Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 102(2): 151317, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37099936

RESUMEN

Avulsion injury results in motoneuron death due to the increased excitotoxicity developing in the affected spinal segments. This study focused on possible short and long term molecular and receptor expression alterations which are thought to be linked to the excitotoxic events in the ventral horn with or without the anti-excitotoxic riluzole treatment. In our experimental model the left lumbar 4 and 5 (L4, 5) ventral roots of the spinal cord were avulsed. Treated animals received riluzole for 2 weeks. Riluzole is a compound that acts to block voltage-activated Na+ and Ca2+ channels. In control animals the L4, 5 ventral roots were avulsed without riluzole treatment. Expression of astrocytic EAAT-2 and that of KCC2 in motoneurons on the affected side of the L4 spinal segment were detected after the injury by confocal and dSTORM imaging, intracellular Ca2+ levels in motoneurons were quantified by electron microscopy. The KCC2 labeling in the lateral and ventrolateral parts of the L4 ventral horn was weaker compared with the medial part of L4 ventral horn in both groups. Riluzole treatment dramatically enhanced motoneuron survival but was not able to prevent the down-regulation of KCC2 expression in injured motoneurons. In contrast, riluzole successfully obviated the increase of intracellular calcium level and the decrease of EAAT-2 expression in astrocytes compared with untreated injured animals. We conclude that KCC2 may not be an essential component for survival of injured motoneurons and riluzole is able to modulate the intracellular level of calcium and expression of EAAT-2.


Asunto(s)
Riluzol , Simportadores , Animales , Riluzol/farmacología , Riluzol/metabolismo , Calcio/metabolismo , Raíces Nerviosas Espinales/lesiones , Raíces Nerviosas Espinales/metabolismo , Médula Espinal/metabolismo , Simportadores/genética , Simportadores/metabolismo
2.
Front Physiol ; 13: 786714, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250609

RESUMEN

Prenatal hypoxia is a recognised risk factor for neurodevelopmental disorders associated with both membrane proteins involved in neuron homeostasis, e.g., chloride (Cl-) cotransporters, and alterations in brain neurotransmitter systems, e.g., catecholamines, dopamine, and GABA. Our study aimed to determine whether prenatal hypoxia alters central respiratory drive by disrupting the development of Cl- cotransporters KCC2 and NKCC1. Cl- homeostasis seems critical for the strength and efficiency of inhibition mediated by GABAA and glycine receptors within the respiratory network, and we searched for alterations of GABAergic and glycinergic respiratory influences after prenatal hypoxia. We measured fictive breathing from brainstem in ex vivo preparations during pharmacological blockade of KCC2 and NKCC1 Cl- cotransporters, GABAA, and glycine receptors. We also evaluated the membrane expression of Cl- cotransporters in the brainstem by Western blot and the expression of Cl- cotransporter regulators brain-derived neurotrophic factor (BDNF) and calpain. First, pharmacological experiments showed that prenatal hypoxia altered the regulation of fictive breathing by NKCC1 and KCC2 Cl- cotransporters, GABA/GABAA, and glycin. NKCC1 inhibition decreased fictive breathing at birth in control mice while it decreased at 4 days after birth in pups exposed to prenatal hypoxia. On the other hand, inhibition of KCC2 decreased fictive breathing 4 days after birth in control mice without any change in prenatal hypoxia pups. The GABAergic system appeared to be more effective in prenatal hypoxic pups whereas the glycinergic system increased its effectiveness later. Second, we observed a decrease in the expression of the Cl- cotransporter KCC2, and a decrease with age in NKCC1, as well as an increase in the expression of BDNF and calpain after prenatal hypoxia exposure. Altogether, our data support the idea that prenatal hypoxia alters the functioning of GABAA and glycinergic systems in the respiratory network by disrupting maturation of Cl- homeostasis, thereby contributing to long-term effects by disrupting ventilation.

