Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 92(2): 605-617, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38440807

RESUMEN

PURPOSE: Directly imaging the function of cerebral perforating arteries could provide valuable insight into the pathology of cerebral small vessel diseases (cSVD). Arterial pulsatility has been identified as a useful biomarker for assessing vascular dysfunction. In this study, we investigate the feasibility and reliability of using dual velocity encoding (VENC) phase-contrast MRI (PC-MRI) to measure the pulsatility of cerebral perforating arteries at 7 T. METHODS: Twenty participants, including 12 young volunteers and 8 elder adults, underwent high-resolution 2D PC-MRI scans with VENCs of 20 cm/s and 40 cm/s at 7T. The sensitivity of perforator detection and the reliability of pulsatility measurement of cerebral perforating arteries using dual-VENC PC-MRI were evaluated by comparison with the single-VENC data. The effects of temporal resolution in the PC-MRI acquisition and aging on the pulsatility measurements were investigated. RESULTS: Compared to the single VENCs, dual-VENC PC-MRI provided improved sensitivity of perforator detection and more reliable pulsatility measurements. Temporal resolution impacted the pulsatility measurements, as decreasing temporal resolution led to an underestimation of pulsatility. Elderly adults had elevated pulsatility in cerebral perforating arteries compared to young adults, but there was no difference in the number of detected perforators between the two age groups. CONCLUSION: Dual-VENC PC-MRI is a reliable imaging method for the assessment of pulsatility of cerebral perforating arteries, which could be useful as a potential imaging biomarker of aging and cSVD.


Asunto(s)
Arterias Cerebrales , Imagen por Resonancia Magnética , Flujo Pulsátil , Humanos , Femenino , Masculino , Adulto , Anciano , Reproducibilidad de los Resultados , Arterias Cerebrales/diagnóstico por imagen , Arterias Cerebrales/fisiología , Flujo Pulsátil/fisiología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Angiografía por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Neuroimage ; 286: 120504, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38216104

RESUMEN

Small cerebral blood vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of small cerebral blood vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5 mm spatial resolution (interpolated from 0.51×0.51×0.64 mm3) at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Small cerebral blood vessels including small artery, arterioles, small veins, and venules on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of small cerebral blood vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Humanos , Anciano , Adulto , Persona de Mediana Edad , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Angiografía por Resonancia Magnética/métodos , Arteria Cerebral Media , Encéfalo
3.
Magn Reson Med ; 90(6): 2524-2538, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37466040

RESUMEN

PURPOSE: To predict subject-specific local specific absorption rate (SAR) distributions of the human head for parallel transmission (pTx) systems at 7 T. THEORY AND METHODS: Electromagnetic energy deposition in tissues is nonuniform at 7 T, and interference patterns due to individual channels of pTx systems may result in increased local SAR values, which can only be estimated with very high safety margins. We proposed, designed, and demonstrated a multichannel 3D convolutional neural network (CNN) architecture to predict local SAR maps as well as peak-spatial SAR (ps-SAR) levels. We hypothesized that utilizing a three-channel 3D CNN, in which each channel is fed by a B 1 + $$ {B}_1^{+} $$ map, a phase-reversed B 1 + $$ {B}_1^{+} $$ map, and an MR image, would improve prediction accuracies and decrease uncertainties in the predictions. We generated 10 new head-neck body models, along with 389 3D pTx MRI data having different RF shim settings, with their B1 and local SAR maps to support efforts in this field. RESULTS: The proposed three-channel 3D CNN predicted ps-SAR10g levels with an average overestimation error of 20%, which was better than the virtual observation points-based estimation error (i.e., 152% average overestimation). The proposed method decreased prediction uncertainties over 20% (i.e., 22.5%-17.7%) compared to other methods. A safety factor of 1.20 would be enough to avoid underestimations for the dataset generated in this work. CONCLUSION: Multichannel 3D CNN networks can be promising in predicting local SAR values and perform predictions within a second, making them clinically useful as an alternative to virtual observation points-based methods.


Asunto(s)
Aprendizaje Profundo , Humanos , Simulación por Computador , Cabeza/diagnóstico por imagen , Radiación Electromagnética , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
4.
Neuroimage ; 277: 120251, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37364741

RESUMEN

Fulfilling potentials of ultrahigh field for pseudo-Continuous Arterial Spin Labeling (pCASL) has been hampered by B1/B0 inhomogeneities that affect pCASL labeling, background suppression (BS), and the readout sequence. This study aimed to present a whole-cerebrum distortion-free three-dimensional (3D) pCASL sequence at 7T by optimizing pCASL labeling parameters, BS pulses, and an accelerated Turbo-FLASH (TFL) readout. A new set of pCASL labeling parameters (Gave = 0.4 mT/m, Gratio = 14.67) was proposed to avoid interferences in bottom slices while achieving robust labeling efficiency (LE). An OPTIM BS pulse was designed based on the range of B1/B0 inhomogeneities at 7T. A 3D TFL readout with 2D-CAIPIRINHA undersampling (R = 2 × 2) and centric ordering was developed, and the number of segments (Nseg) and flip angle (FA) were varied in simulation to achieve the optimal trade-off between SNR and spatial blurring. In-vivo experiments were performed on 19 subjects. The results showed that the new set of labeling parameters effectively achieved whole-cerebrum coverage by eliminating interferences in bottom slices while maintaining a high LE. The OPTIM BS pulse achieved 33.3% higher perfusion signal in gray matter (GM) than the original BS pulse with a cost of 4.8-fold SAR. Incorporating a moderate FA (8°) and Nseg (2), whole-cerebrum 3D TFL-pCASL imaging was achieved with a 2 × 2 × 4 mm3 resolution without distortion and susceptibility artifacts compared to 3D GRASE-pCASL. In addition, 3D TFL-pCASL showed a good to excellent test-retest repeatability and potential of higher resolution (2 mm isotropic). The proposed technique also significantly improved SNR when compared to the same sequence at 3T and simultaneous multislice TFL-pCASL at 7T. By combining a new set of labeling parameters, OPTIM BS pulse, and accelerated 3D TFL readout, we achieved high resolution pCASL at 7T with whole-cerebrum coverage, detailed perfusion and anatomical information without distortion, and sufficient SNR.


Asunto(s)
Encéfalo , Imagenología Tridimensional , Humanos , Imagenología Tridimensional/métodos , Encéfalo/diagnóstico por imagen , Marcadores de Spin , Arterias , Angiografía por Resonancia Magnética/métodos , Circulación Cerebrovascular , Corteza Cerebral
5.
medRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163115

RESUMEN

Fulfilling potentials of ultrahigh field for pseudo-Continuous Arterial Spin Labeling (pCASL) has been hampered by B1/B0 inhomogeneities that affect pCASL labeling, background suppression (BS), and the readout sequence. This study aimed to present a whole-cerebrum distortion-free three-dimensional (3D) pCASL sequence at 7T by optimizing pCASL labeling parameters, BS pulses, and an accelerated Turbo-FLASH (TFL) readout. A new set of pCASL labeling parameters (Gave=0.4mT/m, Gratio=14.67) was proposed to avoid interferences in bottom slices while achieving robust labeling efficiency (LE). An OPTIM BS pulse was designed based on the range of B1/B0 inhomogeneities at 7T. A 3D TFL readout with 2D-CAIPIRINHA undersampling (R=2×2) and centric ordering was developed, and the number of segments (Nseg) and flip angle (FA) were varied in simulation to achieve the optimal trade-off between SNR and spatial blurring. In-vivo experiments were performed on 19 subjects. The results showed that the new set of labeling parameters effectively achieved whole-cerebrum coverage by eliminating interferences in bottom slices while maintaining a high LE. The OPTIM BS pulse achieved 33.3% higher perfusion signal in gray matter (GM) than the original BS pulse with a cost of 4.8-fold SAR. Incorporating a moderate FA (8 ° ) and Nseg (2), whole-cerebrum 3D TFL-pCASL imaging was achieved with a 2×2×4 mm 3 resolution without distortion and susceptibility artifacts compared to 3D GRASE-pCASL. In addition, 3D TFL-pCASL showed a good to excellent test-retest repeatability and potential of higher resolution (2 mm isotropic). The proposed technique also significantly improved SNR when compared to the same sequence at 3T and simultaneous multislice TFL-pCASL at 7T. By combining a new set of labeling parameters, OPTIM BS pulse, and accelerated 3D TFL readout, we achieved high resolution pCASL at 7T with whole-cerebrum coverage, detailed perfusion and anatomical information without distortion, and sufficient SNR.

6.
bioRxiv ; 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36993509

RESUMEN

Cerebral small vessels are largely inaccessible to existing clinical in vivo imaging technologies. This study aims to present a novel analysis pipeline for vessel density mapping of cerebral small vessels from high-resolution 3D black-blood MRI at 3T. Twenty-eight subjects (10 under 35 years old, 18 over 60 years old) were imaged with the T1-weighted turbo spin-echo with variable flip angles (T1w TSE-VFA) sequence optimized for black-blood small vessel imaging with iso-0.5mm spatial resolution at 3T. Hessian-based vessel segmentation methods (Jerman, Frangi and Sato filter) were evaluated by vessel landmarks and manual annotation of lenticulostriate arteries (LSAs). Using optimized vessel segmentation, large vessel pruning and non-linear registration, a semiautomatic pipeline was proposed for quantification of small vessel density across brain regions and further for localized detection of small vessel changes across populations. Voxel-level statistics was performed to compare vessel density between two age groups. Additionally, local vessel density of aged subjects was correlated with their corresponding gross cognitive and executive function (EF) scores using Montreal Cognitive Assessment (MoCA) and EF composite scores compiled with Item Response Theory (IRT). Jerman filter showed better performance for vessel segmentation than Frangi and Sato filter which was employed in our pipeline. Cerebral small vessels on the order of a few hundred microns can be delineated using the proposed analysis pipeline on 3D black-blood MRI at 3T. The mean vessel density across brain regions was significantly higher in young subjects compared to aged subjects. In the aged subjects, localized vessel density was positively correlated with MoCA and IRT EF scores. The proposed pipeline is able to segment, quantify, and detect localized differences in vessel density of cerebral small vessels based on 3D high-resolution black-blood MRI. This framework may serve as a tool for localized detection of small vessel density changes in normal aging and cerebral small vessel disease.

7.
Magn Reson Med ; 87(1): 249-262, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34427341

RESUMEN

PURPOSE: To optimize pseudo-continuous arterial spin labeling (pCASL) for 7 T, and to further improve the labeling efficiency with parallel RF transmission transmit B1 ( B1+ ) shimming. METHODS: pCASL parameters were optimized based on B1+/B0 field distributions at 7 T with simulation. To increase labeling efficiency, the B1+ amplitude at inflowing arteries was increased with parallel RF transmission B1+ shimming. The "indv-shim" with shimming weights calculated for each individual subject, and the "univ-shim" with universal weights calculated on a group of 12 subjects, were compared with circular polarized (CP) shim. The optimized pCASL sequences with three B1+ shimming modes (indv-shim, univ-shim, and CP-shim) were evaluated in 6 subjects who underwent two repeated scans 24 hours apart, along with a pulsed ASL sequence. Quantitative metrics including mean B1+ amplitude, perfusion, and intraclass correlation coefficient were calculated. The optimized 7T pCASL was compared with standard 3T pCASL on 5 subjects, using spatial SNR and temporal SNR. RESULTS: The optimal pCASL parameter set (RF duration/gap = 300/250 us, Gave=0.6mT/m,gRatio=10 ) achieved robust perfusion measurement in the presence of B1+/B0 inhomogeneities. Both indv-shim and univ-shim significantly increased B1+ amplitude compared with CP-shim in simulation and in vivo experiment (P < .01). Compared with CP-shim, perfusion signal was increased by 9.5% with indv-shim (P < .05) and by 5.3% with univ-shim (P = .35). All three pCASL sequences achieved fair to good repeatability (intraclass correlation coefficient ≥ 0.5). Compared with 3T pCASL, the optimized 7T pCASL achieved 78.3% higher spatial SNR and 200% higher temporal SNR. CONCLUSION: The optimized pCASL achieved robust perfusion imaging at 7 T, while both indv-shim and univ-shim further increased labeling efficiency.


Asunto(s)
Arterias , Encéfalo , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Simulación por Computador , Humanos , Imagen de Perfusión , Marcadores de Spin
8.
Front Neurosci ; 15: 627627, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584191

RESUMEN

Cerebral small vessel disease (cSVD) affects arterioles, capillaries, and venules and can lead to cognitive impairments and clinical symptomatology of vascular cognitive impairment and dementia (VCID). VCID symptoms are similar to Alzheimer's disease (AD) but the neurophysiologic alterations are less well studied, resulting in no established biomarkers. The purpose of this study was to evaluate cerebral blood flow (CBF) measured by 3D pseudo-continuous arterial spin labeling (pCASL) as a potential biomarker of VCID in a cohort of elderly Latinx subjects at risk of cSVD. Forty-five elderly Latinx subjects (12 males, 69 ± 7 years) underwent repeated MRI scans ∼6 weeks apart. CBF was measured using 3D pCASL in the whole brain, white matter and 4 main vascular territories (leptomeningeal anterior, middle, and posterior cerebral artery (leptoACA, leptoMCA, leptoPCA), as well as MCA perforator). The test-retest repeatability of CBF was assessed by intra-class correlation coefficient (ICC) and within-subject coefficient of variation (wsCV). Absolute and relative CBF was correlated with gross cognitive measures and domain specific assessment of executive and memory function, vascular risks, and Fazekas scores and volumes of white matter hyperintensity (WMH). Neurocognitive evaluations were performed using Montreal Cognitive Assessment (MoCA) and neuropsychological test battery in the Uniform Data Set v3 (UDS3). Good to excellent test-retest repeatability was achieved (ICC = 0.77-0.85, wsCV 3-9%) for CBF measurements in the whole brain, white matter, and 4 vascular territories. Relative CBF normalized by global mean CBF in the leptoMCA territory was positively correlated with the executive function composite score, while relative CBF in the leptoMCA and MCA perforator territory was positively correlated with MoCA scores, controlling for age, gender, years of education, and testing language. Relative CBF in WM was negatively correlated with WMH volume and MoCA scores, while relative leptoMCA CBF was positively correlated with WMH volume. Reliable 3D pCASL CBF measurements were achieved in the cohort of elderly Latinx subjects. Relative CBF in the leptomeningeal and perforator MCA territories were the most likely candidate biomarker of VCID. These findings need to be replicated in larger cohorts with greater variability of stages of cSVD.

9.
Magn Reson Med ; 85(6): 3227-3240, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33427349

RESUMEN

PURPOSE: To optimize and evaluate adiabatic pulses for pulsed arterial spin labeling at ultrahigh field 7 tesla. METHODS: Four common adiabatic inversion pulses, including hyperbolic secant, wideband uniform rate smooth truncation, frequency offset corrected inversion, and time-resampled frequency offset corrected inversion pulses, were optimized based on a custom-defined loss function that included labeling efficiency and inversion band uniformity. The optimized pulses were implemented in flow-sensitive alternating inversion recovery sequences and tested on phantom and 11 healthy volunteers with 2 constraints: 1) specific absorption rate normalized; and 2) equal peak RF amplitude, respectively. A pseudo-continuous arterial spin labeling sequence was implemented for comparison. Quantitative metrics such as perfusion and relative labeling efficiency versus residual tissue signal were calculated. RESULTS: Among the 4 pulses, the wideband uniform rate smooth truncation pulse yielded the lowest loss in simulation and achieved a good balance between labeling efficiency and residual tissue signal from both phantom and in vivo experiments. Wideband uniform rate smooth truncation-pulsed arterial spin labeling showed significantly higher relative labeling efficiency compared to the other sequences (P < .01), whereas the perfusion signal was increased by 40% when the highest B1+ amplitude was used. The 4 pulsed arterial spin labeling sequences yielded comparable perfusion signals compared to pseudo-continuous arterial spin labeling but with less than half the specific absorption rate. CONCLUSION: Optimized wideband uniform rate smooth truncation pulse with the highest B1+ amplitude allowed was recommended for 7 tesla pulsed arterial spin labeling.


Asunto(s)
Arterias , Imagen por Resonancia Magnética , Arterias/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Perfusión , Fantasmas de Imagen , Marcadores de Spin
10.
Acta Neuropathol ; 141(1): 1-24, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098484

RESUMEN

Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.


Asunto(s)
Encéfalo/patología , Arteriosclerosis Intracraneal/patología , Anciano , Anciano de 80 o más Años , Animales , Arteriolas/patología , Angiopatía Amiloide Cerebral , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/psicología , Humanos , Arteriosclerosis Intracraneal/psicología , Neuroimagen
11.
Magn Reson Imaging Clin N Am ; 29(1): 53-65, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33237015

RESUMEN

Ultrahigh field offers increased resolution and contrast for neurovascular imaging. Arterial spin labeling methods benefit from an increased intrinsic signal-to-noise ratio of MR imaging signal and a prolonged tracer half-life at ultrahigh field, allowing the visualization of layer-dependent microvascular perfusion. Arterial spin labeling-based time-resolved 4-dimensional MR angiography at 7T provides a detailed depiction of the vascular architecture and dynamic blood flow pattern with high spatial and temporal resolutions. High-resolution black blood MR imaging at 7T allows detailed characterization of small perforating arteries such as lenticulostriate arteries. All techniques benefit from advances in parallel radiofrequency transmission technologies at ultrahigh field.


Asunto(s)
Trastornos Cerebrovasculares/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Humanos , Angiografía por Resonancia Magnética/métodos , Marcadores de Spin
12.
Magn Reson Med ; 85(5): 2735-2746, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33347641

RESUMEN

PURPOSE: Characterizing vessel territories can provide crucial information for evaluation of cerebrovascular disorders. In this study, we present a novel postprocessing pipeline for vascular territorial imaging of cerebral arteries based on a noncontrast enhanced time-resolved 4D magnetic resonance angiography (MRA). METHODS: Eight healthy participants, 1 Moyamoya patient, and 1 arteriovenous malformations patient were recruited. Territorial segmentation and relative blood flow rate calculations of cerebral arteries including left and right middle cerebral arteries and left and right posterior cerebral arteries were carried out based on the 4D MRA-derived arterial arrival time maps of intracranial vessels. RESULTS: Among healthy young subjects, the average relative blood flow rate values corresponding to left and right middle cerebral arteries and left and right posterior cerebral arteries were 35.9 ± 5.9%, 32.9 ± 7.5%, 15.4 ± 3.8%, and 15.9 ± 2.5%, respectively. Excellent agreement was observed between relative blood flow rate values obtained from the proposed 4D MRA-based method and reference 2D phase contrast MRI. Abnormal cerebral circulations were visualized and quantified on both patients using the developed technique. CONCLUSION: The vascular territorial imaging technique developed in this study allowed for the generation of territorial maps with user-defined level of details within a clinically feasible scan time, and as such may provide useful information to assess cerebral circulation balance in different pathologies.


Asunto(s)
Angiografía por Resonancia Magnética , Enfermedad de Moyamoya , Arterias Cerebrales/diagnóstico por imagen , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Marcadores de Spin
13.
Front Neurosci ; 14: 571480, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33328848

RESUMEN

Background: Dynamic contrast-enhanced (DCE) MRI using intravenous injection of gadolinium-based contrast agents (GBCAs) is commonly used for imaging blood-brain barrier (BBB) permeability. Water is an alternative endogenous tracer with limited exchange rate across the BBB. A direct comparison between BBB water exchange rate and BBB permeability to GBCA is missing. The purpose of this study was to directly compare BBB permeability to GBCA (Ktrans and kGad = Ktrans/Vp) and water exchange rate (kw) in a cohort of elderly subjects at risk of cerebral small vessel disease (cSVD). Methods: Ktrans/kGad and kw were measured by DCE-MRI and diffusion prepared pseudo-continuous arterial spin labeling (DP-pCASL), respectively, at 3 Tesla in 16 elderly subjects (3 male, age = 67.9 ± 3.0 yrs) at risk of cSVD. The test-retest reproducibility of kw measurements was evaluated with repeated scans ~6 weeks apart. Mixed effects linear regression was performed in the whole brain, gray matter (GM), white matter (WM), and 6 subcortical brain regions to investigate associations between Ktrans/kGad and test-retest kw. In addition, kw and Ktrans/kGad were compared in normal appearing white matter (NAWM), white matter hyperintensity (WMH) lesions and penumbra. Results: Significant correlation was found between kw and Ktrans only in WM (ß = 6.7 × 104, P = 0.036), caudate (ß = 8.6 × 104, P = 0.029), and middle cerebral artery (MCA) perforator territory (ß = 6.9 × 104, P = 0.009), but not in the whole brain, GM or rest 5 brain regions. Significant correlation was found between kw and kGad in MCA perforator territory (ß = 1.5 × 103, P = 0.049), medial-temporal lobe (ß = 3.5 × 103, P = 0.032), and hippocampus (ß = 3.4 × 103, P = 0.038), but not in the rest brain regions. Good reproducibility of kw measurements (ICC=0.75) was achieved. Ktrans was significantly lower inside WMH than WMH penumbra (16.2%, P = 0.026), and kGad was significantly lower in NAWM than in the WMH penumbra (20.8%, P < 0.001). Conclusion: kw provides a measure of water exchange rate across the BBB with good test-retest reproducibility. The BBB mechanism underlying kw and Ktrans/kGad is likely to be different, as manifested by correlations in only three brain regions for each pair of comparison between kw and Ktrans or kGad.

