Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39253476

RESUMEN

We have generated single cell transcriptomic atlases of vomeronasal organs (VNO) from juvenile and adult mice. Combined with spatial molecular imaging, we uncover a distinct, previously unidentified class of cells that express the vomeronasal receptors and a population of canonical olfactory sensory neurons in the VNO. High resolution trajectory and cluster analyses reveal the lineage relationship, spatial distribution of cell types, and a putative cascade of molecular events that specify the V1r, V2r, and OR lineages from a common stem cell population. The expression of vomeronasal and olfactory receptors follow power law distributions, but there is high variability in average expression levels between individual receptor and cell types. Substantial co-expression is found between receptors across clades, from different classes, and between olfactory and vomeronasal receptors, with nearly half from pairs located on the same chromosome. Interestingly, the expression of V2r, but not V1r, genes is associated with various transcription factors, suggesting distinct mechanisms of receptor choice associated with the two cell types. We identify association between transcription factors, surface axon guidance molecules, and individual VRs, thereby uncovering a molecular code that guides the specification of the vomeronasal circuitry. Our study provides a wealth of data on the development and organization of the accessory olfactory system at both cellular and molecular levels to enable a deeper understanding of vomeronasal system function.

2.
BMC Infect Dis ; 24(1): 910, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227759

RESUMEN

BACKGROUND: Microcirculation abnormality in septic shock is closely associated with organ dysfunction and mortality rate. It was hypothesized that the arterial blood glucose and interstitial fluid (ISF) glucose difference (GA-I) as a marker for assessing the microcirculation status can effectively evaluate the severity of microcirculation disturbance in patients with septic shock. METHODS: The present observational study enrolled patients with septic shock admitted to and treated in the intensive care unit (ICU) of a tertiary teaching hospital. The parameters reflecting organ and tissue perfusion, including lactic acid (Lac), skin mottling score, capillary refill time (CRT), venous-to-arterial carbon dioxide difference (Pv-aCO2), urine volume, central venous oxygen saturation (ScvO2) and GA-I of each enrolled patient were recorded at the time of enrollment (H0), H2, H4, H6, and H8. With ICU mortality as the primary outcome measure, the ICU mortality rate at any GA-I interval was analyzed. RESULTS: A total of 43 septic shock patients were included, with median sequential organ failure assessment (SOFA) scores of 10.5 (6-16), and median Acute Physiology and Chronic Health Evaluation (APACHAE) II scores of 25.7 (9-40), of whom 18 died during ICU stay. The GA-I levels were negative correlation with CRT (r = 0.369, P < 0.001), Lac (r = -0.269, P < 0.001), skin mottling score (r=-0.223, P < 0.001), and were positively associated with urine volume (r = 0.135, P < 0.05). The ICU mortality rate of patients with septic shock presenting GA-I ≤ 0.30 mmol/L and ≥ 2.14 mmol/L was significantly higher than that of patients with GA-I at 0.30-2.14 mmol/L [65.2% vs. 15.0%, odds ratio (OR) = 10.625, 95% confidence interval (CI): 2.355-47.503]. CONCLUSION: GA-I was correlated with microcirculation parameters, and with differences in survival. Future studies are needed to further explore the potential impact of GA-I on microcirculation and clinical prognosis of septic shock, and the bedside monitoring of GA-I may be beneficial for clinicians to identify high-risk patients.


Asunto(s)
Glucemia , Líquido Extracelular , Unidades de Cuidados Intensivos , Microcirculación , Choque Séptico , Humanos , Choque Séptico/mortalidad , Choque Séptico/fisiopatología , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Pronóstico , Anciano , Microcirculación/fisiología , Glucemia/análisis , Centros de Atención Terciaria , Adulto , Puntuaciones en la Disfunción de Órganos
4.
Mech Ageing Dev ; 221: 111962, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004152

RESUMEN

Endothelial cell senescence characterized by reactive oxygen species (ROS) accumulation and chronic inflammation is widely recognized as a key contributor to atherosclerosis (AS). Regulated in development and DNA damage response 1 (REDD1), a conserved stress-response protein that regulates ROS production, is involved in the pathogenesis of various age-related diseases. However, the role of REDD1 in endothelial cell senescence is still unclear. Here, we screened REDD1 as a differentially expressed senescence-related gene in the AS progression using bioinformatics methods, and validated the upregulation of REDD1 expression in AS plaques, senescent endothelial cells, and aging aorta by constructing AS mice, D-galactose (DG)-induced senescent endothelial cells and DG-induced accelerated aging mice, respectively. siRNA against REDD1 could improve DG-induced premature senescence of endothelial cells and inhibit ROS accumulation, similar to antioxidant N-Acetylcysteine (NAC) treatment. Meanwhile, NAC reduced the upregulation of REDD1 induced by DG, supporting the positive feedback loop between REDD1 and ROS contributes to endothelial cell senescence. Mechanistically, the regulatory effect of REDD1 on ROS might be related to the TXNIP-REDD1 interaction in DG-induced endothelial cell senescence. Collectively, experiments above provide evidence that REDD1 participates in endothelial cell senescence through repressing TXNIP-mediated oxidative stress, which may be involved in the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Proteínas Portadoras , Senescencia Celular , Células Endoteliales , Estrés Oxidativo , Especies Reactivas de Oxígeno , Factores de Transcripción , Senescencia Celular/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Ratones , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células Endoteliales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Técnicas de Silenciamiento del Gen
5.
Fitoterapia ; 176: 105976, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38685511

RESUMEN

Phytochemical research on an extract of Notopterygium incisum yielded fifteen compounds (1-15), including four previously undescribed compounds (10-13). The structures of the unreported compounds were elucidated by spectroscopic and spectrometric data analysis such as 1D and 2D NMR, IR and HR-ESI-MS. Compounds 1-5 and 10-14 were isolated from N. incisum for the first time. 7S⁎,8R⁎-Phenethyl-(7-methoxy-8-isoeugenol)-ferulate (10), 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) are the undescribed ferulic acid derivatives. Additionly, the anti-neuroinflammatory effects of compounds were evaluated in lipopolysaccharide (LPS)-induced BV2 cells. The pharmacological results showed that 6ß,10ß-epoxy-4α-hydroxy-guaiane (6), teuclatriol (7) and 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) inhibited the production and expression of nitric oxide (NO) in the LPS-induced BV2 cells in a concentration-dependent manner. Acorusnol (4), teucladiol (9), 7S⁎,8R⁎-benzyl-(7-methoxy-8-isoeugenol)-ferulate (12) and p-hydroxyphenethyl-(4-benzoy-3-methoxy)-cinnamate (13) only inhibited the release of NO at concentration of 20 µM. Moreover, 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) reduced the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-stimulated BV2 cells. The results demonstrated 7S⁎,8R⁎-p-hydroxyphenethyl-(7-methoxy-8-isoeugenol)-ferulate (11) could be a potential anti-neuroinflammatory agent and is worthy of further study.


Asunto(s)
Antiinflamatorios , Apiaceae , Fitoquímicos , Ratones , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Estructura Molecular , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Apiaceae/química , Línea Celular , Óxido Nítrico/metabolismo , China , Microglía/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química
6.
Mol Neurobiol ; 61(10): 7845-7861, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38433165

RESUMEN

As one of the most serious complications of sepsis, sepsis-associated encephalopathy has not been effectively treated or prevented. Exosomes, as a new therapeutic method, play a protective role in neurodegenerative diseases, stroke and traumatic brain injury in recent years. The purpose of this study was to investigate the role of exosomes in glutamate (Glu)-induced neuronal injury, and to explore its mechanism, providing new ideas for the treatment of sepsis-associated encephalopathy. The neuron damage model induced by Glu was established, and its metabolomics was analyzed and identified. BV2 cells were induced to differentiate into M1 and M2 subtypes. After the exosomes from both M1-BV2 cells and M2-BV2 cells were collected, exosome morphological identification was performed by transmission electron microscopy and exosome-specific markers were also detected. These exosomes were then cocultured with HT22 cells. CCK-8 method and LDH kit were used to detect cell viability and toxicity. Cell apoptosis, mitochondrial membrane potential and ROS content were respectively detected by flow cytometry, JC-1 assay and DCFH-DA assay. MiR-124-3p expression level was detected by qRT-PCR and Western blot. Bioinformatics analysis and luciferase reporter assay predicted and verified the relationship between miR-124-3p and ROCK1 or ROCK2. Through metabolomics, 81 different metabolites were found, including fructose, GABA, 2, 4-diaminobutyric acid, etc. The enrichment analysis of differential metabolites showed that they were mainly enriched in glutathione metabolism, glycine and serine metabolism, and urea cycle. M2 microglia-derived exosomes could reduce the apoptosis, decrease the accumulation of ROS, restore the mitochondrial membrane potential and the anti-oxidative stress ability in HT22 cells induced by Glu. It was also found that the protective effect of miR-124-3p mimic on neurons was comparable to that of M2-EXOs. Additionally, M2-EXOs might carry miR-124-3p to target ROCK1 and ROCK2 in neurons, affecting ROCK/PTEN/AKT/mTOR signaling pathway, and then reducing Glu-induced neuronal apoptosis. M2 microglia-derived exosomes may protect HT22 cells against Glu-induced injury by transferring miR-124-3p into HT22 cells, with ROCK being a target gene for miR-124-3p.

7.
IUBMB Life ; 76(3): 161-178, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37818680

RESUMEN

Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1ß. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.


Asunto(s)
Aterosclerosis , Ácido N-Acetilneuramínico , Humanos , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Aterosclerosis/genética , Aterosclerosis/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacología , Autofagia
8.
J Nat Med ; 78(1): 191-207, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38032498

RESUMEN

The impact of hypertension on tissue and organ damage is mediated through its influence on the structure and function of blood vessels. This study aimed to examine the potential of celastrol, a bioactive compound derived from Tripterygium wilfordii Hook F, in mitigating hypertension-induced energy metabolism disorder and enhancing blood perfusion and vasodilation. In order to investigate this phenomenon, we conducted in vivo experiments on renovascular hypertensive rats, employing indirect calorimetry to measure energy metabolism and laser speckle contrast imaging to evaluate hemodynamics. In vitro, we assessed the vasodilatory effects of celastrol on the basilar artery and superior mesenteric artery of rats using the Multi Wires Myograph System. Furthermore, we conducted preliminary investigations to elucidate the underlying mechanism. Moreover, administration of celastrol at doses of 1 and 2 mg/kg yielded a notable enhancement in blood flow ranging from 6 to 31% across different cerebral and mesenteric vessels in hypertensive rats. Furthermore, celastrol demonstrated a concentration-dependent (1 × 10-7 to 1 × 10-5 M) arterial dilation, independent of endothelial function. This vasodilatory effect could potentially be attributed to the inhibition of Ca2+ channels on vascular smooth muscle cells induced by celastrol. These findings imply that celastrol has the potential to ameliorate hemodynamics through vasodilation, thereby alleviating energy metabolism dysfunctions in hypertensive rats. Consequently, celastrol may hold promise as a novel therapeutic agent for the treatment of hypertension.


Asunto(s)
Hipertensión , Triterpenos , Ratas , Animales , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/química , Hemodinámica , Hipertensión/tratamiento farmacológico , Metabolismo Energético
9.
Theranostics ; 13(14): 4993-5016, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771765

RESUMEN

Background: Atherosclerosis (AS) is still the major cause of cardiovascular disease (CVD) as well as stroke. Endothelial metabolic disorder has been found to be activated and then promote endothelial cells (ECs) injury, which is regarded to initiate AS progression. N-acetylneuraminic acid (Neu5Ac), a metabolite produced by hexosamine-sialic acid pathway branching from glucose metabolism, was presented as a notable biomarker of CVD and is positively correlated with ECs function. However, few studies explain whether Neu5Ac regulate AS progression by affecting EC function as well as its involved mechanisms are still unknown. Methods: Here, we mimicked an animal model in ApoE-/- mice which displaying similar plasma Neu5Ac levels with AS model to investigate its effect on AS progression. Results: We found that Neu5Ac exacerbated plaques area and increased lipids in plasma in absence of HFD feeding, and ECs inflammatory injury was supposed as the triggering factor upon Neu5Ac treatment with increasing expression of IL-1ß, ICAM-1, and promoting ability of monocyte adhesion to ECs. Mechanistic studies showed that Neu5Ac facilitated SLC3A2 binding to ubiquitin and then triggered P62 mediated degradation, further leading to accumulation of lipid peroxidation in ECs. Fer-1 could inhibit ECs injury and reverse AS progression induced by Neu5Ac in ApoE-/- mice. Interestingly, mitochondrial dysfunction was also partly participated in ECs injury after Neu5Ac treatment and been reversed by Fer-1. Conclusions: Together, our study unveils a new mechanism by which evaluated metabolite Neu5Ac could promote SLC3A2 associated endothelial ferroptosis to activate ECs injury and AS plaque progression, thus providing a new insight into the role of Neu5Ac-ferroptosis pathway in AS. Also, our research revealed that pharmacological inhibition of ferroptosis may provide a novel therapeutic strategy for premature AS.


Asunto(s)
Aterosclerosis , Ferroptosis , Cadena Pesada de la Proteína-1 Reguladora de Fusión , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Placa Aterosclerótica/metabolismo , Ratones Noqueados para ApoE , Cadena Pesada de la Proteína-1 Reguladora de Fusión/metabolismo
10.
Fitoterapia ; 169: 105611, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454779

RESUMEN

In this study, ten labdane-type diterpenoids 1-10 were isolated from a methanol extract of the whole plant Lagopsis supina, including three undescribed compounds 1-3. Their structures were determined by spectroscopic data analyses such as HR-ESI-MS, 1D, and 2D NMR, as well as comparison with literature data. At the same time, the absolute configuration of five compounds 2-5 and 10 was confirmed for the first time by the single crystal X-ray diffraction method. All the compounds were isolated from L. supina for the first time. The CCK-8 assay showed that all compounds had no significant damage to BV-2 microglial cells, and then screened their inhibitory effects of nitric oxide production stimulated by lipopolysaccharide in BV-2 microglial cells. The pharmacological results showed that compound 4 greatly inhibited LPS-stimulated NO release at the concentration of 10 µM, indicating that it has potential anti-neuroinflammatory activity.


Asunto(s)
Diterpenos , Medicamentos Herbarios Chinos , Lamiaceae , Estructura Molecular , Lamiaceae/química , Diterpenos/farmacología , Diterpenos/química , Medicamentos Herbarios Chinos/farmacología , Microglía , Lipopolisacáridos/farmacología , Óxido Nítrico
11.
Cell Signal ; 109: 110790, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37392860

RESUMEN

Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.


Asunto(s)
Aterosclerosis , Sirtuina 3 , Humanos , Sirtuina 3/metabolismo , Glicocálix/genética , Glicocálix/metabolismo , Endotelio/metabolismo , Aterosclerosis/metabolismo , Estrés Mecánico , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas Ligadas a GPI/genética
12.
Front Cell Infect Microbiol ; 13: 1203582, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404719

RESUMEN

Background: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. Methods: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. Results: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. Conclusion: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.


Asunto(s)
Arabidopsis , Brassica , Xanthomonas campestris , Xanthomonas campestris/genética , Xanthomonas campestris/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Brassica/metabolismo , Inmunidad de la Planta , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/genética
13.
Int Immunopharmacol ; 120: 110410, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37270929

RESUMEN

Accumulating evidence suggests that sialic acids is closely related to atherosclerosis. However, the effects and underlying mechanisms of sialic acids in atherosclerosis have been not defined. Macrophages are one of the most important cells during plaque progression. In this study, we investigated the role of sialic acids in the M1 macrophage polarization and pathogenesis of atherosclerosis. Here we found that sialic acids can promote the polarization of RAW264.7 cells to the M1 phenotype, thereby promoting the expression of proinflammatory cytokines in vitro. The proinflammatory effect of sialic acids may result from the inhibition of LKB1-AMPK-Sirt3 signaling pathway to upregulate intracellular ROS and impairing autophagy-lysosome system to block autophagic flux. In the APOE-/- mice, sialic acids in plasma increased during the development of atherosclerosis. Moreover, exogenous supplement of sialic acids can promote plaque progression in aortic arch and aortic sinus being accompanied by the differentiation of macrophages into M1 type in peripheral tissues. These studies demonstrated that sialic acids can promote macrophage polarization toward the M1 phenotype to accentuate atherosclerosis via inducing mitochondrial ROS and blocking autophagy, thus providing clue to a novel therapeutic strategy for atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Ácidos Siálicos/uso terapéutico , Aterosclerosis/metabolismo , Macrófagos , Autofagia
15.
Mol Genet Genomics ; 298(3): 669-682, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964802

RESUMEN

High myopia (HM) is a leading cause of visual impairment in the world. To expand the genotypic and phenotypic spectra of HM in the Chinese population, we investigated genetic variations in a cohort of 113 families with nonsyndromic early-onset high myopia from northwestern China by whole-exome sequencing, with focus on 17 known genes. Sixteen potentially pathogenic variants predicted to affect protein function in eight of seventeen causative genes for HM in fifteen (13.3%) families were revealed, including seven novel variants, c.767 + 1G > A in ARR3, c.3214C > A/p.H1072N, and c.2195C > T/p.A732V in ZNF644, c.1270G > T/p.V424L in CPSF1, c.1918G > C/p.G640R and c.2786T > G/p.V929G in XYLT1, c.601G > C/p.E201Q in P4HA2; six rare variants, c.799G > A/p.E267K in NDUFAF7, c.1144C > T/p.R382W in TNFRSF21, c.1100C > T/p.P367L in ZNF644, c.3980C > T/p.S1327L in CPSF1, c.145G > A/p.E49K and c.325G > T/p.G109W in SLC39A5; and three known variants, c.2014A > G/p.S672G and c.3261A > C/p.E1087D in ZNF644, c.605C > T/p.P202L in TNFRSF21. Ten of them were co-segregated with HM. The mean (± SD) examination age of these 15 probands was 14.7 (± 11.61) years. The median spherical equivalent was - 9.50 D (IQ - 8.75 ~ - 12.00) for the right eye and - 11.25 D (IQ - 9.25 ~ - 14.13) for the left eye. The median axial length was 26.67 mm (IQ 25.83 ~ 27.13) for the right eye and 26.25 mm (IQ 25.97 ~ 27.32) for the left eye. These newly identified genetic variations not only broaden the genetic and clinical spectra, but also offer convincing evidence that the genes ARR3, NDUFAF7, TNFRSF21, and ZNF644 contribute to hereditable HM. This work improves further understanding of molecular mechanism of HM.


Asunto(s)
Miopía , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Miopía/genética , Mutación , Genotipo , China/epidemiología , Linaje
16.
Front Genet ; 14: 1145426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36999054

RESUMEN

Purpose: To screen VSX1 gene sequence variations and describe the clinical features of families with keratoconus (KC) from northwest China. Methods: We screened VSX1 sequence variations and clinical data of 37 families including 37 probands with diagnosed KC from Ningxia Eye Hospital (China). VSX1 was screened by targeted next-generation sequencing (NGS) and verified by Sanger sequencing. In silico analysis including Mutation Taster, MutationAssessor, PROVEAN, MetaLR, FATHMM, M-CAP, FATHMM-XF_coding and DANN was performed to identify the pathogenicity of the sequence variations as well as the conserved amino acid variations of VSX1 was implemented by Clustal X. All subjects were assessed in Pentacam Scheimpflug tomography and corneal biomechanical Corvis ST examinations. Results: Five VSX1 gene variants, were identified in six (16.2%) unrelated families with KC. In silico analysis predicted deleterious effects of the three missense variants (p.G342E, p.G160V, and p.L17V) in the encoded protein. Another previously reported synonymous variation (p.R27R) in the first exon and one heterozygous change in the first intron (c.425-73C>T) were identified in three KC families. Clinical examination of the asymptomatic first-degree parents from these six families who shared the gene with the proband had suspected KC changes in topographic and biomechanical markers. These variants co-segregated with the disease phenotype in all affected individuals but not in unaffected family members or healthy controls, though with variable expressivity. Conclusion: The variant p.G342E of VSX1 is implicated in the pathogenesis of KC, which expands the range of the spectrum of VSX1 mutations with an autosomal dominant inheritance pattern and variable expression in the clinical phenotype. Genetic screening combined with clinical phenotype may help in the genetic counseling of patients with KC and identification of individuals with subclinical KC.

17.
BMC Surg ; 23(1): 51, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36894932

RESUMEN

BACKGROUND: Minimally invasive vascular intervention (MIVI) is a powerful technique for the treatment of cardiovascular diseases, such as abdominal aortic aneurysm (AAA), thoracic aortic aneurysm (TAA) and aortic dissection (AD). Navigation of traditional MIVI surgery mainly relies only on 2D digital subtraction angiography (DSA) images, which is hard to observe the 3D morphology of blood vessels and position the interventional instruments. The multi-mode information fusion navigation system (MIFNS) proposed in this paper combines preoperative CT images and intraoperative DSA images together to increase the visualization information during operations. RESULTS: The main functions of MIFNS were evaluated by real clinical data and a vascular model. The registration accuracy of preoperative CTA images and intraoperative DSA images were less than 1 mm. The positioning accuracy of surgical instruments was quantitatively assessed using a vascular model and was also less than 1 mm. Real clinical data used to assess the navigation results of MIFNS on AAA, TAA and AD. CONCLUSIONS: A comprehensive and effective navigation system was developed to facilitate the operation of surgeon during MIVI. The registration accuracy and positioning accuracy of the proposed navigation system were both less than 1 mm, which met the accuracy requirements of robot assisted MIVI.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Cirugía Asistida por Computador , Humanos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Cirugía Asistida por Computador/métodos , Angiografía de Substracción Digital , Imagenología Tridimensional/métodos
18.
Cell Biosci ; 13(1): 13, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670464

RESUMEN

BACKGROUND: Atherosclerosis (AS) is the leading underlying cause of the majority of clinical cardiovascular events. Retention of foamy macrophages in plaques is the main factor initiating and promoting the atherosclerotic process. Our previous work showed that ox-LDL induced macrophage retention in plaques and that the guidance receptor Uncoordinated-5 homolog B (Unc5b) was involved in this process. However, little is known about the role of Unc5b in regulating macrophage accumulation within plaques. RESULTS: In the present study, we found that Unc5b controls macrophage migration and thus promotes plaque progression in ApoE-/- mice. The immunofluorescence colocalization assay results first suggested that fucosyltransferase 8 (Fut8) might participate in the exacerbation of atherosclerosis. Animals with Unc5b overexpression showed elevated levels of Fut8 and numbers of macrophages and an increased lesion size and intimal thickness. However, these effects were reversed in ApoE-/- mice with Unc5b knockdown. Furthermore, Raw264.7 macrophages with siRNA-mediated silencing of Unc5b or overexpression of Unc5b were used to confirm the regulatory mechanisms of Unc5b and Fut8 in vitro. In response to ox-LDL exposure, Unc5b and Fut8 were both upregulated, and macrophages showed reduced pseudopod formation and migratory capacities. However, these capacities were restored by blocking Unc5b or Fut8. Furthermore, the IP assay indicated that Fut8 regulated the level of α-1,6 fucosylation of Unc5b, which mainly occurs in the endoplasmic reticulum (ER), and genetic deletion of the main fucosylation sites or Fut8 resulted in hypofucosylation of Unc5b. Moreover, the macrophage migration mediated by Unc5b depended on inactivation of the p-CDC42/p-PAK pathway. Conversely, macrophages with Unc5b overexpression displayed activation of the p-CDC42/p-PAK pathway and decreased migration both in vivo and in vitro. CONCLUSION: These results demonstrated that hypofucosylation of Unc5b regulated by Fut8 is positively associated with the delay of the atherosclerotic process by promoting the migration of foamy macrophages. These findings identify a promising therapeutic target for atherosclerosis.

20.
Front Plant Sci ; 13: 990221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36531379

RESUMEN

SEP genes are famous for their function in the morphological novelty of bisexual flowers. Although the diverse functions of SEP genes were reported, only the regulatory mechanisms underlying floral organ development have been addressed. In this study, we identified SEP-like genes in Gossypium and found that SEP3 genes were duplicated in diploid cotton varieties. GhSEP4.1 and GhSEP4.2 were abundantly transcribed in the shoot apical meristem (SAM), but only GhSEP4.2 was expressed in the leaf vasculature. The expression pattern of GhSEPs in floral organs was conserved with that of homologs in Arabidopsis, except for GhSEP2 that was preponderantly expressed in ovules and fibers. The overexpression and silencing of each single GhSEP gene suggested their distinct role in promoting flowering via direct binding to GhAP1 and GhLFY genomic regions. The curly leaf and floral defects in overexpression lines with a higher expression of GhSEP genes revealed the concentration-dependent target gene regulation of GhSEP proteins. Moreover, GhSEP proteins were able to dimerize and interact with flowering time regulators. Together, our results suggest the dominant role of GhSEP4.2 in leaves to promote flowering via GhAP1-A04, and differently accumulated GhSEP proteins in the SAM alternately participate in forming the dynamic tetramer complexes to target at the different loci of GhAP1 and GhLFY to maintain reproductive growth. The regulatory roles of cotton SEP genes reveal their conserved and diversified functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...