3.
Neuroscience ; 463: 337-353, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33556455

RESUMEN

In amyotrophic lateral sclerosis (ALS), large motoneurons degenerate first, causing muscle weakness. Transgenic mouse models with a mutation in the gene encoding the enzyme superoxide dismutase 1 (SOD1) revealed that motoneurons innervating the fast-fatigable muscular fibres disconnect very early. The cause of this peripheric disconnection has not yet been established. Early pathological signs were described in motoneurons during the postnatal period of SOD1 transgenic mice. Here, we investigated whether the early changes of electrical and morphological properties previously reported in the SOD1G85R strain also occur in the SOD1G93A-low expressor line with particular attention to the different subsets of motoneurons defined by their discharge firing pattern (transient, sustained, or delayed-onset firing). Intracellular staining and recording were performed in lumbar motoneurons from entire brainstem-spinal cord preparations of SOD1G93A-low transgenic mice and their WT littermates during the second postnatal week. Our results show that SOD1G93A-low motoneurons exhibit a dendritic overbranching similar to that described previously in the SOD1G85R strain at the same age. Further we found an hypoexcitability in the delayed-onset firing SOD1G93A-low motoneurons (lower gain and higher voltage threshold). We conclude that dendritic overbranching and early hypoexcitability are common features of both low expressor SOD1 mutants (G85R and G93A-low). In the high-expressor SOD1G93A line, we found hyperexcitability in the sustained firing motoneurons at the same period, suggesting a delay in compensatory mechanisms. Overall, our results suggest that the hypoexcitability indicate an early dysfunction of the delayed-onset motoneurons and could account as early pathological signs of the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras , Médula Espinal , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/genética
4.
J Chem Neuroanat ; 113: 101847, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32653413

RESUMEN

This review takes stock on the impact of complete spinal cord transection (SCT) on the plasticity of inhibitory synaptic transmission on sub-lesional lumbar motoneurons (MNs), differentiating between studies in neonate and adult rats. After neonatal SCT, normal maturational up-regulation of glycine receptors was observed. On the other hand, the developmental downregulation of the GABAA receptors, as well as the up-regulation of the co-transporter KCC2 were prevented, but not the normal decrease of NKCC1. In adult SCT rats, glycinergic synaptic transmission, which is the major contributor to spinal MNs inhibition in adulthood, had normal control levels 2 months post-injury. On the other hand, the GABAergic transmission was altered through an up-regulation of the pre-signaling levels and a down-regulation in the density of post synaptic receptors. KCC2 membrane expression was down-regulated at all post-injury times tested (24h to 4 months), thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. The preservation of glycinergic pre- and post signaling is probably a key factor in the success of locomotor rehabilitation programs in adult SCT rats. However, these data highlight the need to develop strategies to restore KCC2 levels in lumbar MNs, to stabilize the excitation/inhibition balance, which is essential to the effective control of skeletal muscle activity.


Asunto(s)
Neuronas Motoras/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Transducción de Señal/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Glicina/metabolismo , Ratas , Traumatismos de la Médula Espinal , Ácido gamma-Aminobutírico/metabolismo
5.
Elife ; 82019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31815668

RESUMEN

Up-regulation of the persistent sodium current (INaP) and down-regulation of the potassium/chloride extruder KCC2 lead to spasticity after spinal cord injury (SCI). We here identified calpain as the driver of the up- and down-regulation of INaP and KCC2, respectively, in neonatal rat lumbar motoneurons. Few days after SCI, neonatal rats developed behavioral signs of spasticity with the emergence of both hyperreflexia and abnormal involuntary muscle contractions on hindlimbs. At the same time, in vitro isolated lumbar spinal cords became hyperreflexive and displayed numerous spontaneous motor outputs. Calpain-I expression paralleled with a proteolysis of voltage-gated sodium (Nav) channels and KCC2. Acute inhibition of calpains reduced this proteolysis, restored the motoneuronal expression of Nav and KCC2, normalized INaP and KCC2 function, and curtailed spasticity. In sum, by up- and down-regulating INaP and KCC2, the calpain-mediated proteolysis of Nav and KCC2 drives the hyperexcitability of motoneurons which leads to spasticity after SCI.


Asunto(s)
Calpaína/metabolismo , Neuronas Motoras/efectos de los fármacos , Espasticidad Muscular/fisiopatología , Traumatismos de la Médula Espinal/complicaciones , Animales , Modelos Animales de Enfermedad , Proteolisis , Ratas , Simportadores/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Cotransportadores de K Cl
6.
Front Neurol ; 9: 423, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29973904

RESUMEN

Intrauterine ischemia-hypoxia is detrimental to the developing brain and leads to white matter injury (WMI), encephalopathy of prematurity (EP), and often to cerebral palsy (CP), but the related pathophysiological mechanisms remain unclear. In prior studies, we used mild intrauterine hypoperfusion (MIUH) in rats to successfully reproduce the diversity of clinical signs of EP, and some CP symptoms. Briefly, MIUH led to inflammatory processes, diffuse gray and WMI, minor locomotor deficits, musculoskeletal pathologies, neuroanatomical and functional disorganization of the primary somatosensory and motor cortices, delayed sensorimotor reflexes, spontaneous hyperactivity, deficits in sensory information processing, memory and learning impairments. In the present study, we investigated the early and long-lasting mechanisms of pathophysiology that may be responsible for the various symptoms induced by MIUH. We found early hyperreflexia, spasticity and reduced expression of KCC2 (a chloride cotransporter that regulates chloride homeostasis and cell excitability). Adult MIUH rats exhibited changes in muscle contractile properties and phenotype, enduring hyperreflexia and spasticity, as well as hyperexcitability in the sensorimotor cortex. Taken together, these results show that reduced expression of KCC2, lumbar hyperreflexia, spasticity, altered properties of the soleus muscle, as well as cortical hyperexcitability may likely interplay into a self-perpetuating cycle, leading to the emergence, and persistence of neurodevelopmental disorders (NDD) in EP and CP, such as sensorimotor impairments, and probably hyperactivity, attention, and learning disorders.

7.
Neuroscience ; 387: 48-57, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28844001

RESUMEN

Downregulation of the potassium chloride cotransporter type 2 (KCC2) after a spinal cord injury (SCI) disinhibits motoneurons and dorsal horn interneurons causing spasticity and neuropathic pain, respectively. We showed recently (Bos et al., 2013) that specific activation of 5-HT2A receptors by TCB-2 [(4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide] upregulates KCC2 function, restores motoneuronal inhibition and reduces SCI-induced spasticity. Here, we tested the potential analgesic effect of TCB-2 on central (thoracic hemisection) and peripheral [spared nerve injury (SNI)] neuropathic pain. We found mechanical and thermal hyperalgesia reduced by an acute administration of TCB-2 in rats with SCI. This analgesic effect was associated with an increase in dorsal horn membrane KCC2 expression and was prevented by pharmacological blockade of KCC2 with an intrathecal injection of DIOA [(dihydroindenyl)oxy]alkanoic acid]. In contrast, the SNI-induced neuropathic pain was not attenuated by TCB-2 although there was a slight increase of membrane KCC2 expression in the dorsal horn ipsilateral to the lesion. Up-regulation of KCC2 function by targeting 5-HT2A receptors, therefore, has therapeutic potential in the treatment of neuropathic pain induced by SCI but not by SNI.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Hiperalgesia/prevención & control , Metilaminas/farmacología , Neuralgia/metabolismo , Neuralgia/prevención & control , Traumatismos de los Nervios Periféricos/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Simportadores/metabolismo , Acetatos/farmacología , Animales , Femenino , Indenos/farmacología , Neuralgia/complicaciones , Traumatismos de los Nervios Periféricos/complicaciones , Ratas , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Asta Dorsal de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Simportadores/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos , Cotransportadores de K Cl
8.
J Neurotrauma ; 34(24): 3397-3406, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28747093

RESUMEN

In mature neurons, low intracellular chloride level required for inhibition is maintained by the potassium-chloride cotransporter, KCC2. Impairment of Cl- extrusion after KCC2 dysfunction has been involved in many central nervous system disorders, such as seizures, neuropathic pain, or spasticity, after a spinal cord injury (SCI). This makes KCC2 an appealing drug target for restoring Cl- homeostasis and inhibition in pathological conditions. In the present study, we screen the Prestwick Chemical Library® and identify conventional antipsychotics phenothiazine derivatives as enhancers of KCC2 activity. Among them, prochlorperazine hyperpolarizes the Cl- equilibrium potential in motoneurons of neonatal rats and restores the reciprocal inhibition post-SCI. The compound alleviates spasticity in chronic adult SCI rats with an efficacy equivalent to the antispastic agent, baclofen, and rescues the SCI-induced downregulation of KCC2 in motoneurons below the lesion. These pre-clinical data support prochlorperazine for a new therapeutic indication in the treatment of spasticity post-SCI and neurological disorders involving a KCC2 dysfunction.


