Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(36): 24342-24354, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672065

RESUMEN

Using the advanced analyses of electron density and fermionic potential, we show how electron delocalization influences the ability of defect-containing graphene to form tetrel bonds. The Cg atoms of a vacancy defect can produce one nonpolar interaction, alongside a peculiar polar Cg⋯Cg bond. The latter stems from the presence of a localized electron pair on a vacancy defect Cg atom and the local depletion of electron localization on another Cg atom. This interaction is an example of intralayer tetrel bond. In the presence of an absorbed molecule of bisphenol A diglycidyl ether (DGEBA), graphene is able to form incipient tetrel Cg⋯O bonds with an ether group oxygen. In contrast to an epoxy group oxygen, the disposition of the ether oxygen often causes the orientation of electron-rich π-domains of graphene carbon on the weakly expressed electrophilic region of the oxygen. In the case of graphene with a point Si defect, the Si atom can form quite strong Si⋯C interactions with the DGEBA aryl carbons. In contrast to other noncovalent bonds, this interaction significantly alters the electron (de)localization on the Si atom and in the aryl ring. The reliability of the obtained results is enhanced by the use of multiple 2D periodic models with defects located at different positions along the DGEBA skeleton.

2.
J Comput Chem ; 44(22): 1817-1835, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183763

RESUMEN

We introduce a fermionic potential, v f , as a comprehensive measure of electron (de)localization in atomic-molecular systems. Unlike other common descriptors as ELF, LOL, etc., it characterizes all physical effects responsible for (de)localization of electrons, namely: an exchange hole depth, its tendency to change, a sensitivity of an exchange correlation hidden in a pair density and kinetic potential to local variations in electron density. Wells in the v f distribution correspond to the domains of maximum electron localization, while the potential's barriers prevent delocalization of electrons through them. It also estimates bond orders and successfully reveals the impact of chemical modifications or environmental effects on the delocalization of electrons in molecules and crystals. The v f components provide a unique opportunity to compare the influence of the mentioned physical effects on electron (de)localization. This merges physical and chemical views of electron delocalization using functions appearing in density functional theory.


Asunto(s)
Electrones
3.
J Comput Chem ; 43(15): 1000-1010, 2022 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411548

RESUMEN

The equilibrium between keto and enol forms in acetylacetone and its derivatives is studied using electron delocalization indices and delocalization tensor density. We demonstrate how electron delocalization governs the equilibrium between keto and enol forms. The less stable enols have more distinct double and single bond character in the CCC fragment, while electron delocalization in this fragment is more pronounced in more stable enols. Looking for the origin of such behavior, we considered the one-electron potentials entering the Euler equation for the electron density. We found that electron delocalization is mainly governed by the static exchange potential, which depends on the three-dimensional atomic structure. It, however, does not distinguish differences in electron delocalization in more and less stable enols, the effect arising from the kinetic exchange contribution, which reflects spin-dependent effects in the electron motion. The local depletion of kinetic exchange in the conjugated fragment yields the enhanced electron delocalization along the CCC bonds in more stable enols. Thus, a combination of considered descriptors allowed us to reveal the influence of electron delocalization on the equilibrium between keto and enol forms and showed the significant features of this phenomenon.


Asunto(s)
Alcoholes , Electrones , Cinética
4.
Biochemistry (Mosc) ; 86(Suppl 1): S24-S37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827398

RESUMEN

The review focuses on bacterial metallo-ß-lactamases (MßLs) responsible for the inactivation of ß-lactams and associated antibiotic resistance. The diversity of the active site structure in the members of different MßL subclasses explains different mechanisms of antibiotic hydrolysis and should be taken into account when searching for potential MßL inhibitors. The review describes the features of the antibiotic inactivation mechanisms by various MßLs studied by X-ray crystallography, NMR, kinetic measurements, and molecular modeling. The mechanisms of enzyme inhibition for each MßL subclass are discussed.


Asunto(s)
Dominio Catalítico , Farmacorresistencia Microbiana , beta-Lactamasas/metabolismo , Antibacterianos/metabolismo , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrólisis , Cinética , Modelos Moleculares , Conformación Proteica , beta-Lactamasas/química
5.
J Comput Chem ; 42(12): 870-882, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675552

RESUMEN

We applied a set of advanced bonding descriptors to establish the hidden electron density features and binding energy characteristics of intermolecular DH∙∙∙A hydrogen bonds (OH∙∙∙O, NH∙∙∙O and SH∙∙∙O) in 150 isolated and solvated molecular complexes. The exchange-correlation and Pauli potentials as well as corresponding local one-electron forces allowed us to explicitly ascertain how electron exchange defines the bonding picture in the proximity of the H-bond critical point. The electron density features of DH∙∙∙A interaction are governed by alterations in the electron localization in the H-bond region displaying itself in the exchange hole. At that, they do not depend on the variations in the exchange hole mobility. The electrostatic interaction mainly defines the energy of H-bonds of different types, whereas the strengthening/weakening of H-bonds in complexes with varying substituents depends on the barrier height of the exchange potential near the bond critical point. Energy variations between H-bonds in isolated and solvated systems are also caused the electron exchange peculiarities as follows from the corresponding potential and the interacting quantum atom analyses complemented by electron delocalization index calculations. Our approach is based on the bonding descriptors associated with the characteristics of the observable electron density and can be recommended for in-depth studies of non-covalent bonding.

6.
RSC Adv ; 10(15): 8664-8676, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496524

RESUMEN

The QM/MM simulations followed by electron density feature analysis are carried out to deepen the understanding of the reaction mechanism of cephalosporin hydrolysis in the active site of the L1 metallo-ß-lactamase. The differences in reactivity of ten similar cephalosporin compounds are explained by using an extended set of bonding descriptors. The limiting step of the reaction is characterized by the proton transfer to the nitrogen atom of the cephalosporin thiazine ring accompanied with formation of the C4[double bond, length as m-dash]C3 double bond in its N-C4-C3 fragment. The temporary N⋯H-Ow hydrogen bond, which is formed in the transition state of the limiting step of the reaction was recognized as a key atomic interaction governing the reactivity of various cephalosporins. Non-local real-space bonding descriptors show that different extent of localization of electron lone pair at N atom in the transition state affect the reactivity of compounds: smaller electron localization is typical for the less reactive species. In particular, the Fermi hole analysis shows how exchange electron correlation in the N⋯H-Ow fragment control electron lone pair localization. Delocalization tensor, linear response kernel and source function indicate that features of electron delocalization in the N-C4-C3 fragment of cephalosporins in the transition state complexes determine the differences in C4-C3 bond for substrates with high and low rate constants. The C4-C3 bond of the N-C4-C3 fragment at the transition state is similar to that of the preceding intermediate for the less reactive species and resembles the features of the enzyme-product complex for more reactive compounds. The power and limitations of the descriptors applied for solving the problem are discussed and the generality of approach is stressed.

7.
RSC Adv ; 9(22): 12520-12537, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-35515880

RESUMEN

The nature and strength of weak interactions with organic fluorine in the solid state are revealed by periodic density functional theory (periodic DFT) calculations coupled with experimental data on the structure and sublimation thermodynamics of crystalline organofluorine compounds. To minimize other intermolecular interactions, several sets of crystals of perfluorinated and partially fluorinated organic molecules are considered. This allows us to establish the theoretical levels providing an adequate description of the metric and electron-density parameters of the C-F⋯F-C interactions and the sublimation enthalpy of crystalline perfluorinated compounds. A detailed comparison of the C-F⋯F-C and C-H⋯F-C interactions is performed using the relaxed molecular geometry in the studied crystals. The change in the crystalline packing of aromatic compounds during their partial fluorination points to the structure-directing role of C-H⋯F-C interactions due to the dominant electrostatic contribution to these contacts. C-H⋯F-C and C-H⋯O interactions are found to be identical in nature and comparable in energy. The factors that determine the contribution of these interactions to the crystal packing are revealed. The reliability of the results is confirmed by considering the superposition of the electrostatic potential and electron density gradient fields in the area of the investigated intermolecular interactions.

8.
ACS Omega ; 3(1): 302-313, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30023777

RESUMEN

Diclofenac (active ingredient of Voltaren) has a significant, multifaceted role in medicine, pharmacy, and biochemistry. Its physical properties and impact on biomolecular structures still attract essential scientific interest. However, its interaction with water has not been described yet at the molecular level. In the present study, we shed light on the interaction between the steric hindrance (the intramolecular N-H···O bond, etc.) carboxylate group (-CO2-) with water. Aqueous solution of sodium declofenac is investigated using attenuated total reflection-infrared (ATR-IR) and computational approaches, i.e., classical molecular dynamics (MD) simulations and density functional theory (DFT). Our coupled classical MD simulations, DFT calculations, and ATR-IR spectroscopy results indicated that the -CO2- group of the diclofenac anion undergoes strong specific interactions with the water molecules. The combined experimental and theoretical techniques provide significant insights into the spectroscopic manifestation of these interactions and the structure of the hydration shell of the -CO2- group. Moreover, the developed methodology for the theoretical analysis of the ATR-IR spectrum could serve as a template for the future IR/Raman studies of the strong interaction between the steric hindrance -CO2- group of bioactive molecules with the water molecules in dilute aqueous solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...