Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21011, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920504

RESUMEN

Aging is associated with gradual changes in liver structure, altered metabolites and other physiological/pathological functions in hepatic cells. However, its characterized phenotypes based on altered metabolites and the underlying biological mechanism are unclear. Advancements in high-throughput omics technology provide new opportunities to understand the pathological process of aging. Here, in our present study, both metabolomics and phosphoproteomics were applied to identify the altered metabolites and phosphorylated proteins in liver of young (the WTY group) and naturally aged (the WTA group) mice, to find novel biomarkers and pathways, and uncover the biological mechanism. Analysis showed that the body weights, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) increased in the WTA group. The grips decreased with age, while the triglyceride (TG) and cholesterol (TC) did not change significantly. The increase of fibrosis, accumulation of inflammatory cells, hepatocytes degeneration, the deposition of lipid droplets and glycogen, the damaged mitochondria, and deduction of endoplasmic reticulum were observed in the aging liver under optical and electron microscopes. In addition, a network of metabolites and phosphorylated proteomes of the aging liver was established. Metabolomics detected 970 metabolites in the positive ion mode and 778 metabolites in the negative ion mode. A total of 150 pathways were pooled. Phosphoproteomics identified 2618 proteins which contained 16621 phosphosites. A total of 164 pathways were detected. 65 common pathways were detected in two omics. Phosphorylated protein heat shock protein HSP 90-alpha (HSP90A) and v-raf murine viral oncogene homolog B1(BRAF), related to cancer pathway, were significantly upregulated in aged mice liver. Western blot verified that protein expression of MEK and ERK, downstream of BRAF pathway were elevated in the liver of aging mice. However, the protein expression of BRAF was not a significant difference. Overall, these findings revealed a close link between aging and cancer and contributed to our understanding of the multi-omics changes in natural aging.

2.
Mol Cell Proteomics ; 22(2): 100494, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621768

RESUMEN

AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid ß-oxidation, especially ß-hydroxybutyrate, are fatty energy-supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine ß-hydroxybutyrylation (Kbhb) is a ß-hydroxybutyrate-mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.


Asunto(s)
Ácido 3-Hidroxibutírico , Proteínas Quinasas Activadas por AMP , Miocardio , Animales , Humanos , Ratones , Ácido 3-Hidroxibutírico/química , Ácido 3-Hidroxibutírico/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Cromatografía Liquida , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Proteómica , Espectrometría de Masas en Tándem
3.
Arch Biochem Biophys ; 731: 109430, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36326546

RESUMEN

Diabetic cardiovascular complication is a common systemic disease with high morbidity and mortality worldwide. We hypothesise that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs-exos) can rescue these disorders and alleviate vascular remodeling in diabetes. Morphological, non-targeted metabolomics and 4D label-free proteomics techniques were used to analyze the aortas of db/m mice as normal control group (NCA), saline treated db/db mice (DMA), and hUCMSCs-exos treated db/db mice (DMTA), and to clarify the molecular mechanism of the protection of hUCMSCs-exos in vascular remodeling from a new point of view. The results showed that 74 metabolites were changed significantly in diabetic aortas, of which 15 were almost restored by hUCMSCs-exos. In proteomics, 30 potential targets such as Stromal cell-derived factor 2-like protein 1, Leukemia inhibitory factor receptor, Peroxisomal membrane protein and E3 ubiquitin-protein ligase MYCBP2 were detected. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-based analysis showed that Central carbon metabolism in cancer and Galactose metabolism pathway were up-regulated to near normal by hUCMSCs-exos in metabolomics, with janus associated kinase-signal transducer and activator of transcription (JAK-STAT) pathway displayed in proteomics. According to bioinformatics and integrated analysis, these targeted molecules of hUCMSCs-exos to attenuate the vascular remodeling were mainly associated with regulation of energy metabolism, oxidative stress, inflammation, and cellular communications. This study provided a reference for the therapy of diabetes-induced cardiovascular complications.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Humanos , Ratones , Animales , Exosomas/metabolismo , Cordón Umbilical , Proteómica , Remodelación Vascular , Células Madre Mesenquimatosas/metabolismo , Aorta
4.
Rev Cardiovasc Med ; 23(3): 89, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35345256

RESUMEN

OBJECTIVES: Although injury of myocardium after percutaneous coronary intervention (PCI) has been reported, the mechanism and effect of exogenous phosphocreatine (PCr) supplementation on the injury are yet to be elucidated. Biomarkers, such as interleukin-6 (IL-6) and variations in white blood cells for inflammation, and serum cardiac troponin I (cTnI) for myocardial injury are examined. METHODS: A total of 105 patients undergoing PCI were included and randomly divided into two groups: control (treated with routine hydration therapy) and PCr (treated with additional intravenous infusion of exogenous PCr). The serum levels of biomarkers were detected at administration and 4, 12, 24, and 48 h after PCI, with natural logarithmic (loge) transformation of data when modeling assumptions were not fulfilled. RESULTS: The level of loge-transformed IL-6 increased in both groups, especially at 12 and 24 h after the operation, and that of PCr group was less than the control group at 48 h. The content of loge-transformed cTnI was significantly increased in both groups, while that of the PCr group was markedly lower than the control group at all time points after PCI. Moreover, the ratio of neutrophils was elevated at all time points after PCI, while that of the PCr group was lower at 48 h, and the variations in the ratio of lymphocytes showed opposite results. CONCLUSIONS: Exogenous phosphocreatine reduces stent implantation, triggers inflammation manifested as decreased serum levels of IL-6 and the aggregation of neutrophils, and protects the myocardium of the patients undergoing PCI. These findings provided the potential mechanism and treatment for myocardial injury associated with PCI.