Asunto(s)
Antagonistas de Dopamina/farmacología , Espasticidad Muscular/etiología , Proclorperazina/farmacología , Traumatismos de la Médula Espinal/complicaciones , Simportadores/efectos de los fármacos , Animales , Espasticidad Muscular/metabolismo , Ratas , Ratas Wistar , Traumatismos de la Médula Espinal/metabolismo , Simportadores/metabolismo , Cotransportadores de K Cl
9.
Nat Med ; 22(4): 404-11, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974309

RESUMEN

Upregulation of the persistent sodium current (I(NaP)) in motoneurons contributes to the development of spasticity after spinal cord injury (SCI). We investigated the mechanisms that regulate I(NaP) and observed elevated expression of voltage-gated sodium (Nav) 1.6 channels in spinal lumbar motoneurons of adult rats with SCI. Furthermore, immunoblots revealed a proteolysis of Nav channels, and biochemical assays identified calpain as the main proteolytic factor. Calpain-dependent cleavage of Nav channels after neonatal SCI was associated with an upregulation of I(NaP) in motoneurons. Similarly, the calpain-dependent cleavage of Nav1.6 channels expressed in human embryonic kidney (HEK) 293 cells caused the upregulation of I(NaP). The pharmacological inhibition of calpain activity by MDL28170 reduced the cleavage of Nav channels, I(NaP) in motoneurons and spasticity in rats with SCI. Similarly, the blockade of I(NaP) by riluzole alleviated spasticity. This study demonstrates that Nav channel expression in lumbar motoneurons is altered after SCI, and it shows a tight relationship between the calpain-dependent proteolysis of Nav1.6 channels, the upregulation of I(NaP) and spasticity.


Asunto(s)
Calpaína/metabolismo , Neuronas Motoras/patología , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Traumatismos de la Médula Espinal/genética , Animales , Calpaína/genética , Dipéptidos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Técnicas de Placa-Clamp , Ratas , Riluzol/administración & dosificación , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
10.
Proc Natl Acad Sci U S A ; 110(1): 348-53, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248270

RESUMEN

In healthy adults, activation of γ-aminobutyric acid (GABA)(A) and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl(-)](i)), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E(IPSP), in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT(2A) receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT(2A)R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2).


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas Motoras/metabolismo , Espasticidad Muscular/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/farmacología , Traumatismos de la Médula Espinal/complicaciones , Simportadores/metabolismo , Animales , Western Blotting , Compuestos Bicíclicos con Puentes/farmacología , Cloruros/metabolismo , Reflejo H , Inmunohistoquímica , Metilaminas/farmacología , Espasticidad Muscular/etiología , Ratas , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Cotransportadores de K Cl
12.
Prog Brain Res ; 188: 3-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21333799

RESUMEN

GABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. The postsynaptic action depends on the intracellular concentration of chloride ions ([Cl(-)](i)), which is regulated by proteins in the plasma membrane: the K(+)-Cl(-) cotransporter KCC2 and the Na(+)-K(+)-Cl(-) cotransporter NKCC1, which extrude and intrude Cl(-) ions, respectively. A high [Cl(-)](i) leads to a depolarizing (excitatory) action of GABA and glycine, as observed in mature dorsal root ganglion neurons and in motoneurons both early during development and in several pathological conditions, such as following spinal cord injury. Here, we review some recent data regarding chloride homeostasis in the spinal cord and its contribution to network operation involved in locomotion.


Asunto(s)
Cloruros/metabolismo , Homeostasis/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Periodicidad , Animales , Ganglios Espinales/citología , Glicina/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/citología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
13.
Eur J Neurosci ; 33(7): 1212-22, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21255132

RESUMEN

Spontaneous activity is observed in most developing neuronal circuits, such as the retina, hippocampus, brainstem and spinal cord. In the spinal cord, spontaneous activity is important for generating embryonic movements critical for the proper development of motor axons, muscles and synaptic connections. A spontaneous bursting activity can be recorded in vitro from ventral roots during perinatal development. The depolarizing action of the inhibitory amino acids γ-aminobutyric acid and glycine is widely proposed to contribute to spontaneous activity in several immature systems. During development, the intracellular chloride concentration decreases, leading to a shift of equilibrium potential for Cl(-) ions towards more negative values, and thereby to a change in glycine- and γ-aminobutyric acid-evoked potentials from depolarization/excitation to hyperpolarization/inhibition. The up-regulation of the outward-directed Cl(-) pump, the neuron-specific potassium-chloride co-transporter type 2 KCC2, has been shown to underlie this shift. Here, we investigated whether spontaneous and locomotor-like activities are altered in genetically modified mice that express only 8-20% of KCC2, compared with wild-type animals. We show that a reduced amount of KCC2 leads to a depolarized equilibrium potential for Cl(-) ions in lumbar motoneurons, an increased spontaneous activity and a faster locomotor-like activity. However, the left-right and flexor-extensor alternating pattern observed during fictive locomotion was not affected. We conclude that neuronal networks within the spinal cord are more excitable in KCC2 mutant mice, which suggests that KCC2 strongly modulates the excitability of spinal cord networks.


Asunto(s)
Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/anatomía & histología , Médula Espinal/fisiología , Simportadores/metabolismo , Animales , Bumetanida/farmacología , Furosemida/farmacología , Vértebras Lumbares , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Simportadores/genética , Cotransportadores de K Cl
14.
Nat Med ; 16(3): 302-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20190766

RESUMEN

Hyperexcitability of spinal reflexes and reduced synaptic inhibition are commonly associated with spasticity after spinal cord injury (SCI). In adults, the activation of gamma-aminobutyric acid(A) (GABAA) and glycine receptors inhibits neurons as a result of low intracellular chloride (Cl-) concentration, which is maintained by the potassium-chloride cotransporter KCC2 (encoded by Slc12a5). We show that KCC2 is downregulated after SCI in rats, particularly in motoneuron membranes, thereby depolarizing the Cl- equilibrium potential and reducing the strength of postsynaptic inhibition. Blocking KCC2 in intact rats reduces the rate-dependent depression (RDD) of the Hoffmann reflex, as is observed in spasticity. RDD is also decreased in KCC2-deficient mice and in intact rats after intrathecal brain-derived neurotrophic factor (BDNF) injection, which downregulates KCC2. The early decrease in KCC2 after SCI is prevented by sequestering BDNF at the time of SCI. Conversely, after SCI, BDNF upregulates KCC2 and restores RDD. Our results open new perspectives for the development of therapeutic strategies to alleviate spasticity.


Asunto(s)
Espasticidad Muscular/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Simportadores/fisiología , Animales , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/farmacología , Ácidos Carboxílicos/farmacología , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/fisiología , Regulación hacia Abajo/fisiología , Femenino , Regulación de la Expresión Génica , Glicina/fisiología , Indenos/farmacología , Inyecciones Espinales , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Neuronas Motoras/fisiología , Ratas , Reflejo Anormal/efectos de los fármacos , Reflejo Anormal/fisiología , Médula Espinal/fisiopatología , Simportadores/antagonistas & inhibidores , Simportadores/biosíntesis , Ácido gamma-Aminobutírico/fisiología , Cotransportadores de K Cl
15.
J Neurophysiol ; 96(5): 2274-81, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16807348

RESUMEN

GABA and glycine are excitatory in the immature spinal cord and become inhibitory during development. The shift from depolarizing to hyperpolarizing inhibitory postsynaptic potentials (IPSPs) occurs during the perinatal period in the rat, a time window during which the projections from the brain stem reach the lumbar enlargement. In this study, we investigated the effects of suppressing influences of the brain on lumbar motoneurons during this critical period for the negative shift of the reversal potential of IPSPs (E(IPSP)). The spinal cord was transected at the thoracic level on the day of birth [postnatal day 0 (P0)]. E(IPSP), at P4-P7, was significantly more depolarized in cord-transected than in cord-intact animals (E(IPSP) above and below resting potential, respectively). E(IPSP) at P4-P7 in cord-transected animals was close to E(IPSP) at P0-P2. K-Cl cotransporter KCC2 immunohistochemistry revealed a developmental increase of staining in the area of lumbar motoneurons between P0 and P7 in cord-intact animals; this increase was not observed after spinal cord transection. The motoneurons recorded from cord-transected animals were less sensitive to the experimental manipulations aimed at testing the functionality of the KCC2 system, which is sensitive to [K(+)](o) and blocked by bumetanide. Although bumetanide significantly depolarized E(IPSP), the shift was less pronounced than in cord-intact animals. In addition, a reduction of [K(+)](o) affected E(IPSP) significantly only in cord-intact animals. Therefore influences from the brain stem may play an essential role in the maturation of inhibitory synaptic transmission, possibly by upregulating KCC2 and its functionality.


Asunto(s)
Animales Recién Nacidos/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Animales , Bumetanida/farmacología , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/metabolismo , Cordotomía , Diuréticos/farmacología , Inmunohistoquímica , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratas , Ratas Wistar , Raíces Nerviosas Espinales/fisiología , Simportadores/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Cotransportadores de K Cl
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...