Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37427592

RESUMEN

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Asunto(s)
Enfermedades Autoinmunes , Linfocitos B , Ratones , Animales , Antígenos CD19 , Enfermedades Autoinmunes/tratamiento farmacológico
2.
J Immunol ; 208(6): 1315-1328, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35197330

RESUMEN

The pathobiology of rheumatoid inflammatory diseases, including rheumatoid arthritis (RA) and psoriatic arthritis, involves the interplay between innate and adaptive immune components and resident synoviocytes. Single-cell analyses of patient samples and relevant mouse models have characterized many cellular subsets in RA. However, the impact of interactions between cell types is not fully understood. In this study, we temporally profiled murine arthritic synovial isolates at the single-cell level to identify perturbations similar to those found in human RA. Notably, murine macrophage subtypes like those found in RA patients were expanded in arthritis and linked to promoting the function of Th17 cells in the joint. In vitro experiments identified a capacity for murine macrophages to maintain the functionality and expansion of Th17 cells. Reciprocally, murine Th17 cell-derived TNF-α induced CD38+ macrophages that enhanced Th17 functionality. Murine synovial CD38+ macrophages were expanded during arthritis, and their depletion or blockade via TNF-α neutralization alleviated disease while reducing IL-17A-producing cells. These findings identify a cellular feedback loop that promotes Th17 cell pathogenicity through TNF-α to drive inflammatory arthritis.


Asunto(s)
Artritis Reumatoide , Células Th17 , ADP-Ribosil Ciclasa 1/inmunología , Animales , Citocinas/metabolismo , Retroalimentación , Humanos , Macrófagos/metabolismo , Glicoproteínas de Membrana/inmunología , Ratones , Membrana Sinovial/patología , Factor de Necrosis Tumoral alfa/metabolismo
3.
Nat Commun ; 10(1): 4148, 2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31515477

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in either PKD1 or PKD2 genes, is one of the most common human monogenetic disorders and the leading genetic cause of end-stage renal disease. Unfortunately, treatment options for ADPKD are limited. Here we report the discovery and characterization of RGLS4326, a first-in-class, short oligonucleotide inhibitor of microRNA-17 (miR-17), as a potential treatment for ADPKD. RGLS4326 is discovered by screening a chemically diverse and rationally designed library of anti-miR-17 oligonucleotides for optimal pharmaceutical properties. RGLS4326 preferentially distributes to kidney and collecting duct-derived cysts, displaces miR-17 from translationally active polysomes, and de-represses multiple miR-17 mRNA targets including Pkd1 and Pkd2. Importantly, RGLS4326 demonstrates a favorable preclinical safety profile and attenuates cyst growth in human in vitro ADPKD models and multiple PKD mouse models after subcutaneous administration. The preclinical characteristics of RGLS4326 support its clinical development as a disease-modifying treatment for ADPKD.


Asunto(s)
MicroARNs/antagonistas & inhibidores , Oligonucleótidos/uso terapéutico , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/genética , Animales , Secuencia de Bases , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Redes Reguladoras de Genes/efectos de los fármacos , Células HeLa , Hematopoyesis/efectos de los fármacos , Humanos , Túbulos Renales/patología , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Oligonucleótidos/farmacocinética , Oligonucleótidos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular/efectos de los fármacos
4.
Nat Commun ; 8: 14395, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205547

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent genetic cause of renal failure. Here we identify miR-17 as a target for the treatment of ADPKD. We report that miR-17 is induced in kidney cysts of mouse and human ADPKD. Genetic deletion of the miR-17∼92 cluster inhibits cyst proliferation and PKD progression in four orthologous, including two long-lived, mouse models of ADPKD. Anti-miR-17 treatment attenuates cyst growth in short-term and long-term PKD mouse models. miR-17 inhibition also suppresses proliferation and cyst growth of primary ADPKD cysts cultures derived from multiple human donors. Mechanistically, c-Myc upregulates miR-17∼92 in cystic kidneys, which in turn aggravates cyst growth by inhibiting oxidative phosphorylation and stimulating proliferation through direct repression of Pparα. Thus, miR-17 family is a promising drug target for ADPKD, and miR-17-mediated inhibition of mitochondrial metabolism represents a potential new mechanism for ADPKD progression.


Asunto(s)
MicroARNs/metabolismo , Mitocondrias/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Animales , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Fosforilación , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/terapia , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA