Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Elife ; 122023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37294006

RESUMEN

Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically defined diets, we found that association with Lp improves the growth of larvae-fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialogue that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the general control nonderepressible 2 (GCN2) kinase in Drosophila's enterocytes. Our data indicate that Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialogue between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.


Asunto(s)
Proteínas de Drosophila , Simbiosis , Animales , Drosophila , Señales (Psicología) , ARN de Transferencia , Aminoácidos , Larva/genética , Operón , Proteínas Quinasas , Proteínas de Drosophila/genética
3.
Elife ; 122023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37042660

RESUMEN

Metazoans establish mutually beneficial interactions with their resident microorganisms. However, our understanding of the microbial cues contributing to host physiology remains elusive. Previously, we identified a bacterial machinery encoded by the dlt operon involved in Drosophila melanogaster's juvenile growth promotion by Lactiplantibacillus plantarum. Here, using crystallography combined with biochemical and cellular approaches, we investigate the physiological role of an uncharacterized protein (DltE) encoded by this operon. We show that lipoteichoic acids (LTAs) but not wall teichoic acids are D-alanylated in Lactiplantibacillus plantarumNC8 cell envelope and demonstrate that DltE is a D-Ala carboxyesterase removing D-Ala from LTA. Using the mutualistic association of L. plantarumNC8 and Drosophila melanogaster as a symbiosis model, we establish that D-alanylated LTAs (D-Ala-LTAs) are direct cues supporting intestinal peptidase expression and juvenile growth in Drosophila. Our results pave the way to probing the contribution of D-Ala-LTAs to host physiology in other symbiotic models.


Asunto(s)
Fenómenos Biológicos , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ácidos Teicoicos/metabolismo , Señales (Psicología) , Lipopolisacáridos/metabolismo
4.
Science ; 379(6634): 826-833, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36821686

RESUMEN

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Asunto(s)
Microbioma Gastrointestinal , Crecimiento , Intestinos , Lactobacillaceae , Desnutrición , Proteína Adaptadora de Señalización NOD2 , Animales , Ratones , Pared Celular/química , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Trastornos del Crecimiento/fisiopatología , Trastornos del Crecimiento/terapia , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/fisiología , Intestinos/microbiología , Intestinos/fisiología , Lactobacillaceae/fisiología , Desnutrición/fisiopatología , Desnutrición/terapia , Proteína Adaptadora de Señalización NOD2/metabolismo , Crecimiento/efectos de los fármacos , Crecimiento/fisiología , Acetilmuramil-Alanil-Isoglutamina/farmacología , Acetilmuramil-Alanil-Isoglutamina/uso terapéutico
5.
Gut Microbes ; 14(1): 2107386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35939623

RESUMEN

Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades del Sistema Inmune , Microbiota , Animales , Drosophila melanogaster , Microbioma Gastrointestinal/fisiología , Humanos , Porcinos , Pez Cebra
6.
Sci Rep ; 12(1): 13133, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907949

RESUMEN

Teichoic acids (TA) are crucial for the homeostasis of the bacterial cell wall as well as their developmental behavior and interplay with the environment. TA can be decorated by different modifications, modulating thus their biochemical properties. One major modification consists in the esterification of TA by D-alanine, a process known as D-alanylation. TA D-alanylation is performed by the Dlt pathway, which starts in the cytoplasm and continues extracellularly after D-Ala transportation through the membrane. In this study, we combined structural biology and in vivo approaches to dissect the cytoplasmic steps of this pathway in Lactiplantibacillus plantarum, a bacterial species conferring health benefits to its animal host. After establishing that AcpS, DltB, DltC1 and DltA are required for the promotion of Drosophila juvenile growth under chronic undernutrition, we solved their crystal structure and/or used NMR and molecular modeling to study their interactions. Our work demonstrates that the suite of interactions between these proteins is ordered with a conserved surface of DltC1 docking sequentially AcpS, DltA and eventually DltB. Altogether, we conclude that DltC1 acts as an interaction hub for all the successive cytoplasmic steps of the TA D-alanylation pathway.


Asunto(s)
Proteínas Bacterianas , Ácidos Teicoicos , Alanina/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Ácidos Teicoicos/metabolismo
7.
Nat Commun ; 12(1): 6686, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795236

RESUMEN

Mus musculus is the classic mammalian model for biomedical research. Despite global efforts to standardize breeding and experimental procedures, the undefined composition and interindividual diversity of the microbiota of laboratory mice remains a limitation. In an attempt to standardize the gut microbiome in preclinical mouse studies, here we report the development of a simplified mouse microbiota composed of 15 strains from 7 of the 20 most prevalent bacterial families representative of the fecal microbiota of C57BL/6J Specific (and Opportunistic) Pathogen-Free (SPF/SOPF) animals and the derivation of a standardized gnotobiotic mouse model called GM15. GM15 recapitulates extensively the functionalities found in the C57BL/6J SOPF microbiota metagenome, and GM15 animals are phenotypically similar to SOPF or SPF animals in two different facilities. They are also less sensitive to the deleterious effects of post-weaning malnutrition. In this work, we show that the GM15 model provides increased reproducibility and robustness of preclinical studies by limiting the confounding effect of fluctuation in microbiota composition, and offers opportunities for research focused on how the microbiota shapes host physiology in health and disease.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal/fisiología , Vida Libre de Gérmenes , Organismos Libres de Patógenos Específicos , Secuenciación Completa del Genoma/métodos , Animales , Bacterias/clasificación , Bacterias/genética , Peso Corporal/genética , Peso Corporal/fisiología , Femenino , Microbioma Gastrointestinal/genética , Masculino , Metagenómica/métodos , Ratones Endogámicos C57BL , Fenotipo , Especificidad de la Especie
9.
J Mol Endocrinol ; 66(3): R67-R73, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33410764

RESUMEN

The worrying number of children suffering from undernutrition and consequent stunting worldwide makes the understanding of the relationship between nutritional status and postnatal growth crucial. Moreover, it is now well established that undernourished children harbor an altered microbiota, correlating with impaired growth. In this review, we describe how murine models have been used to explore the functional relationships between endocrine regulation of growth, nutrition and gut microbiota. In numerous Mammalian species, postnatal growth is mainly regulated by the conserved GH/IGF1 somatotropic axis that acts through endocrine and paracrine pathways, notably enabling longitudinal bone growth. Recent studies have demonstrated that the microbiota effects on growth could involve a modulation of GH and IGF1 circulating levels. Besides, the GH/IGF1 somatotropic axis may regulate the gut microbiota composition and diversity. Studying the bidirectional relationship between growth hormones and the gut microbiome could therefore help developing microbiota-targeting therapies in order to reduce the long-term consequences of stunting.


Asunto(s)
Sistema Endocrino/microbiología , Crecimiento y Desarrollo , Estado Nutricional , Animales , Microbioma Gastrointestinal , Hormona del Crecimiento/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo
10.
Trends Microbiol ; 29(8): 686-699, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33309188

RESUMEN

The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.


Asunto(s)
Sistema Nervioso Entérico/fisiología , Microbioma Gastrointestinal/genética , Regulación Bacteriana de la Expresión Génica , Homeostasis , Sistema Nervioso Entérico/inmunología , Sistema Nervioso Entérico/microbiología , Microbioma Gastrointestinal/fisiología , Humanos , Intestinos/microbiología , Neuronas/fisiología
11.
Nat Commun ; 11(1): 6363, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311466

RESUMEN

Depression is the leading cause of disability worldwide. Recent observations have revealed an association between mood disorders and alterations of the intestinal microbiota. Here, using unpredictable chronic mild stress (UCMS) as a mouse model of depression, we show that UCMS mice display phenotypic alterations, which could be transferred from UCMS donors to naïve recipient mice by fecal microbiota transplantation. The cellular and behavioral alterations observed in recipient mice were accompanied by a decrease in the endocannabinoid (eCB) signaling due to lower peripheral levels of fatty acid precursors of eCB ligands. The adverse effects of UCMS-transferred microbiota were alleviated by selectively enhancing the central eCB or by complementation with a strain of the Lactobacilli genus. Our findings provide a mechanistic scenario for how chronic stress, diet and gut microbiota generate a pathological feed-forward loop that contributes to despair behavior via the central eCB system.


Asunto(s)
Conducta Animal , Depresión/complicaciones , Endocannabinoides/farmacología , Microbioma Gastrointestinal/fisiología , Estrés Psicológico/complicaciones , Animales , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Trasplante de Microbiota Fecal , Lactobacillus/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis/efectos de los fármacos
12.
Food Funct ; 11(10): 8939-8950, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33000822

RESUMEN

BACKGROUND AND AIM: Maternal dyslipidemia is recognized as a risk factor for the development of arterial hypertension (AH) and cardiovascular dysfunction in offspring. Here we evaluated the effects of probiotic administration of a specific strain of Lactiplantibacillus plantarum (WJL) during pregnancy and lactation on gut microbiota and metabolic profile in dams fed with a high-fat and high-cholesterol (HFHC) diet and its long-term effects on the cardiovascular function in male rat offspring. METHODS AND RESULTS: Pregnant Wistar rats were allocated into three groups: dams fed a control diet (CTL = 5), dams fed a HFHC diet (DLP = 5) and dams fed a HFHC diet and receiving L. plantarum WJL during pregnancy and lactation (DLP-LpWJL). L. plantarum WJL (1 × 109 CFU) or vehicle (NaCl, 0.9%) was administered daily by oral gavage for 6 weeks, covering the pregnancy and lactation periods. After weaning, male offspring received a standard diet up to 90 days of life. Biochemical measurements and gut microbiota were evaluated in dams. In male offspring, blood pressure (BP), heart rate (HR) and vascular reactivity were evaluated at 90 days of age. Dams fed with a HFHC diet during pregnancy and lactation had increased lipid profile and insulin resistance and showed dysbiotic gut microbiota. Administration of L. plantarum WJL to dams having maternal dyslipidemia improved gut microbiota composition, lipid profile and insulin resistance in them. Blood pressure was augmented and vascular reactivity was impaired with a higher contractile response and a lower response to endothelium-dependent vasorelaxation in DLP male offspring. In contrast, male offspring of DLP-LpWJL dams had reduced blood pressure and recovered vascular function in later life. CONCLUSION: Administration of L. plantarum WJL during pregnancy and lactation in dams improved gut microbiota diversity, reduced maternal dyslipidemia and prevented cardiovascular dysfunction in male rat offspring.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dislipidemias/microbiología , Complicaciones del Embarazo/microbiología , Efectos Tardíos de la Exposición Prenatal/prevención & control , Probióticos/administración & dosificación , Sustancias Protectoras/administración & dosificación , Animales , Colesterol en la Dieta/efectos adversos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina , Lactancia/fisiología , Lípidos/sangre , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Ratas , Ratas Wistar
13.
Curr Opin Insect Sci ; 41: 92-99, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32836177

RESUMEN

The interactions between animals and their commensal microbes profoundly influence the host's physiology. In the last decade, Drosophila melanogaster has been extensively used as a model to study host-commensal microbes interactions. Here, we review the most recent advances in this field. We focus on studies that extend our understanding of the molecular mechanisms underlying the effects of commensal microbes on Drosophila's development and lifespan. We emphasize how commensal microbes influence nutrition and the intestinal epithelium homeostasis; how they elicit immune tolerance mechanisms and how these physiological processes are interconnected. Finally, we discuss the importance of diets and microbial strains and show how they can be confounding factors of microbe mediated host phenotypes.


Asunto(s)
Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Simbiosis , Animales , Drosophila melanogaster/crecimiento & desarrollo , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Longevidad
14.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855247

RESUMEN

The GM15 community is a bacterial consortium used to generate a novel standardized mouse model with a simplified controlled intestinal microbiota recapitulating the specific opportunistic pathogen-free (SOPF) mouse phenotype and the potential to ensure an increased reproducibility and robustness of preclinical studies by limiting the confounding effect of microbiota composition fluctuation.

15.
iScience ; 23(6): 101232, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32563155

RESUMEN

The gut microbiota shapes animal growth trajectory in stressful nutritional environments, but the molecular mechanisms behind such physiological benefits remain poorly understood. The gut microbiota is mostly composed of bacteria, which construct metabolic networks among themselves and with the host. Until now, how the metabolic activities of the microbiota contribute to host juvenile growth remains unknown. Here, using Drosophila as a host model, we report that two of its major bacterial partners, Lactobacillus plantarum and Acetobacter pomorum, engage in a beneficial metabolic dialogue that boosts host juvenile growth despite nutritional stress. We pinpoint that lactate, produced by L. plantarum, is utilized by A. pomorum as an additional carbon source, and A. pomorum provides essential amino acids and vitamins to L. plantarum. Such bacterial cross-feeding provisions a set of anabolic metabolites to the host, which may foster host systemic growth despite poor nutrition.

16.
Nature ; 580(7802): 263-268, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32269334

RESUMEN

In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment1. In many animals, nutrient sensors are found within the enteroendocrine cells of the digestive system; however, less is known about nutrient sensing in their cellular siblings, the absorptive enterocytes1. Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions. Experiments in Xenopus oocytes and flies indicate that Hodor is a pH-sensitive, zinc-gated chloride channel that mediates a previously unrecognized dietary preference for zinc. Hodor controls systemic growth from a subset of enterocytes-interstitial cells-by promoting food intake and insulin/IGF signalling. Although Hodor sustains gut luminal acidity and restrains microbial loads, its effect on systemic growth results from the modulation of Tor signalling and lysosomal homeostasis within interstitial cells. Hodor-like genes are insect-specific, and may represent targets for the control of disease vectors. Indeed, CRISPR-Cas9 genome editing revealed that the single hodor orthologue in Anopheles gambiae is an essential gene. Our findings highlight the need to consider the instructive contributions of metals-and, more generally, micronutrients-to energy homeostasis.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/fisiología , Intestinos/fisiología , Zinc/metabolismo , Animales , Drosophila melanogaster/genética , Enterocitos/metabolismo , Femenino , Preferencias Alimentarias , Homeostasis , Insectos Vectores , Insulina/metabolismo , Activación del Canal Iónico , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Lisosomas/metabolismo , Masculino , Oocitos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Xenopus
17.
PLoS Biol ; 18(3): e3000681, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32196485

RESUMEN

The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host's diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization.


Asunto(s)
Acetobacter/fisiología , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Lactobacillus/fisiología , Necesidades Nutricionales/fisiología , Acetobacter/genética , Acetobacter/metabolismo , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Microbioma Gastrointestinal , Interacciones Microbiota-Huesped , Lactobacillus/genética , Lactobacillus/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/microbiología , Larva/fisiología , Redes y Vías Metabólicas , Micronutrientes/metabolismo , Especificidad de la Especie
18.
Pediatr Res ; 88(3): 374-381, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32023624

RESUMEN

BACKGROUND: Chronic undernutrition leads to growth hormone resistance and poor growth in children, which has been shown to be modulated by microbiota. We studied whether Lactobacillus fermentum CECT5716 (Lf CECT5716), isolated from mother's breast milk, could promote juvenile growth through the modulation of lipid absorption in a model of starvation. METHODS: Germ-free (GF) Drosophila melanogaster larvae were inoculated with Lf CECT5716 in conditions of undernutrition with and without infant formula. The impact of Lf CECT5716 on larval growth was assessed 7 days after egg laying (AED) by measuring the larval size and on maturation by measuring the emergence of pupae during 21 days AED. For lipid absorption test, Caco2/TC7 intestinal cells were incubated with Lf CECT5716 and challenged with mixed lipid micelles. RESULTS: The mono-associated larvae with Lf CECT5716 were significantly longer than GF larvae (3.7 vs 2.5 mm; p < 0.0001). The effect was maintained when Lf CECT5716 was added to the infant formula. The maturation time of larvae was accelerated by Lf CECT5716 (12 vs 13.2 days; p = 0.01). Lf CECT5716 did not have significant impact on lipid absorption in Caco2/TC7 cells. CONCLUSIONS: Lf CECT5716 is a growth-promoting strain upon undernutrition in Drosophila, with a maintained effect when added to an infant formula but without effect on lipid absorption in vitro.


Asunto(s)
Lactobacillus plantarum , Limosilactobacillus fermentum , Lípidos/química , Desnutrición/dietoterapia , Leche Humana/microbiología , Probióticos , Animales , Células CACO-2 , Enfermedad Crónica , Técnicas de Cocultivo , Drosophila melanogaster , Enterocitos/citología , Femenino , Humanos , Técnicas In Vitro , Fórmulas Infantiles , Recién Nacido , Larva/microbiología , Desnutrición/fisiopatología , Micelas , Microbiota , Modelos Animales , Factores de Tiempo
19.
Food Res Int ; 124: 109-117, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31466629

RESUMEN

Tropical fruit and their industrial processing byproducts have been considered sources of probiotic Lactobacillus. Sixteen tropical fruit-derived Lactobacillus strains were assessed for growth-promoting effects using a host-commensal nutrient scarcity model with Drosophila melanogaster (Dm). Two Lactobacillus strains (L. plantarum 49 and L. plantarum 201) presenting the most significant effects (p ≤ .005) on Dm growth were selected and evaluated for their safety and beneficial effects in adult male Wistar rats during 28 days of administration of 9 log CFU/day, followed by 14 days of wash-out. Daily administration of L. plantarum 49 and L. plantarum 201 did not affect (p > .05) food intake or morphometric parameters. Both strains were associated with reduction (p ≤ .05) in blood glucose levels after 28 days of administration and after wash-out period; glucose levels remained reduced only in the group that received L. plantarum 49. Both strains were able to reduce (p ≤ .05) total cholesterol levels after 14 days of administration; after the wash-out period these levels remained reduced only in the group that received L. plantarum 201. L. plantarum 49 and L. plantarum 201 were detected in the intestine and did not cause alteration or translocate to spleen, kidneys or liver during the experimental or wash-out period. These results indicate that L. plantarum 49 and L. plantarum 201 present potential for use as probiotics with intrinsic abilities to modulate biochemical parameters of interest for the management of metabolic diseases.


Asunto(s)
Glucemia/efectos de los fármacos , Colesterol/sangre , Frutas/microbiología , Lactobacillus plantarum/fisiología , Probióticos/farmacología , Animales , Drosophila melanogaster , Heces/microbiología , Lactobacillus plantarum/aislamiento & purificación , Hígado/microbiología , Masculino , Ratas , Ratas Wistar , Bazo/microbiología
20.
iScience ; 19: 436-447, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31422284

RESUMEN

Eukaryotic genomes encode several buffering mechanisms that robustly maintain invariant phenotypic outcome despite fluctuating environmental conditions. Here we show that the Drosophila gut-associated commensals, represented by a single facultative symbiont, Lactobacillus plantarum (LpWJL), constitutes a so far unexpected buffer that masks the contribution of the host's cryptic genetic variation (CGV) to developmental traits while the host is under nutritional stress. During chronic under-nutrition, LpWJL consistently reduces variation in different host phenotypic traits and ensures robust organ patterning during development; LpWJL also decreases genotype-dependent expression variation, particularly for development-associated genes. We further provide evidence that LpWJL buffers via reactive oxygen species (ROS) signaling whose inhibition impairs microbiota-mediated phenotypic robustness. We thus identified a hitherto unappreciated contribution of the gut facultative symbionts to host fitness that, beyond supporting growth rates and maturation timing, confers developmental robustness and phenotypic homogeneity in times of nutritional stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...