiveness of PCa. In this study, in a transgenic mouse (TRAMP) model of PCa, we utilized methylene blue polyacrylamide nanoparticles (MB PAA NPs) to label the cancer cells in prostate in vivo. MB PAA NPs can specifically target proliferating cancer cells as a contrast agent, allowing photoacoustic (PA) imaging to better detect PCa tumors, and also assessing prostate glandular architecture. With the PA signals from the prostates measured simultaneously by a needle hydrophone and a PA and ultrasound (US) dual-imaging system, we conducted PASA and correlated the quantified spectral parameter slopes with the cancer grading from histopathology. The PASA results from 18 mice showed significant differences between normal and cancer, and also between low-score cancer and high-score cancer. This study in the clinically relevant TRAMP model of PCa demonstrated that PA imaging and PASA, powered by MB PAA NPs that can label the PCa microarchitectures in vivo after systemic administration, can detect PCa and, more importantly, evaluate cancer aggressiveness.


Asunto(s)
Nanopartículas , Técnicas Fotoacústicas , Neoplasias de la Próstata , Masculino , Humanos , Ratones , Animales , Azul de Metileno , Neoplasias de la Próstata/diagnóstico por imagen , Próstata , Técnicas Fotoacústicas/métodos
8.
EMBO J ; 42(7): e111148, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36843552

RESUMEN

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Asunto(s)
Resorción Ósea , Osteoclastos , Ratones , Animales , Humanos , Osteoclastos/metabolismo , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Resorción Ósea/genética , Resorción Ósea/metabolismo , Huesos , Diferenciación Celular , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
9.
Curr Osteoporos Rep ; 21(2): 117-127, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36848026

RESUMEN

PURPOSE OF REVIEW: The purpose of this review is to summarize the recently published findings regarding the role of epithelial to mesenchymal transition (EMT) in tumor progression, macrophages in the tumor microenvironment, and crosstalk that exists between tumor cells and macrophages. RECENT FINDINGS: EMT is a crucial process in tumor progression. In association with EMT changes, macrophage infiltration of tumors occurs frequently. A large body of evidence demonstrates that various mechanisms of crosstalk exist between macrophages and tumor cells that have undergone EMT resulting in a vicious cycle that promotes tumor invasion and metastasis. Tumor-associated macrophages and tumor cells undergoing EMT provide reciprocal crosstalk which leads to tumor progression. These interactions provide potential targets to exploit for therapy.


Asunto(s)
Transición Epitelial-Mesenquimal , Neoplasias , Humanos , Neoplasias/patología , Movimiento Celular , Macrófagos , Microambiente Tumoral
10.
Cells ; 11(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496973

RESUMEN

The clearance of apoptotic cancer cells by macrophages, known as efferocytosis, fuels the bone-metastatic growth of prostate cancer cells via pro-inflammatory and immunosuppressive processes. However, the exact molecular mechanisms remain unclear. In this study, single-cell transcriptomics of bone marrow (BM) macrophages undergoing efferocytosis of apoptotic prostate cancer cells revealed a significant enrichment in their cellular response to hypoxia. Here, we show that BM macrophage efferocytosis increased hypoxia inducible factor-1alpha (HIF-1α) and STAT3 phosphorylation (p-STAT3 at Tyr705) under normoxic conditions, while inhibitors of p-STAT3 reduced HIF-1α. Efferocytosis promoted HIF-1α stabilization, reduced its ubiquitination, and induced HIF-1α and p-STAT3 nuclear translocation. HIF-1α stabilization in efferocytic BM macrophages resulted in enhanced expression of pro-inflammatory cytokine MIF, whereas BM macrophages with inactive HIF-1α reduced MIF expression upon efferocytosis. Stabilization of HIF-1α using the HIF-prolyl-hydroxylase inhibitor, Roxadustat, enhanced MIF expression in BM macrophages. Furthermore, BM macrophages treated with recombinant MIF protein activated NF-κB (p65) signaling and increased the expression of pro-inflammatory cytokines. Altogether, these findings suggest that the clearance of apoptotic cancer cells by BM macrophages triggers p-STAT3/HIF-1α/MIF signaling to promote further inflammation in the bone tumor microenvironment where a significant number of apoptotic cancer cells are present.


Asunto(s)
Médula Ósea , Neoplasias de la Próstata , Masculino , Humanos , Médula Ósea/metabolismo , Macrófagos/metabolismo , Fagocitosis , Neoplasias de la Próstata/patología , Citocinas/metabolismo , Inflamación/patología , Hipoxia/metabolismo , Microambiente Tumoral
11.
Microbiome ; 10(1): 149, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114582

RESUMEN

BACKGROUND: The pathogenesis of inflammatory bowel diseases (IBD) is multifactorial, and diagnostic and treatment strategies for IBD remain to be developed. RhoB regulates multiple cell functions; however, its role in colitis is unexplored. RESULTS: Here, we found RhoB was dramatically increased in colon tissues of ulcerative colitis (UC) patients and mice with DSS-induced colitis. Compared with wild type mice, RhoB+/- and RhoB-/- mice developed milder DSS-induced colitis and increased goblet cell numbers and IEC proliferation. Decreased RhoB promoted goblet cell differentiation and epithelial regeneration through inhibiting Wnt signaling pathway and activating p38 MAPK signaling pathway. Moreover, increased SCFA-producing bacteria and SCFA concentrations were detected in intestinal microbiome of both RhoB+/- and RhoB-/- mice and upregulated SCFA receptor expression was also observed. CONCLUSIONS: Taken together, a higher level of RhoB is associated with UC, which also contributes to UC development through modulating cell signaling and altering intestinal bacterial composition and metabolites. These observations suggest that RhoB has potential as a biomarker and a treatment target for UC. Video Abstract.


Asunto(s)
Colitis Ulcerosa , Colitis , Microbioma Gastrointestinal , Proteína de Unión al GTP rhoB/metabolismo , Animales , Biomarcadores , Colitis/inducido químicamente , Colitis/patología , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Sulfato de Dextran , Humanos , Ratones , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
Cell Rep ; 40(9): 111308, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044853

RESUMEN

Commensal intestinal bacteria play key roles in regulating host immune tolerance; however, bacterial strains and related metabolites directly involved in this regulation are largely unknown. Here, using a mouse model of dextran sulfate sodium (DSS)-induced colitis combined with different antibiotic treatment, Enterobacter ludwigii, abundant in microbiota of mice treated with metronidazole, is screened out to have prophylactic and therapeutic effects on DSS-induced colitis with or without the presence of complex intestinal bacteria. E. ludwigii is found to induce CD103+DC and regulatory T (Treg)-mediated immune tolerance for colitis remission using in vitro and in vivo experiments. Moreover, choline, one metabolite of E. ludwigii, is identified to increase dendritic cells' (DCs) immune tolerance to promote Treg differentiation. E. ludwigii is found to induce DCs' immune tolerance ability for Treg differentiation through choline and α7nAChR-mediated retinoic acid (RA) and transforming growth factor beta (TGF-ß) upregulation, resulting in protecting mice against DSS-induced colitis. This study suggests potential therapeutic approaches for inflammatory bowel diseases (IBDs).


Asunto(s)
Colina , Colitis , Animales , Colina/metabolismo , Células Dendríticas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Enterobacter , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Linfocitos T Reguladores
13.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887203

RESUMEN

As pancreatic cancer is the third deadliest cancer in the U.S., the ability to study genetic alterations is necessary to provide further insight into potentially targetable regions for cancer treatment. Circulating tumor cells (CTCs) represent an especially aggressive subset of cancer cells, capable of causing metastasis and progressing the disease. Here, we present the Labyrinth-DEPArray pipeline for the isolation and analysis of single CTCs. Established cell lines, patient-derived CTC cell lines and freshly isolated CTCs were recovered and sequenced to reveal single-cell copy number variations (CNVs). The resulting CNV profiles of established cell lines showed concordance with previously reported data and highlight several gains and losses of cancer-related genes such as FGFR3 and GNAS. The novel sequencing of patient-derived CTC cell lines showed gains in chromosome 8q, 10q and 17q across both CTC cell lines. The pipeline was used to process and isolate single cells from a metastatic pancreatic cancer patient revealing a gain of chromosome 1q and a loss of chromosome 5q. Overall, the Labyrinth-DEPArray pipeline offers a validated workflow combining the benefits of antigen-free CTC isolation with single cell genomic analysis.


Asunto(s)
Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Biomarcadores de Tumor , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Células Neoplásicas Circulantes/patología , Neoplasias Pancreáticas/genética , Flujo de Trabajo , Neoplasias Pancreáticas
14.
PLoS One ; 17(4): e0267642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476843

RESUMEN

Roughly 400,000 people in the U.S. are living with bone metastases, the vast majority occurring in the spine. Metastases to the spine result in fractures, pain, paralysis, and significant health care costs. This predilection for cancer to metastasize to the bone is seen across most cancer histologies, with the greatest incidence seen in prostate, breast, and lung cancer. The molecular process involved in this predilection for axial versus appendicular skeleton is not fully understood, although it is likely that a combination of tumor and local micro-environmental factors plays a role. Immune cells are an important constituent of the bone marrow microenvironment and many of these cells have been shown to play a significant role in tumor growth and progression in soft tissue and bone disease. With this in mind, we sought to examine the differences in immune landscape between axial and appendicular bones in the normal noncancerous setting in order to obtain an understanding of these landscapes. To accomplish this, we utilized mass cytometry by time-of-flight (CyTOF) to examine differences in the immune cell landscapes between the long bone and vertebral body bone marrow from patient clinical samples and C57BL/6J mice. We demonstrate significant differences between immune populations in both murine and human marrow with a predominance of myeloid progenitor cells in the spine. Additionally, cytokine analysis revealed differences in concentrations favoring a more myeloid enriched population of cells in the vertebral body bone marrow. These differences could have clinical implications with respect to the distribution and permissive growth of bone metastases.


Asunto(s)
Neoplasias Óseas , Huesos , Animales , Médula Ósea , Neoplasias Óseas/secundario , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Columna Vertebral , Microambiente Tumoral
15.
Front Bioeng Biotechnol ; 10: 797542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402411

RESUMEN

The bone is a mechanosensitive organ that is also a common metastatic site for prostate cancer. However, the mechanism by which the tumor interacts with the bone microenvironment to further promote disease progression remains to be fully understood. This is largely due to a lack of physiological yet user-friendly models that limit our ability to perform in-depth mechanistic studies. Here, we report a tunable bioreactor which facilitates the 3D culture of the osteocyte cell line, MLO-Y4, in a hydroxyapatite/tricalcium phosphate (HA/TCP) scaffold under constant fluidic shear stress and tunable hydrostatic pressure within physiological parameters. Increasing hydrostatic pressure was sufficient to induce a change in the expression of several bone remodeling genes such as Dmp1, Rankl, and Runx2. Furthermore, increased hydrostatic pressure induced the osteocytes to promote the differentiation of the murine macrophage cell line RAW264.7 toward osteoclast-like cells. These results demonstrate that the bioreactor recapitulates the mechanotransduction response of osteocytes to pressure including the measurement of their functional ability in a 3D environment. In conclusion, the bioreactor would be useful for exploring the mechanisms of osteocytes in bone health and disease.

16.
Bioengineering (Basel) ; 8(12)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34940365

RESUMEN

Multiple methods (e.g., small molecules and antibodies) have been engineered to target specific proteins and signaling pathways in cancer. However, many mediators of the cancer phenotype are unknown and the ability to target these phenotypes would help mitigate cancer. Aptamers are small DNA or RNA molecules that are designed for therapeutic use. The design of aptamers to target cancers can be challenging. Accordingly, to engineer functionally anti-metastatic aptamers we used a modification of systemic evolution of ligands by exponential enrichment (SELEX) we call Pheno-SELEX to target a known phenotype of cancer metastasis, i.e., invasion. A highly invasive prostate cancer (PCa) cell line was established and used to identify aptamers that bound to it with high affinity as opposed to a less invasive variant to the cell line. The anti-invasive aptamer (AIA1) was found to inhibit in vitro invasion of the original highly invasive PCa cell line, as well as an additional PCa cell line and an osteosarcoma cell line. AIA1 also inhibited in vivo development of metastasis in both a PCa and osteosarcoma model of metastasis. These results indicate that Pheno-SELEX can be successfully used to identify aptamers without knowledge of underlying molecular targets. This study establishes a new paradigm for the identification of functional aptamers.

17.
BMC Cancer ; 21(1): 1316, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34879849

RESUMEN

BACKGROUND: Overcoming drug resistance is critical for increasing the survival rate of prostate cancer (PCa). Docetaxel is the first cytotoxic chemotherapeutical approved for treatment of PCa. However, 99% of PCa patients will develop resistance to docetaxel within 3 years. Understanding how resistance arises is important to increasing PCa survival. METHODS: In this study, we modeled docetaxel resistance using two PCa cell lines: DU145 and PC3. Using the Passing Attributes between Networks for Data Assimilation (PANDA) method to model transcription factor (TF) activity networks in both sensitive and resistant variants of the two cell lines. We identified edges and nodes shared by both PCa cell lines that composed a shared TF network that modeled changes which occur during acquisition of docetaxel resistance in PCa. We subjected the shared TF network to connectivity map analysis (CMAP) to identify potential drugs that could disrupt the resistant networks. We validated the candidate drug in combination with docetaxel to treat docetaxel-resistant PCa in both in vitro and in vivo models. RESULTS: In the final shared TF network, 10 TF nodes were identified as the main nodes for the development of docetaxel resistance. CMAP analysis of the shared TF network identified trichostatin A (TSA) as a candidate adjuvant to reverse docetaxel resistance. In cell lines, the addition of TSA to docetaxel enhanced cytotoxicity of docetaxel resistant PCa cells with an associated reduction of the IC50 of docetaxel on the resistant cells. In the PCa mouse model, combination of TSA and docetaxel reduced tumor growth and final weight greater than either drug alone or vehicle. CONCLUSIONS: We identified a shared TF activity network that drives docetaxel resistance in PCa. We also demonstrated a novel combination therapy to overcome this resistance. This study highlights the usage of novel application of single cell RNA-sequencing and subsequent network analyses that can reveal novel insights which have the potential to improve clinical outcomes.


Asunto(s)
Docetaxel/efectos adversos , Resistencia a Antineoplásicos/efectos de los fármacos , Ácidos Hidroxámicos/farmacología , Neoplasias de la Próstata , Factores de Transcripción , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Mapas de Interacción de Proteínas/efectos de los fármacos , RNA-Seq , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
J Am Assoc Lab Anim Sci ; 60(3): 341-348, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33952382

RESUMEN

Murine models of tumor development often require invasive procedures for tumor implantation, potentially causing pain or distress. However, analgesics are often withheld during implantation because of concerns that they may adversely affect tumor development. Previous studies examining the effects of analgesics on the development and metastasis of various tumor lines show that the effect of analgesics depends on the tumor line and analgesic used. A blanket statement that analgesics affect the general growth of tumors is not adequate scientific justification for withholding pain relief, and pilot studies or references are recommended for each specific tumor cell line and treatment combination. In this study, we evaluated the effects of 2 commonly used analgesics on tumor growth in 2 models of prostate cancer (PCa) bone metastasis. We hypothesized that a one-time injection of analgesics at the time of intratibial injection of tumor cells would not significantly impact tumor growth. Either C57BL/6 or SCID mice were injected subcutaneously with an analgesic (carprofen [5 mg/kg], or buprenorphine [0.1 mg/kg]) or vehicle (0.1 mL of saline) at the time of intratibial injection with a PCa cell line (RM1 or PC3, n = 10 to 11 per group). Tumor growth (measured by determination of tumor burden and the extent of bone involvement) and welfare (measured by nociception, locomotion, and weight) were monitored for 2 to 4 wk. Neither carprofen or buprenorphine administration consistently affected tumor growth or indices of animal welfare as compared with the saline control for either cell line. This study adds to the growing body of literature demonstrating that analgesia can be compatible with scientific objectives, and that a decision to withhold analgesics must be scientifically justified and evaluated on a model-specific basis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Analgésicos/uso terapéutico , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/veterinaria , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/veterinaria
20.
Nat Commun ; 12(1): 2587, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972537

RESUMEN

Host cells use several anti-bacterial pathways to defend against pathogens. Here, using a uropathogenic Escherichia coli (UPEC) infection model, we demonstrate that bacterial infection upregulates RhoB, which subsequently promotes intracellular bacteria clearance by inducing LC3 lipidation and autophagosome formation. RhoB binds with Beclin 1 through its residues at 118 to 140 and the Beclin 1 CCD domain, with RhoB Arg133 being the key binding residue. Binding of RhoB to Beclin 1 enhances the Hsp90-Beclin 1 interaction, preventing Beclin 1 degradation. RhoB also directly interacts with Hsp90, maintaining RhoB levels. UPEC infections increase RhoB, Beclin 1 and LC3 levels in bladder epithelium in vivo, whereas Beclin 1 and LC3 levels as well as UPEC clearance are substantially reduced in RhoB+/- and RhoB-/- mice upon infection. We conclude that when stimulated by UPEC infections, host cells promote UPEC clearance through the RhoB-Beclin 1-HSP90 complex, indicating RhoB may be a useful target when developing UPEC treatment strategies.


Asunto(s)
Autofagosomas/metabolismo , Beclina-1/metabolismo , Infecciones por Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Infecciones Urinarias/metabolismo , Escherichia coli Uropatógena/crecimiento & desarrollo , Proteína de Unión al GTP rhoB/metabolismo , Animales , Autofagosomas/genética , Autofagosomas/ultraestructura , Beclina-1/genética , Línea Celular , Epitelio/metabolismo , Epitelio/microbiología , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Femenino , Técnicas de Silenciamiento del Gen , Proteínas HSP90 de Choque Térmico/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Estabilidad Proteica , ARN Interferente Pequeño , Proteínas Recombinantes , Vejiga Urinaria/metabolismo , Vejiga Urinaria/microbiología , Infecciones Urinarias/genética , Infecciones Urinarias/microbiología , Escherichia coli Uropatógena/patogenicidad , Proteína de Unión al GTP rhoB/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA