Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38943614

RESUMEN

While it is known that increased dissolved CO2 concentrations and rising sea surface temperature (ocean warming) can act interactively on marine phytoplankton, the ultimate molecular mechanisms underlying this interaction on a long-term evolutionary scale are relatively unexplored. Here, we performed transcriptomics and quantitative metabolomics analyses, along with a physiological trait analysis, on the marine diatom Thalassiosira weissflogii adapted for approximately 3.5 years to warming and/or high CO2 conditions. We show that long-term warming has more pronounced impacts than elevated CO2 on gene expression, resulting in a greater number of differentially expressed genes (DEGs). The largest number of DEGs was observed in populations adapted to warming + high CO2, indicating a potential synergistic interaction between these factors. We further identified the metabolic pathways in which the DEGs function and the metabolites with significantly changed abundances. We found that ribosome biosynthesis-related pathways were upregulated to meet the increased material and energy demands after warming or warming in combination with high CO2. This resulted in the upregulation of energy metabolism pathways such as glycolysis, photorespiration, the tricarboxylic acid cycle, and the oxidative pentose phosphate pathway, as well as the associated metabolites. These metabolic changes help compensate for reduced photochemical efficiency and photosynthesis. Our study emphasizes that the upregulation of ribosome biosynthesis plays an essential role in facilitating the adaptation of phytoplankton to global ocean changes and elucidates the interactive effects of warming and high CO2 on the adaptation of marine phytoplankton in the context of global change.

2.
Adv Healthc Mater ; 13(15): e2400414, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38412402

RESUMEN

Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.


Asunto(s)
Robótica , Humanos , Robótica/instrumentación , Magnetismo , Diseño de Equipo , Animales , Nanotecnología/métodos
3.
Toxicol Appl Pharmacol ; 480: 116745, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931757

RESUMEN

The aggregation of misfolded proteins, such as α-synuclein in Parkinson's disease (PD), occurs intracellularly or extracellularly in the majority of neurodegenerative diseases. The immunoproteasome has more potent chymotrypsin-like activity than normal proteasome. Thus, degradation of α-synuclein aggregation via immunoproteasome is an attractive approach for PD drug development. Herein, we aimed to determine if novel compound, 11-Hydroxy-1-(8-methoxy-5-(trifluoromethyl)quinolin-2-yl)undecan-1-one oxime (named as J24335), is a promising candidate for disease-modifying therapy to prevent the pathological progression of neurodegenerative diseases, such as PD. The effects of J24335 on inducible PC12/A53T-α-syn cell viability and cytotoxicity were evaluated by MTT assay and LDH assay, respectively. Evaluation of various proteasome activities was done by measuring the luminescence of enzymatic activity after the addition of different amounts of aminoluciferin. Immunoblotting and real-time PCR were employed to detect the expression of various proteins and genes, respectively. We also used a transgenic mouse model for behavioral testing and immunochemical analysis, to assess the neuroprotective effects of J24335. J24335 inhibited wild-type and mutant α-synuclein aggregation without affecting the growth or death of neuronal cells. The inhibition of α-synuclein aggregation by J24335 was caused by activation of immunoproteasome, as mediated by upregulation of LMP7, and increased cellular chymotrypsin-like activity in 20S proteasome. J24335-enhanced immunoproteasome activity was mediated by PKA/Akt/mTOR pathway activation. Moreover, animal studies revealed that J24335 treatment markedly mitigated both the loss of tyrosine hydroxylase-positive (TH-) neurons and impaired motor skill development. This is the first report to use J24335 as an immunoproteasome enhancing agent to antagonize pathological α-synuclein-mediated neurodegeneration.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Ratones , Animales , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimotripsina/uso terapéutico , Enfermedad de Parkinson/genética , Ratones Transgénicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Modelos Animales de Enfermedad
4.
J Exp Bot ; 74(14): 4259-4276, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37100754

RESUMEN

Genetic changes together with epigenetic modifications such as DNA methylation have been demonstrated to regulate many biological processes and thereby govern the response of organisms to environmental changes. However, how DNA methylation might act cooperatively with gene transcription and thereby mediate the long-term adaptive responses of marine microalgae to global change is virtually unknown. Here we performed a transcriptomic analysis, and a whole-genome bisulfite sequencing, along with phenotypic analysis of a model marine diatom Phaeodactylum tricornutum adapted for 2 years to high CO2 and/or warming conditions. Our results show that the methylated islands (peaks of methylation) mCHH were positively correlated with expression of genes in the subregion of the gene body when the populations were grown under high CO2 or its combination with warming for ~2 years. We further identified the differentially expressed genes (DEGs), and hence the metabolic pathways in which they function, at the transcriptomics level in differentially methylated regions (DMRs). Although DEGs in DMRs contributed only 18-24% of the total DEGs, we found that those DEGs acted cooperatively with DNA methylation and then regulated key processes such as central carbon metabolism, amino acid metabolism, ribosome biogenesis, terpenoid backbone biosynthesis, and degradation of misfolded proteins. Taken together, by integrating transcriptomic, epigenetic, and phenotypic analysis, our study provides evidence for DNA methylation acting cooperatively with gene transcription to contribute to the adaptation of microalgae to global changes.


Asunto(s)
Metilación de ADN , Diatomeas , Diatomeas/genética , Dióxido de Carbono , Epigénesis Genética , Transcriptoma
5.
Mar Environ Res ; 188: 106008, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121174

RESUMEN

Understanding the responses of multiple traits in phytoplankton, and identifying interspecific variabilities to thermal changes is crucial for predicting the impacts of ocean warming on phytoplankton distributions and community structures in future scenarios. Here, we applied a trait-based approach by examining the patterns in multi-traits variations (eight traits) and interspecific variabilities in five phytoplankton species (two diatoms, three dinoflagellates) in response to a wide range of ecologically relevant temperatures (14-30 °C). Our results show large inter-traits and interspecific variabilities of thermal reaction norms in all of the tested traits. We also found that the interspecific variability exceeded the variations induced by thermal changes. Constrained variations and trade-offs between traits both revealed substantial interspecific differences and shifted as the temperature changed. Our study helps to understand the species-specific response patterns of multiple traits to ocean warming and to investigate the implications of these responses in the context of global change.


Asunto(s)
Diatomeas , Dinoflagelados , Fitoplancton/fisiología , Diatomeas/fisiología , Temperatura , Fenotipo , Ecosistema
6.
Mar Environ Res ; 186: 105929, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36863076

RESUMEN

Multifaceted changes in marine environments as a result of anthropogenic activities are likely to have a compounding impact on the physiology of marine phytoplankton. Most studies on the combined effects of rising pCO2, sea surface temperature, and UVB radiation on marine phytoplankton were only conducted in the short-term, which does not allow to test the adaptive capacity of phytoplankton and associated potential trade-offs. Here, we investigated populations of the diatom Phaeodactylum tricornutum that were long-term (∼3.5 years, ∼3000 generations) adapted to elevated CO2 and/or elevated temperatures, and their physiological responses to short-term (∼2 weeks) exposure of two levels of ultraviolet-B (UVB) radiation. Our results showed that while elevated UVB radiation showed predominantly negative effects on the physiological performance of P. tricornutum regardless of adaptation regimes. Elevated temperature alleviated these effects on most of the measured physiological parameters (e.g., photosynthesis). We also found that elevated CO2 can modulate these antagonistic interactions, and conclude that long-term adaptation to sea surface warming and rising CO2 may alter this diatom's sensitivity to elevated UVB radiation in the environment. Our study provides new insights into marine phytoplankton's long-term responses to the interplay of multiple environmental changes driven by climate change.


Asunto(s)
Diatomeas , Temperatura , Dióxido de Carbono , Fitoplancton/fisiología , Aclimatación
7.
Mar Pollut Bull ; 183: 114056, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058179

RESUMEN

Most previous studies investigating the interplay of ocean acidification (OA) and heavy metal on marine phytoplankton were only conducted in short-term, which may provide conservative estimates of the adaptive capacity of them. Here, we examined the physiological responses of long-term (~900 generations) OA-adapted and non-adapted populations of the diatom Phaeodactylum tricornutum to different concentrations of the two heavy metals Cd and Cu. Our results showed that long-term OA selected populations exhibited significantly lower growth and reduced photosynthetic activity than ambient CO2 selected populations at relatively high heavy metal levels. Those findings suggest that the adaptations to high CO2 results in an increased sensitivity of the marine diatom to toxic metal exposure. This study provides evidence for the costs and the cascading consequences associated with the adaptation of phytoplankton to elevated CO2 conditions, and improves our understanding of the complex interactions of future OA and heavy metal pollution in marine waters.


Asunto(s)
Diatomeas , Metales Pesados , Cadmio/toxicidad , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Metales Pesados/toxicidad , Océanos y Mares , Fitoplancton/fisiología , Agua de Mar
8.
ISME J ; 16(11): 2587-2598, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35948613

RESUMEN

Although high CO2 and warming could act interactively on marine phytoplankton, little is known about the molecular basis for this interaction on an evolutionary scale. Here we explored the adaptation to high CO2 in combination with warming in a model marine diatom Phaeodactylum tricornutum. Whole-genome re-sequencing identifies, in comparison to populations grown under control conditions, a larger genetic diversity loss and a higher genetic differentiation in the populations adapted for 2 years to warming than in those adapted to high CO2. However, this diversity loss was less under high CO2 combined with warming, suggesting that the evolution driven by warming was constrained by high CO2. By integrating genomics, transcriptomics, and physiological data, we found that the underlying molecular basis for this constraint is associated with the expression of genes involved in some key metabolic pathways or biological processes, such as the glyoxylate pathway, amino acid and fatty acid metabolism, and diel variability. Our results shed new light on the evolutionary responses of marine phytoplankton to multiple environmental changes in the context of global change and provide new insights into the molecular basis underpinning interactions among those multiple drivers.


Asunto(s)
Diatomeas , Aminoácidos/metabolismo , Dióxido de Carbono/metabolismo , Diatomeas/metabolismo , Ácidos Grasos/metabolismo , Variación Genética , Glioxilatos/metabolismo , Océanos y Mares , Fitoplancton/genética , Fitoplancton/metabolismo
9.
Neurotherapeutics ; 16(4): 1225-1236, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31313223

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is characterized in part by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). The main pathological hallmark of PD is the intraneuronal accumulation of misfolded α-synuclein (α-syn) aggregates. Mutations in the SNCA gene (encoding α-syn) and variations in its copy number are associated with some forms of familial PD. In the present study, T-006, a new tetramethylpyrazine (TMP) derivative with recently reported anti-Alzheimer activity, is shown to significantly promote α-syn degradation in a cellular PD model. Moreover, we illustrate that T-006 inhibits the accumulation of both Triton-soluble and -insoluble forms of α-syn and protects against α-syn-induced neurotoxicity in A53T-α-syn transgenic mice. The mechanism of action of T-006 was verified by evaluation of a potential protein degradation pathway. We found that T-006 promotes α-syn degradation in a proteasome-dependent and autophagy-independent manner. We further confirmed that T-006 enhances proteasome activity by upregulating 20S proteasome subunit ß5i (LMP7) protein expression. A functional study revealed that T-006 activates the PKA/Akt/mTOR/p70S6K pathway to trigger LMP7 expression and enhance chymotrypsin-like proteasomal activity. These findings indicate that T-006 is a potent proteasome activator and a potential therapeutic agent for the prevention and treatment of PD and related diseases.


Asunto(s)
Hidrazonas/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Pirazinas/uso terapéutico , alfa-Sinucleína/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Transgénicos , Células PC12 , Enfermedad de Parkinson/genética , Pirazinas/química , Ratas , Vasodilatadores/uso terapéutico
10.
J Cell Biochem ; 120(4): 5913-5922, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30304553

RESUMEN

Doxorubicin (Dox) is a well-known chemotherapeutic agent used in the treatment of various cancers. However, Dox-induced cardiotoxicity limits its further clinical use. We have previously reported a small molecular named biotin-conjugated ADTM analog (BAA) that exhibits cytoprotective effects against oxidative stress-induced cell injury in cardiomyoblast H9c2 cells. Here, the protective effects of BAA, indexed by attenuation of the cardiotoxicity induced by Dox as well as synergistic antitumor activity that increases the chemotherapeutic efficacy of Dox were investigated. Our results demonstrated that BAA significantly ameliorated Dox-induced toxicity in the H9c2 cells and zebrafish models. In addition, BAA attenuated Dox-induced endoplasmic reticulum (ER) stress in H9c2 cells. An ER stress inhibitor, 4-phenylbutyric acid, reversed the protective effect of BAA in H9c2 cells. In contrast, in human breast tumor MDA-MB-231 cells, BAA significantly enhanced Dox-induced cytotoxicity through upregulating Dox-induced ER stress response. Taken together, our findings indicate that Dox combined with BAA can significantly enhance its antitumor activity in breast cancer cells and reduce its cardiotoxicity, at least in part, by mediating ER stress activation.


Asunto(s)
Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , Lactatos/farmacología , Pirazinas/farmacología , Animales , Western Blotting , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Lactatos/química , Estrés Oxidativo/efectos de los fármacos , Pirazinas/química , Ratas , Transducción de Señal/efectos de los fármacos , Pez Cebra
11.
Drug Deliv ; 24(1): 1791-1800, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29172759

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based combination therapy and gene therapy are new strategies to potentially overcome the limitations of TRAIL, however, the lack of efficient and low toxic vectors remains the major obstacle. In this study, we developed a hyaluronic acid (HA)-decorated polyethylenimine-poly(d,l-lactide-co-glycolide) (PEI-PLGA) nanoparticle (NP) system for targeted co-delivery of TRAIL plasmid (pTRAIL) and gambogic acid (GA) in triple-negative breast cancer (TNBC) therapy. GA was encapsulated into the core of the PEI-PLGA NPs while pTRAIL was adsorbed onto the positive NP surface via charge adsorption. The coating of HA on PEI-PLGA NPs functions as a targeting ligand by binding to CD44 receptor of TNBC cells and a shell to neutralize the excess positive charge of inner NPs. The resultant pTRAIL and GA co-loaded HA-coated PEI-PLGA NPs exhibited spherical shape (121.5 nm) and could promote the internalization of loaded cargoes into TNBC cells through the CD44-dependent endocytic pathway. The dual drug-loaded NPs significantly augmented apoptotic cell death in vitro and inhibited TNBC tumor growth in vivo. This multifunctional NP system efficiently co-delivered GA and pTRAIL, thus representing a promising strategy to treat TNBC and bringing forth a platform strategy for co-delivery of therapeutic DNA and chemotherapeutic agents in combinatorial TNBC therapy.


Asunto(s)
Ácido Hialurónico/administración & dosificación , Ácido Láctico/administración & dosificación , Nanopartículas/administración & dosificación , Plásmidos/administración & dosificación , Polietileneimina/administración & dosificación , Ácido Poliglicólico/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Xantonas/administración & dosificación , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Portadores de Fármacos/administración & dosificación , Humanos , Receptores de Hialuranos/metabolismo , Células MCF-7 , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Neoplasias de la Mama Triple Negativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...