Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 187: 39-49, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38991389

RESUMEN

Aquaculture sludge (uneaten feed and faeces) is nutrient rich and has potential as feed for insects. The aim of this study was to investigate the transfer of chemical and biological contaminants, as well as nutrients, from aquaculture sludge to black soldier fly larvae. The larvae were reared on a sludge mixture made of different sludges collected from Norwegian freshwater salmonid facilities. The sludge was spiked with four common salmon pathogens: Infectious Pancreatic Necrosis Virus, Infectious Salmon Anemia virus, Yersinia ruckeri or Mycobacterium salmoniphilum. During the 15 days of growth on sludge, the black soldier fly larvae accumulated valuable nutrients including protein, fat, eicosapentaenoic acid, iron, manganese, zinc and selenium. The larvae also accumulated undesirable substances including cadmium, mercury, dioxins and polychlorinated biphenyls. The concentrations of dioxins exceeded the EU maximum level set for animal feed. None of the salmon pathogens that were spiked to the sludge were detected in the black soldier fly larvae. This study reports low risk of transfer of salmon pathogens from sludge to insect larvae, and showed that the transfer of heavy metals, minerals and metalloids are in accordance with earlier studies. The large variations in levels of heavy metals between batches of sludge can cause levels in BSF exceeding the EU maximum levels, and thus indicate a need for monitoring of the proposed value chain. The transfer of dioxins from sludge to insects, reported for the first time in this paper, would be of special interest for future research, with special focus on risk mitigation.

2.
J Environ Manage ; 360: 121103, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788405

RESUMEN

A total of 47 fish sludge samples from commercial land-based Atlantic salmon (Salmo salar) farms in Norway were assessed for their nutrient composition, presence of various legacy contaminants and a wide spectrum of contaminants of emerging concern, veterinary medicines as well as selected salmonid pathogenic bacteria and virus. The aim was to document the levels of desirable and undesirable components in fish sludge in relation to a potential future use of sludge as invertebrate feed. The samples had variable, but relatively high protein and fat contents, indicating a high load of undigested feed in some of the sludge samples. Fatty acid analysis showed the presence of essential omega-3 fatty acids. In terms of undesirable substances, 43% and 84% of the sludge samples contained levels of arsenic and cadmium, respectively, which exceeded the EU Maximum Levels established for complete animal feed. The concentrations of copper, zinc, iron and aluminum were highly variable in the sludge samples. The concentrations of dioxins, sum PCB6, and chlorinated pesticides were all below the Maximum Levels for animal feed. Of the 18 per- and polyfluoroalkyl substances (PFAS) only one compound (L-PFOS) was present at measurable levels. None of the samples had detectable levels of veterinary medicines, salmonid virus or bacteria. Performing a suspect and non-target screening of the sludge samples identified 18 compounds, including four pharmaceuticals, plastic-related products and the UV filter benzophenone, warranting further investigations. Overall, the results from this study show that fish sludge is a nutrient-rich resource; however, undesirable substances, originating from the feed or from treatment of sludge may be present.


Asunto(s)
Salmo salar , Aguas del Alcantarillado , Animales , Nutrientes/análisis , Alimentación Animal/análisis , Acuicultura
3.
EFSA J ; 22(1): e8528, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38205503

RESUMEN

This statement provides scientific guidance on the information needed to support the risk assessment of the detoxification processes applied to products intended for animal feed in line with the acceptability criteria of the Commission Regulation (EU) 2015/786.

4.
Environ Pollut ; 334: 122176, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437757

RESUMEN

Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 µg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 µg/L As(V), or by aquatic exposure to 5 µg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 µg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.


Asunto(s)
Arsénico , Microalgas , Mytilus edulis , Mytilus , Contaminantes Químicos del Agua , Animales , Arsénico/toxicidad , Arsénico/análisis , Mytilus edulis/metabolismo , Microalgas/metabolismo , Cadena Alimentaria , Organismos Acuáticos/metabolismo , Contaminantes Químicos del Agua/análisis , Mytilus/metabolismo
5.
Food Res Int ; 169: 112927, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254353

RESUMEN

Alternative feed ingredients for farmed salmon are warranted due to increasing pressure on wild fish stocks. As locally farmed blue mussels may represent an environmentally sustainable substitute with a lower carbon footprint, we aimed to test the potential and safety of substituting fish meal with blue mussel meal in feed for Atlantic salmon. Salmon were fed diets in which fish meal was partially replaced with blue mussel meal in increments, accounting for up to 13.1 % of the ingredients. Fillets from the salmon were subsequently used to prepare obesity-promoting western diets for a 13-weeks mouse feeding trial. In a second mouse trial, we tested the effects of inclusion of up to 8% blue mussel meal directly in a meat-based western diet. Partial replacement of fish meal with blue mussel meal in fish feed preserved the n-3 polyunsaturated fatty acid (PUFA) content in salmon fillets. The observed blue mussel-induced changes in the fatty acid profiles in salmon fillets did not translate into similar changes in the livers of mice that consumed the salmon, and no clear dose-dependent responses were found. The relative levels of the marine n-3 fatty acids, EPA, and DHA were not reduced, and the n-3/n-6 PUFA ratios in livers from all salmon-fed mice were unchanged. The inclusion of blue mussel meal in a meat-based western diet led to a small, but dose-dependent increase in the n-3/n-6 PUFA ratios in mice livers. Diet-induced obesity, glucose intolerance, and hepatic steatosis were unaffected in both mice trials and no blue mussel-induced adverse effects were observed. In conclusion, our results suggest that replacing fish meal with blue mussel meal in salmon feed will not cause adverse effects in those who consume the salmon fillets.


Asunto(s)
Ácidos Grasos Omega-3 , Mytilus edulis , Salmo salar , Animales , Ratones , Dieta Occidental , Ácidos Grasos/metabolismo , Mytilus edulis/metabolismo , Obesidad , Salmo salar/metabolismo , Alimentos Marinos
6.
Food Chem Toxicol ; 172: 113557, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526092

RESUMEN

Unintentional use of mold-infested plant-based feed ingredients are sources of mycotoxins in fish feeds. The presence of the emerging mycotoxins ENNB and BEA in Norwegian commercial fish feeds and plant-based feed ingredients has raised concerns regarding the health effects on farmed Atlantic salmon (Salmon salar). Atlantic salmon pre-smolts were exposed to non-lethal doses of BEA and ENNB (ctrl, 50 and 500 µg/kg feed for 12 h), after which total RNA sequencing of the intestine and liver was carried out to evaluate gut health and identify possible hepatological changes after acute dietary exposure. ENNB and BEA did not trigger acute toxicity, however ENNB caused the onset of pathways linked to acute intestinal inflammation and BEA exposures caused the onset of hepatic hematological disruption. The prevalence and concentration of ENNB found in today's commercial feed could affect the fish health if consumed over a longer time-period.


Asunto(s)
Micotoxinas , Salmo salar , Animales , Intestinos , Micotoxinas/toxicidad , Alimentación Animal/toxicidad , Alimentación Animal/análisis
7.
J Trace Elem Med Biol ; 76: 127110, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36495851

RESUMEN

BACKGROUND: Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety. METHODOLOGY: Blue mussels were collected monthly from one location in Western Norway from February 2018 to December 2018, and from April 2019 to April 2020. Samples were analyzed for PTEs using inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC) coupled to ICP-MS. Temperature, salinity and fluorescence (chlorophyll a) were monitored in the seawater column by STD/CTD, to assess the potential influence of these environmental factors on the PTE levels in the mussels. RESULTS: The results showed seasonal variations in the PTEs, with somewhat higher concentrations in spring and winter months. Unusually high levels of total As (101.2 mg kg-1 dw) and inorganic As (53.6 mg kg-1 dw) were observed for some of the time points. The organic As species arsenobetaine was generally the major As species (17-82% of total As) in the mussels, but also simple methylated As species and arsenosugars were detected. Principal components analysis (PCA) did not show a consistent relationship between the environmental factors and the PTE concentrations, showing contrary results for some elements for the periods studied. The condition index (CI) could explain variations in element concentration with significant correlations for Cd (r = -0.67, p = 0.009) and Pb (r = -0.62, p = 0.02 in 2019/20 and r = -0.52, p = 0.02 in 2018), whereas the correlation between As and CI was not significant (r = 0.12 in 2018, and r = -0.06 in 2019/20). Higher concentrations of iAs and arsenosugars coincided with increased signals of chlorophyll a, suggesting that phytoplankton blooms could be a source of As in the blue mussels. CONCLUSION: To our knowledge, this is the first study of As species in blue mussels collected over a time period of two years, providing an insight into the natural variations of these chemical forms in mussels. In terms of mussel as food and future feed material, concentrations of Cd, Hg and Pb were below the maximum levels (MLs) established in the EU food and feed legislation. However, levels of As and iAs in mussels at some time points exceeded the MLs for As in the feed legislation, and the margin of exposure (MOE) was low if these mussels were for human consumption, highlighting the importance of determining the chemical forms of As in feed and food.


Asunto(s)
Arsénico , Mercurio , Mytilus edulis , Contaminantes Químicos del Agua , Animales , Humanos , Arsénico/análisis , Cadmio/análisis , Mercurio/análisis , Clorofila A/análisis , Plomo/análisis , Estaciones del Año , Monitoreo del Ambiente/métodos , Noruega , Contaminantes Químicos del Agua/análisis
8.
EFSA J ; 20(9): e07524, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177388

RESUMEN

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) assessed a decontamination process of fish oils and vegetable oils and fats to reduce the concentrations of dioxins (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, abbreviated together as PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) by adsorption to activated carbon. All feed decontamination processes must comply with the acceptability criteria specified in the Commission Regulation (EU) 2015/786. Data provided by the feed food business operator (FBO) were assessed for the efficacy of the process and to demonstrate that the process did not adversely affect the characteristics and properties of the product. The limited information provided, in particular on the analysis of the samples before and after decontamination, did not allow the CONTAM Panel to conclude whether or not the proposed decontamination process is effective in reducing PCDD/Fs and DL-PCBs in the fish- and vegetable oils and fats. Although there is no evidence from the data provided that the decontamination process leads to detrimental changes in the nutritional composition of the fish- and vegetable oils, it is possible that the process could deplete some beneficial constituents (e.g. vitamins). Taken together, it was not possible for the CONTAM Panel to conclude that the decontamination process as proposed by the FBO is compliant with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015.

9.
Food Chem Toxicol ; 161: 112819, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35038498

RESUMEN

Beauvericin (BEA) and enniatin B (ENNB) are emerging mycotoxins frequently detected in plant-based fish feed. With ionophoric properties, they have shown cytotoxic potential in mammalian models. Sensitivity in fish is still largely unknown. Primary hepatocytes isolated from Atlantic salmon (Salmo salar) were used as a model and exposed to BEA and ENNB (0.05-10 µM) for 48 h. Microscopy, evaluation of cell viability, total ATP, total H2O2, total iron content, total Gpx enzyme activity, and RNA sequencing were used to characterize the toxicodynamics of BEA and ENNB. Both mycotoxins became cytotoxic at ≥ 5 µM, causing condensation of the hepatocytes followed by formation of blister-like protrusions on the cell's membrane. RNA sequencing analysis at sub-cytotoxic levels indicated BEA and ENNB exposed hepatocytes to experience increased energy expenditure, elevated oxidative stress, and iron homeostasis disturbances sensitizing the hepatocytes to ferroptosis. The present study provides valuable knowledge disclosing the toxic action of these mycotoxins in Atlantic salmon primary hepatocytes.


Asunto(s)
Depsipéptidos/toxicidad , Ferroptosis/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hierro/metabolismo , Hígado/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Depsipéptidos/administración & dosificación , Relación Dosis-Respuesta a Droga , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Lisosomas/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Salmo salar
10.
Foods ; 10(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34574125

RESUMEN

Pollutants in aquatic food are a major global concern for food safety and are a challenge to both national and international regulatory bodies. In the present work, we have reviewed available data on the concentrations of polycyclic aromatic hydrocarbons (PAH), persistent organic pollutants, metals, and microplastics in freshwater and marine fish in Nigeria with reference to international maximum levels for contaminants in food and the potential risk to human health. While most of the contaminant levels reported for fish do not imply any health issues, iron and lead may represent potentially toxic levels in fish from specific areas. Studies on PAHs in marine fish are scarce in Nigeria, and the main focus is on the environmental pollution caused by PAHs rather than on their presence in food. The findings suggest that the consumption of smoked Ethmalosa fimbriata poses a higher potential carcinogenic risk than the other fish species that were investigated. Most of the other studies on PAHs in smoked fish are focused on the smoking method, and little information is available on the initial level of PAHs prior to the smoking process. Metal contamination in fish appeared to be affected by mineral deposits in the environment and industrial effluents. In general, heavy metal levels in fish are below the maximum levels, while there is limited data available on POPs of relevance to food safety in fish from Nigeria, particularly in terms of dioxins, brominated flame retardants, and fluorinated compounds. Furthermore, there is currently limited information on the levels of microplastics in fish from Nigerian waters. This work revealed the need for a more systematic sampling strategy for fish in order to identify the most vulnerable species, the hot spots of contaminants, and applicable food safety control measures for fish produced and consumed in Nigeria.

11.
Environ Int ; 157: 106858, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34530291

RESUMEN

Marine fish from the North East Atlantic Ocean (NEAO) are nutrient rich and considered a valuable economic resource. However, marine fish are also a major dietary source of several contaminants, including persistent organic pollutants (POPs) and heavy metals. Using one of the world's largest seafood datasets (n > 25,000 individuals), comprising 12 commercially important fish species collected during 2006-2019 in the NEAO, we assessed the co-occurrence of elements and POPs, and evaluated potential risks to human consumers. Several positive correlations between concentrations of mercury (Hg), dioxins, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) were observed. Concentrations of Hg, dioxins, PCBs and PBDEs increased from North to South and associations between marine sediment contamination, sea temperature, and fish Hg and POPs concentrations were identified using multi-linear regression (MLR) models. In general, Hg concentrations in fillet and liver of fish were positively associated with increases in both sediment contamination and sea temperature. POPs concentrations in both fillet and liver were positively associated with increases in sediment contamination, and only POPs concentrations in the liver of benthopelagic and demersal species were found to be positively correlated with sea temperature. Using a probabilistic approach to estimate human contaminant exposure from seafood, we showed that intake of pelagic species posed the highest risk of dioxins and dioxin-like PCBs (DL-PCBs) exposure, while intake of benthopelagic and demersal species posed the highest risk of Hg exposure. This study can serve as a model to further understand the distribution, co-occurrence, and trends of contaminants in seafood harvested from the NEAO and their potential risks to human consumers.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Océano Atlántico , Peces , Éteres Difenilos Halogenados/análisis , Humanos , Bifenilos Policlorados/análisis , Medición de Riesgo , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis
13.
Foods ; 10(5)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065408

RESUMEN

Fish represent an important part of the Sri Lankan and Bangladeshi diet. However, fish is also a source of contaminants that may constitute a health risk to consumers. The aim of this study was to analyse the contents of arsenic, cadmium, mercury, and lead in 24 commonly consumed marine fish species from the Bay of Bengal and to assess the potential health risk associated with their consumption. Mercury and lead contents did not exceed the maximum limits for any of the sampled species, and consumer exposure from estimated daily consumption was assessed to be minimal for adults and children. Numerous samples exceeded the maximum limit for cadmium (58%), particularly those of small size (≤25 cm). However, consumer exposure was insignificant, and health assessment showed no risk connected to consumption. These data represent an important contribution to future risk/benefit assessments related to the consumption of fish.

14.
Environ Health Perspect ; 129(5): 57002, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33956508

RESUMEN

BACKGROUND: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES: The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS: Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS: TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION: Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.


Asunto(s)
Dibenzodioxinas Policloradas , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal/efectos de los fármacos , Femenino , Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Dibenzodioxinas Policloradas/administración & dosificación , Dibenzodioxinas Policloradas/toxicidad , Embarazo
15.
EFSA J ; 19(12): e07035, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34976165

RESUMEN

Following a request from the European Commission, the EFSA Panel on Contaminants in the Food Chain (CONTAM) provided a scientific opinion on an application for a detoxification process of groundnut press cake for aflatoxins by ammoniation. Specifically, it is required that the feed decontamination process is compliant with the acceptability criteria specified in the Commission Regulation (EU) 2015/786 of 19 May 2015. The CONTAM Panel assessed the data provided by the feed business operator with respect to the efficacy of the process to remove the contaminant from groundnut press cake batches and on information demonstrating that the process does not adversely affect the characteristics and the nature of the product. Although according to the literature the process may be able to reduce aflatoxin levels below the legal limits, the Panel concluded that the proposed decontamination process, on the basis of the experimental data submitted by the feed business operator, cannot be confirmed for compliance with the acceptability criteria provided for in Commission Regulation (EU) 2015/786 of 19 May 2015. The Panel recommended sufficient sample testing before and after the process, under the selected conditions, to ensure that the process is reproducible and reliable and to demonstrate that the detoxification is not reversible. In addition, genotoxicity testing of extracts of the treated feedingstuff and of the identified degradation products would be necessary. Finally, information on the transfer rate of AFB1 to AFM1 excretion in milk for animals fed the ammoniated product, in comparison to the starting material and on the ammoniation process changes of the nutritional values of the feed material should be provided.

16.
MethodsX ; 7: 101063, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32995313

RESUMEN

Seafood plays a central role in global food and nutrition security. However, there is a lack of data on the concentration of nutrients and contaminants in fish and other seafood, especially in low- and middle-income countries. In order to assess the potential risks and benefits associated with seafood intake, reliable and up-to-date food composition data is crucial. The quality of food composition data is affected by several factors, such as sampling protocols and the suitability and quality of the methods applied for sample preparation and analysis. In this paper, we describe the sampling methodology and protocols related to the sampling of fish and other seafood and the corresponding analytical methods used to analyse the nutrient and contaminant content of such species. For nutrients, the determination of protein, fat, ash, energy, fatty acids, cholesterol, and amino acids is described, in addition to analyses for determination of the vitamin and mineral content in fish and other seafood. For contaminants, analyses for the determination of organic pollutants and microplastics are described. The methodology described in this paper is used for sampling data through scientific surveys in low- and middle-income countries with research vessel Dr. Fridtjof Nansen under the EAF-Nansen Programme. The Programme aims to improve knowledge on the nutritional composition of fish and ensure the fish is safe to consume.•In this paper, we describe the sampling protocols used for sampling fish and other seafood during scientific surveys under the EAF-Nansen Programme.•This paper describes the methodology and quality control for analysing nutrients and contaminants in fish and other seafood.

17.
Foods ; 9(5)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32422957

RESUMEN

Fish is a rich source of several important nutrients and an important part of the otherwise plant-dominated diet present in Angola. However, fish may also be a source of contaminants. The aim of this study was to analyse the nutrient contents and the levels of chemical contaminants, including arsenic, cadmium, mercury, and lead, in five commonly consumed marine fish species sampled during a survey with the research vessel Dr. Fridtjof Nansen in Angola. The species' contribution to recommended nutrient intakes (RNI) for women and children was assessed and compared to that of food products of terrestrial animal origin. All the sampled species are good sources of protein and micronutrients if included in the diet, and inter-species variation is evident. The species were identified to contribute 5-15% of the RNI for calcium, iron, iodine, and zinc and exceeded the contribution to protein and iron intakes of food products of terrestrial animal origin. Furthermore, the potential consumer exposure to chemical contaminants in the species was assessed. None of the species exceeded the maximum levels for cadmium, mercury, and lead, and the potential consumer exposure to cadmium and methylmercury was considered low. The data presented in this study represent an important contribution to African food composition tables.

18.
Food Addit Contam Part B Surveill ; 13(2): 99-106, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32207381

RESUMEN

Seafood can be a source of contaminants, which may raise health concerns. The aim of this study was to analyse the levels of inorganic contaminants in commercially available seafood products and assess consumer exposure. Commercially available samples were collected from 2015-2018 and analysed as composite samples for mercury, lead, arsenic, and cadmium, using accredited methods. Levels of cadmium, lead, and arsenic were low and human exposure of these metals would be minimal from consumption of the analysed seafood products. Mercury levels were well below the EU maximum limit for mercury in fish. However, children, who are high consumers, might be at risk of exceeding the tolerable weekly intake for methyl mercury, when eating products with the highest mercury levels. The collected data can be used for future risk-benefit assessments as intake of processed seafood products represent a large proportion of the populations' seafood intake in Europe.


Asunto(s)
Exposición Dietética , Contaminación de Alimentos/análisis , Metales Pesados/análisis , Alimentos Marinos/análisis , Animales , Arsénico/análisis , Cadmio/análisis , Niño , Peces , Humanos , Plomo/análisis , Mercurio/análisis , Noruega , Medición de Riesgo
19.
Anal Bioanal Chem ; 411(27): 7281-7291, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31608426

RESUMEN

The composition of Atlantic salmon feed has changed considerably over the last two decades from being marine-based (fishmeal and fish oil) to mainly containing plant ingredients. Consequently, concern related to traditional persistent contaminants typically associated with fish-based feed has been replaced by other potential contaminants not previously associated with salmon farming. This is the case for many pesticides, which are used worldwide to increase food production, and may be present in plant ingredients. Earlier studies have identified two organophosphorus pesticides, chlorpyrifos-methyl and pirimiphos-methyl, in plant ingredients used for aquafeed production. In the present study, we developed a reliable and sensitive analytical method, based on liquid chromatography coupled to tandem mass spectrometry, for the determination of these pesticides and their main metabolites in warm water (zebrafish) and cold water (Atlantic salmon) species, where possible differences in metabolites could be expected. The method was tested in whole zebrafish and in different salmon tissues, such as muscle, bile, kidney, fat, and liver. The final objective of this work was to assess kinetics of chlorpyrifos-methyl and pirimiphos-methyl and their main metabolites in fish tissue, in order to fill the knowledge gaps on these metabolites in fish tissues when fed over prolonged time.


Asunto(s)
Alimentación Animal/análisis , Cloropirifos/análogos & derivados , Compuestos Organotiofosforados/análisis , Plaguicidas/análisis , Salmón/metabolismo , Pez Cebra/metabolismo , Animales , Cloropirifos/análisis , Cloropirifos/metabolismo , Cromatografía Líquida de Alta Presión , Explotaciones Pesqueras , Límite de Detección , Compuestos Organotiofosforados/metabolismo , Plaguicidas/metabolismo , Plantas/química , Alimentos Marinos/análisis , Espectrometría de Masas en Tándem
20.
J Food Prot ; 82(9): 1456-1464, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31397590

RESUMEN

This study investigated the transfer kinetics of dietary selenite and selenomethionine (SeMet) to the fillet of farmed Atlantic salmon (Salmo salar). The uptake and elimination rate constants of the two selenium (Se) forms were determined in Atlantic salmon fed either selenite- or SeMet-supplemented diets followed by a depuration period. The fillet half-life of selenite and SeMet was 779 ± 188 and 339 ± 103 days, respectively. The elimination and uptake rates were used in a simple one-compartmental kinetic model to predict levels in fillet based on long-term (whole production cycle) feeding with given dietary Se levels. Model predictions for Atlantic salmon fed plant-based feeds low in natural Se and supplemented with either 0.2 mg of selenite or SeMet kg-1 gave a predicted fillet level of 0.042 and 0.058 mg Se kg-1 wet weight, respectively. Based on these predictions and the European Food Safety Authority risk assessment of Se feed supplementation for food-producing terrestrial farm animals, the supplementation with 0.2 mg of selenite kg-1 would likely be safe for the most sensitive group of consumers (toddlers). However, supplementing feed to farm animals, including salmon, with 0.2 mg of SeMet kg-1 would give a higher (114%) Se intake than the safe upper intake limit for toddlers.


Asunto(s)
Alimentación Animal , Salmo salar , Ácido Selenioso , Selenometionina , Alimentación Animal/análisis , Alimentación Animal/normas , Animales , Antioxidantes/administración & dosificación , Antioxidantes/análisis , Explotaciones Pesqueras , Humanos , Ganado/metabolismo , Modelos Biológicos , Ácido Selenioso/administración & dosificación , Ácido Selenioso/análisis , Ácido Selenioso/farmacocinética , Selenometionina/administración & dosificación , Selenometionina/análisis , Selenometionina/farmacocinética , Oligoelementos/administración & dosificación , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...