Asunto(s)
Inflamación , Intervención Coronaria Percutánea , Fosfocreatina , Biomarcadores , Humanos , Inflamación/prevención & control , Interleucina-6 , Miocardio , Intervención Coronaria Percutánea/efectos adversos , Fosfocreatina/uso terapéutico , Troponina I
5.
Arch Biochem Biophys ; 591: 150-6, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26748289

RESUMEN

Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK.


Asunto(s)
Movimiento Celular , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Canal de Potasio Kv1.3/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Células RAW 264.7
6.
PLoS One ; 9(2): e89083, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24558474

RESUMEN

Increasing evidence has revealed that glibenclamide has a wide range of anti-inflammatory effects. However, it is unclear whether glibenclamide can affect the resting and adenosine triphosphate (ATP)-induced intracellular calcium ([Ca(2+)]i) handling in Raw 264.7 macrophages. In the present study, [Ca(2+)]i transient, reactive oxygen species (ROS) and mitochondrial activity were measured by the high-speed TILLvisION digital imaging system using the indicators of Fura 2-am, DCFDA and rhodamine-123, respectively. We found that glibenclamide, pinacidil and other unselective K(+) channel blockers had no effect on the resting [Ca(2+)]i of Raw 264.7 cells. Extracellular ATP (100 µM) induced [Ca(2+)]i transient elevation independent of extracellular Ca(2+). The transient elevation was inhibited by an ROS scavenger (tiron) and mitochondria inhibitor (rotenone). Glibenclamide and 5-hydroxydecanoate (5-HD) also decreased ATP-induced [Ca(2+)]i transient elevation, but pinacidil and other unselective K(+) channel blockers had no effect. Glibenclamide also decreased the peak of [Ca(2+)]i transient induced by extracellular thapsigargin (Tg, 1 µM). Furthermore, glibenclamide decreased intracellular ROS and mitochondrial activity. When pretreated with tiron and rotenone, glibenclamide could not decrease ATP, and Tg induced maximal [Ca(2+)]i transient further. We conclude that glibenclamide may inhibit ATP-induced [Ca(2+)]i transient elevation by blocking mitochondria KATP channels, resulting in decreased ROS generation and mitochondrial activity in Raw 264.7 macrophages.


Asunto(s)
Calcio/metabolismo , Gliburida/farmacología , Macrófagos/efectos de los fármacos , Mitocondrias/fisiología , Canales de Potasio/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Línea Celular , Fluoresceínas , Fluorescencia , Fura-2/análogos & derivados , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Mitocondrias/efectos de los fármacos , Pinacidilo , Rodamina 123 , Rotenona
7.
Atherosclerosis ; 226(2): 348-55, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23218803

RESUMEN

OBJECTIVE: Ion channels expressed in monocytes/macrophages have been tightly attached to atherosclerosis by coupling cellular function with electrical activity. However, the function of ATP-sensitive potassium channels (K(ATP)) in atherosclerosis has not been investigated directly. This study was performed to explore its role in atherosclerosis. METHODS AND RESULTS: ApoE(-/-) mice with collar placement and Ad5-CMV.p53 or lac Z gene transfer with or without intragastric administration glibenclamide were applied to establish the progressive atherosclerosis at different time points and detect the function of K(ATP) channel in atherosclerosis. The expression and distribution of K(ATP) subunits in plaques were examined and a correlation between K(ATP) subunits expressed in macrophages, mainly Kir6.2 and SUR2A, and the vulnerability index of plaques was observed. In vitro, glibenclamide and pinacidil were used to detect the function and mechanism of K(ATP) channels in RAW264.7 cells stimulated by LPS. And the data showed that glibenclamide could ameliorate the progress of atherosclerosis and reduce the production of inflammatory cytokines as well as the phosphorylation of p65 and ERK1/2, while inhibitors of p65 leaded to robust expression of K(ATP) subunits in macrophages. CONCLUSIONS: We concluded that K(ATP) channels in monocytes/macrophages were up-regulated and correlated with increased inflammation in vulnerable plaques, while glibenclamide could rescue the progression. K(ATP) channels may stimulate inflammatory reaction by MAPKs/NF-κB pathways in macrophages.


Asunto(s)
Aterosclerosis/fisiopatología , Inflamación/etiología , Canales KATP/fisiología , Animales , Aterosclerosis/patología , Línea Celular , Gliburida/farmacología , Canales KATP/biosíntesis , Macrófagos/metabolismo , Ratones , Pinacidilo/farmacología , Proteína p53 Supresora de Tumor/farmacología , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA