Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037344

RESUMEN

In pursuit of developing alternatives for the highly polluting Haber-Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal-organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas ab initio molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O2, yielding a Zr-O-N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.

2.
Mater Horiz ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045620

RESUMEN

Sustainable catalysts rely on abundant elements which are prone to oxidation. A route to non-noble electrocatalysts is opened by directing the formation of unavoidable surface oxides towards creating a few atomic layers of an active and stable electrocatalyst, which is in direct contact with its metallic, conducting support. This is enabled by combining possibilities of compositionally complex solid solutions with accelerated atomic-scale surface characterization. Surface composition changes from the as-synthesized state to states after exposure to the oxygen evolution reaction (OER) are investigated using a Cantor-alloy-catalyst-coated tip array for atom probe tomography (APT): The film on top of the tip forms a nanoreactor which enables acquisition of intrinsic properties. The as-deposited film has an around 3 nm thick native oxide; short and prolonged OER exposures result in an oxygen-influenced surface layer with lower oxidation depth and altered metal composition. This shows that as-synthesized complex compositions can be used to obtain active and stable surface oxides under electrochemical load, while their surface evolution is observed by accelerated APT.

3.
Adv Mater ; 35(9): e2207635, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36542651

RESUMEN

Polyelemental material systems, specifically high-entropy alloys, promise unprecedented properties. Due to almost unlimited combinatorial possibilities, their exploration and exploitation is hard. This challenge is addressed by co-sputtering combined with shadow masking to produce a multitude of microscale combinatorial libraries in one deposition process. These thin-film composition spreads on the microscale cover unprecedented compositional ranges of high-entropy alloy systems and enable high-throughput characterization of thousands of compositions for electrocatalytic energy conversion reactions using nanoscale scanning electrochemical cell microscopy. The exemplary exploration of the composition space of two high-entropy alloy systems provides electrocatalytic activity maps for hydrogen evolution and oxygen evolution as well as oxygen reduction reactions. Activity optima in the system Ru-Rh-Pd-Ir-Pt are identified, and active noble-metal lean compositions in the system Co-Ni-Mo-Pd-Pt are discovered. This illustrates that the proposed microlibraries are a holistic discovery platform to master the multidimensionality challenge of polyelemental systems.

4.
Microsc Microanal ; 27(2): 237-249, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33541465

RESUMEN

Two advanced, automated crystal orientation mapping techniques suited for nanocrystalline materials­precession electron diffraction (PED) in transmission electron microscopy (TEM) and on-axis transmission Kikuchi diffraction (TKD) in scanning electron microscopy (SEM)­are evaluated by comparing the orientation maps obtained from the identical location on a 30 nm-thick nanocrystalline tungsten (W) thin film. A side-by-side comparison of the orientation maps directly showed that the large-scale orientation features are almost identical. However, there are differences in the fine details, which arise from the fundamentally different nature of the spot pattern and Kikuchi line pattern in terms of the excitation volume and the angular resolution. While TEM-PED is more reliable to characterize grains oriented along low-index zone axes, the high angular resolution of SEM-TKD allows the detection of small misorientation between grains and thus yields better quantification and statistical analysis of grain orientation. Given that both TEM-PED and SEM-TKD orientation mapping techniques are complementary tools for nanocrystalline materials, one can be favorably selected depending on the requirements of the analysis, as they have competitive performance in terms of angular resolution and texture quantification.

5.
RSC Adv ; 11(13): 7231-7237, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35423282

RESUMEN

A thin-film materials library in the system V-Bi-O was fabricated by reactive co-sputtering. The composition of Bi relative to V was determined by Rutherford backscattering spectroscopy, ranging from 0.06 to 0.84 at% along the library. The VO2 phase M1 was detected by X-ray diffraction over the whole library, however a second phase was observed in the microstructure of films with Bi contents > 0.29 at%. The second phase was determined by electron diffraction to be BiVO4, which suggests that the solubility limit of Bi in VO2 is only ∼0.29 at%. For Bi contents from 0.08 to 0.29 at%, the phase transformation temperatures of VO2:Bi increase from 74.7 to 76.4 °C by 8 K per at% Bi. With X-ray photoemission spectroscopy, the oxidation state of Bi was determined to be 3+. The V5+/V4+ ratio increases with increasing Bi content from 0.10 to 0.84 at%. The similarly increasing tendency of the V5+/V4+ ratio and T c with Bi content suggests that although the ionic radius of Bi3+ is much larger than that of V4+, the charge doping effect and the resulting V5+ are more prominent in regulating the phase transformation behavior of Bi-doped VO2.

6.
Dalton Trans ; 49(38): 13462-13474, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32966456

RESUMEN

Molybdenum disulfide (MoS2) is known for its versatile properties and hence is promising for a wide range of applications. The fabrication of high quality MoS2 either as homogeneous films or as two-dimensional layers on large areas is thus the objective of intense research. Since industry requirements on MoS2 thin films can hardly be matched by established exfoliation fabrication methods, there is an enhanced need for developing new chemical vapor deposition (CVD) and atomic layer deposition (ALD) processes where a rational precursor selection is a crucial step. In this study, a new molybdenum precursor, namely 1,4-di-tert-butyl-1,4-diazabutadienyl-bis(tert-butylimido)molybdenum(vi) [Mo(NtBu)2(tBu2DAD)], is identified as a potential candidate. The combination of imido and chelating 1,4-diazadieneyl ligand moieties around the molybdenum metal center results in a monomeric compound possessing adequate thermal characteristics relevant for vapor phase deposition applications. Hexagonal MoS2 layers are fabricated in a metalorganic CVD (MOCVD) process with elemental sulfur as the co-reactant at temperatures between 600 °C and 800 °C. The structure and composition of the films are investigated by X-ray diffraction, high resolution transmission electron microscopy, synchrotron X-ray photoelectron spectroscopy and Raman spectroscopy revealing crystalline and stoichiometric MoS2 films. The new MOCVD process developed for MoS2 is highly promising due to its moderate process conditions, scalability and controlled targeted composition.

7.
Materials (Basel) ; 13(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370218

RESUMEN

Multiple principal element alloys, also often referred to as compositionally complex alloys or high entropy alloys, present extreme challenges to characterize. They show a vast, multidimensional composition space that merits detailed investigation and optimization to identify compositions and to map the composition ranges where useful properties are maintained. Combinatorial thin film material libraries are a cost-effective and efficient way to create directly comparable, controlled composition variations. Characterizing them comes with its own challenges, including the need for high-speed, automated measurements of dozens to hundreds or more compositions to be screened. By selecting an appropriate thin film morphology through predictable control of critical deposition parameters, representative measured values can be obtained with less scatter, i.e., requiring fewer measurement repetitions for each particular composition. In the present study, equiatomic CoCrFeNi was grown by magnetron sputtering in different locations in the structure zone diagram applied to multinary element alloys, followed by microstructural and morphological characterizations. Increasing the energy input to the deposition process by increased temperature and adding high-power impulse magnetron sputtering (HiPIMS) plasma generators led to denser, more homogeneous morphologies with smoother surfaces until recrystallization and grain boundary grooving began. Growth at 300 °C, even without the extra particle energy input of HiPIMS generators, led to consistently repeatable nanoindentation load-displacement curves and the resulting hardness and Young's modulus values.

8.
ACS Comb Sci ; 22(5): 232-247, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32289226

RESUMEN

The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700 °C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co.


Asunto(s)
Aleaciones/química , Cromo/química , Cobalto/química , Teoría Funcional de la Densidad , Níquel/química , Temperatura
9.
Data Brief ; 27: 104742, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31763399

RESUMEN

This brief paper contains raw data of X-ray diffraction (XRD) measurements, microstructural characterization, chemical compositions, and mechanical properties describing the influence of Al, Ti, and C on as-cast Al0.6CoCrFeNi compositionally complex alloys (CCAs). The presented data are related to the research article in reference [1] and therefore this article can be referred to as for the interpretation of the data. X-ray diffraction data presented in this paper are measurements of 2θ versus intensities for each studied alloy. A Table lists the obtained lattice parameters of each identified phase determined by Rietveld analysis. Microstructural-characterization data reported here include backscattered electron (BSE) micrographs taken at different magnifications in a scanning electron microscope (SEM) of Widmanstätten and dendritic microstructures and microstructural parameters such as phase volume fractions, thickness of face-centered cubic (FCC) plates, and prior grain sizes. The compositions of the identified individual phases determined by energy-dispersive X-ray spectroscopy (EDX) in the transmission electron microscope (TEM) are listed as well. Finally, mechanical data including engineering stress-strain curves obtained at different temperatures (room temperature, 400 °C, and 700 °C) for all CCAs are reported.

10.
ACS Comb Sci ; 21(12): 782-793, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31689080

RESUMEN

Cr-Al-N thin film materials libraries were synthesized by combinatorial reactive high power impulse magnetron sputtering (HiPIMS). Different HiPIMS repetition frequencies and peak power densities were applied altering the ion to growth flux ratio. Moreover, time-resolved ion energy distribution functions were measured with a retarding field energy analyzer (RFEA). The plasma properties were measured during the growth of films with different compositions within the materials library and correlated to the resulting film properties such as phase, grain size, texture, indentation modulus, indentation hardness, and residual stress. The influence of the ion to growth flux ratio on the film properties was most significant for films with high Al-content (xAl = 50 at. %). X-ray diffraction with a 2D detector revealed hcp-AlN precipitation starting from Al-concentration xAl ≥ 50 at. %. This precipitation might be related to the kinetically enhanced adatom mobility for a high ratio of ions per deposited atoms, leading to strong intermixing of the deposited species. A structure zone transition, induced by composition and flux ratio JI/JG, from zone T to zone Ic structure was observed which hints toward the conclusion that the combination of increasing flux ratio and Al-concentration lead to opposing trends regarding the increase in homologous temperature.


Asunto(s)
Aluminio/química , Cromo/química , Nitrógeno/química , Técnicas Químicas Combinatorias , Ensayo de Materiales , Estrés Mecánico
11.
ACS Appl Mater Interfaces ; 11(31): 28407-28422, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31339290

RESUMEN

A bottom-up approach starting with the development of new Hf precursors for plasma-enhanced atomic layer deposition (PEALD) processes for HfO2 followed by in situ thin-film surface characterization of HfO2 upon exposure to reactive gases via near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is reported. The stability of thin films under simulated operational conditions is assessed, and the successful implementation of HfO2 dielectric layers in metal-insulator-semiconductor (MIS) capacitors is demonstrated. Among the series of newly synthesized mono-guanidinato-tris-dialkyl-amido class of Hf precursors, one of them, namely, [Hf{η2-(iPrN)2CNEtMe}(NEtMe)3], was representatively utilized with oxygen plasma, resulting in a highly promising low-temperature PEALD process at 60 °C. The new precursors were synthesized in the multigram scale and thoroughly characterized by thermogravimetric analyses, revealing high and tunable volatility reflected by appreciable vapor pressures and accompanied by thermal stability. Typical ALD growth characteristics in terms of linearity, saturation, and a broad ALD window with constant growth of 1.06 Å cycle-1 in the temperature range of 60-240 °C render this process very promising for fabricating high-purity smooth HfO2 layers. For the first time, NAP-XPS surface studies on selected HfO2 layers are reported upon exposure to reactive H2, O2, and H2O atmospheres at temperatures of up to 500 °C revealing remarkable stability against degradation. This can be attributed to the absence of surface defects and vacancies. On the basis of these promising results, PEALD-grown HfO2 films were used as dielectric layers in the MIS capacitor device fabrication exhibiting leakage current densities less than 10-7 A cm-2 at 2 MV cm-1 and permittivities of up to 13.9 without postannealing.

12.
ACS Comb Sci ; 20(9): 544-553, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30102852

RESUMEN

The search for suitable materials for solar water splitting is addressed with combinatorial material science methods. Thin film Fe-V-O materials libraries were synthesized using combinatorial reactive magnetron cosputtering and subsequent annealing in air. The design of the libraries comprises a combination of large compositional gradients (from Fe10V90O x to Fe79V21O x) and thickness gradients (from 140 to 425 nm). These material libraries were investigated by high-throughput characterization techniques in terms of composition, structure, optical, and photoelectrochemical properties to establish correlations between composition, thickness, crystallinity, microstructure, and photocurrent density. Results show the presence of the Fe2V4O13 phase from ∼11 to 42 at. % Fe (toward low-Fe region) and the FeVO4 phase from ∼37 to 79 at. % Fe (toward Fe-rich region). However, as a third phase, Fe2O3 is present throughout the compositional gradients (from low-Fe to Fe-rich region). Material compositions with increasing crystallinity of the FeVO4 phase show enhanced photocurrent densities (∼160 to 190 µA/cm2) throughout the thickness gradients whereas compositions with the Fe2V4O13 phase show comparatively low photocurrent densities (∼28 µA/cm2). The band gap energies of Fe-V-O films were inferred from Tauc plots. The highest photocurrent density of ∼190 µA/cm2 was obtained for films with ∼54 to 66 at. % Fe for the FeVO4 phase with ∼2.04 eV for the indirect and ∼2.80 eV for the direct band gap energies.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Hierro/química , Óxidos/química , Bibliotecas de Moléculas Pequeñas/química , Vanadio/química , Agua/química , Catálisis , Técnicas Electroquímicas , Transporte de Electrón , Hidrógeno/química , Oxígeno/química , Procesos Fotoquímicos , Energía Solar
13.
J Phys Chem B ; 122(2): 919-926, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29068680

RESUMEN

Surface segregation, restructuring, and sintering phenomena in size-selected copper-nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile of the elemental composition of the particles was determined under operando CO2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. This leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.

14.
ACS Comb Sci ; 19(9): 574-584, 2017 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-28759201

RESUMEN

The scaling behavior of Ti-Ni-Cu shape memory thin-film micro- and nanowires of different geometry is investigated with respect to its influence on the martensitic transformation properties. Two processes for the high-throughput fabrication of Ti-Ni-Cu micro- to nanoscale thin film wire libraries and the subsequent investigation of the transformation properties are reported. The libraries are fabricated with compositional and geometrical (wire width) variations to investigate the influence of these parameters on the transformation properties. Interesting behaviors were observed: Phase transformation temperatures change in the range from 1 to 72 °C (austenite finish, (Af), 13 to 66 °C (martensite start, Ms) and the thermal hysteresis from -3.5 to 20 K. It is shown that a vanishing hysteresis can be achieved for special combinations of sample geometry and composition.


Asunto(s)
Aleaciones/química , Nanocables/química , Bibliotecas de Moléculas Pequeñas/química , Cobre/química , Aleaciones Dentales/química , Ensayo de Materiales , Níquel/química , Tamaño de la Partícula , Temperatura , Titanio/química
15.
Adv Mater ; 28(35): 7753-7, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27376873

RESUMEN

Martensite steel is induced from pearlitic steel by a newly discovered method, which is completely different from the traditional route of quenching austenitic steel. Both experimental and theoretical studies demonstrate that Fe-C martensite forms by severe deformation at room temperature. The new mechanism identified here opens a paths to material-design strategies based on deformation-driven nanoscale phase transformations.

16.
ACS Appl Mater Interfaces ; 6(21): 18728-34, 2014 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-25278370

RESUMEN

Many photocatalyst systems catalyze chemical reactions under ultraviolet (UV) illumination, because of its high photon energies. Activating inexpensive, widely available materials as photocatalyst using the intense visible part of the solar spectrum is more challenging. Here, nanorod arrays of the wide-band-gap semiconductor zinc oxide have been shown to act as photocatalysts for the aerobic photo-oxidation of organic dye Methyl Orange under illumination with red light, which is normally accessible only to narrow-band semiconductors. The homogeneous, 800-1000-nm-thick ZnO nanorod arrays show substantial light absorption (absorbances >1) throughout the visible spectral range. This absorption is caused by defect levels inside the band gap. Multiple scattering processes by the rods make the nanorods appear black. The dominantly crystalline ZnO nanorod structures grow in the (0001) direction, i.e., with the c-axis perpendicular to the surface of polycrystalline zinc. The room-temperature preparation route relies on controlled cathodic delamination of a weakly bound polymer coating from metallic zinc, an industrially produced and cheaply available substrate. Cathodic delamination is a sequential synthesis process, because it involves the propagation of a delamination front over the base material. Consequently, arbitrarily large sample surfaces can be nanostructured using this approach.

17.
Phys Rev Lett ; 113(10): 106104, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238372

RESUMEN

Grain refinement through severe plastic deformation enables synthesis of ultrahigh-strength nanostructured materials. Two challenges exist in that context: First, deformation-driven grain refinement is limited by dynamic dislocation recovery and crystal coarsening due to capillary driving forces; second, grain boundary sliding and hence softening occur when the grain size approaches several nanometers. Here, both challenges have been overcome by severe drawing of a pearlitic steel wire (pearlite: lamellar structure of alternating iron and iron carbide layers). First, at large strains the carbide phase dissolves via mechanical alloying, rendering the initially two-phase pearlite structure into a carbon-supersaturated iron phase. This carbon-rich iron phase evolves into a columnar nanoscaled subgrain structure which topologically prevents grain boundary sliding. Second, Gibbs segregation of the supersaturated carbon to the iron subgrain boundaries reduces their interface energy, hence reducing the driving force for dynamic recovery and crystal coarsening. Thus, a stable cross-sectional subgrain size <10 nm is achieved. These two effects lead to a stable columnar nanosized grain structure that impedes dislocation motion and enables an extreme tensile strength of 7 GPa, making this alloy the strongest ductile bulk material known.

18.
Phys Rev Lett ; 113(3): 035501, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25083653

RESUMEN

Deformation of ductile crystalline-amorphous nanolaminates is not well understood due to the complex interplay of interface mechanics, shear banding, and deformation-driven chemical mixing. Here we present indentation experiments on 10 nm nanocrystalline Cu-100 nm amorphous CuZr model multilayers to study these mechanisms down to the atomic scale. By using correlative atom probe tomography and transmission electron microscopy we find that crystallographic slip bands in the Cu layers coincide with noncrystallographic shear bands in the amorphous CuZr layers. Dislocations from the crystalline layers drag Cu atoms across the interface into the CuZr layers. Also, crystalline Cu blocks are sheared into the CuZr layers. In these sheared and thus Cu enriched zones the initially amorphous CuZr layer is rendered into an amorphous plus crystalline nanocomposite.

19.
Ultramicroscopy ; 111(6): 518-23, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21146308

RESUMEN

This study is about the microstructural evolution of TiAlN/CrN multilayers (with a Ti:Al ratio of 0.75:0.25 and average bilayer period of 9 nm) upon thermal treatment. Pulsed laser atom probe analyses were performed in conjunction with transmission electron microscopy and X-ray diffraction. The layers are found to be thermally stable up to 600 °C. At 700 °C TiAlN layers begin to decompose into Ti- and Al-rich nitride layers in the out-of-plane direction. Further increase in temperature to 1000 °C leads to a strong decomposition of the multilayer structure as well as grain coarsening. Layer dissolution and grain coarsening appear to begin at the surface. Domains of AlN and TiCrN larger than 100 nm are found, together with smaller nano-sized AlN precipitates within the TiCrN matrix. Fe and V impurities are detected in the multilayers as well, which diffuse from the steel substrate into the coating along columnar grain boundaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...