14.
Alzheimers Dement (Amst) ; 12(1): e12071, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32875053

RESUMEN

INTRODUCTION: We investigated the hypothesis that retinal capillary perfusion is a biomarker of early cognitive decline and cerebrovascular perfusion associated with small vessel disease in a pilot data set of Latinx adults at high risk for vascular cognitive impairment and dementia. METHODS: High-resolution optical coherence tomography angiography (OCTA) images were acquired from dilated eyes of Latinx subjects using a 3 × 3 mm2 scan pattern from a commercially available device. A previously validated method was used to quantify the density of perfused retinal capillaries as the retinal vessel skeleton density (VSD). The association of VSD with Clinical Dementia Rating Sum of Boxes, total Montreal Cognitive Assessment (MoCA) score, and individual MoCA test elements were analyzed using multivariate statistics that adjusted for confounders. VSD was also compared with magnetic resonance imaging (MRI) measures of cerebrovascular reactivity (CVR) and perfusion in the middle cerebral artery perforator (MCA-Perf) territory. RESULTS: The mean (± SD) age of the subjects was 68 (± 6) years. For every 0.01-unit lower VSD, the risk of having a CDR-SOB >0 was 20% higher (95%CI = 5%-90%; P = .031). Similarly, a lower VSD was associated with lower total MoCA score (r = 0.3; P = .038). The Visuospatial/Executive domain of the MoCA assessment showed the strongest association with VSD ( ß  = 0.02; P = .022). Lower retinal VSD was associated with worse MRI measure of CVR (r = 0.7, P = .04) and less perfusion in the MCA-Perf territory (r = 0.45, P = .02). DISCUSSION: Impaired retinal capillary perfusion is associated with cognitive impairment and abnormalities in cerebrovascular perfusion and function. OCTA-based retinal capillary assessment holds promise for identifying and quantifying retinal correlates of neurovascular abnormalities associated with vascular cognitive impairment.

15.
Front Neurol ; 11: 586, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670187

RESUMEN

Background and Purpose: This study aims to quantify the reperfusion status within severely damaged brain tissue and to evaluate its relationship with high grade of hemorrhagic transformation (HT). Methods: Pseudo-continuous ASL was performed along with DWI in 102 patients within 24 h post-treatments. The infarction core was identified using ADC values <550 × 10-6 mm2/s. CBF within the infarction core and its contralateral counterpart were acquired. CBF at the 25th, median, and 75th percentiles of the contralateral counterpart were used as thresholds and the ASL reperfusion volume above the threshold was labeled as vol-25, -50, and -75, respectively. Recanalization was defined according to Thrombolysis in Myocardial Infarction (TIMI) criteria. Results: Quantified reperfusion within the infarction core differed significantly in patients with complete and incomplete recanalization. In the ROC analysis for the prediction of parenchymal hematoma (PH), ASL reperfusion vol-25 had the highest area under the curve (AUC) when compared with ASL vol-50 and ASL vol-75. ASL reperfusion vol-25 had significantly higher AUC compared with ADC threshold volume in the prediction of PH (0.783 vs. 0.685, P = 0.0036) and PH-2 (0.844 vs. 0.754, P = 0.0035). In stepwise multivariate logistic regression analysis, only ASL reperfusion vol-25 emerged as an independent predictor of PH (OR = 3.51, 95% CI: 1.65-7.45, P < 0.001) and PH-2 (OR = 2.32, 95% CI: 1.13-4.76, P = 0.022). Conclusions: Increased reperfusion volume within severely damaged brain tissue is associated with the occurrence of higher grade of HT.

16.
Stroke ; 51(2): 489-497, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31884904

RESUMEN

Background and Purpose- Selection of patients with acute ischemic stroke for endovascular treatment generally relies on dynamic susceptibility contrast magnetic resonance imaging or computed tomography perfusion. Dynamic susceptibility contrast magnetic resonance imaging requires injection of contrast, whereas computed tomography perfusion requires high doses of ionizing radiation. The purpose of this work was to develop and evaluate a deep learning (DL)-based algorithm for assisting the selection of suitable patients with acute ischemic stroke for endovascular treatment based on 3-dimensional pseudo-continuous arterial spin labeling (pCASL). Methods- A total of 167 image sets of 3-dimensional pCASL data from 137 patients with acute ischemic stroke scanned on 1.5T and 3.0T Siemens MR systems were included for neural network training. The concurrently acquired dynamic susceptibility contrast magnetic resonance imaging was used to produce labels of hypoperfused brain regions, analyzed using commercial software. The DL and 6 machine learning (ML) algorithms were trained with 10-fold cross-validation. The eligibility for endovascular treatment was determined retrospectively based on the criteria of perfusion/diffusion mismatch in the DEFUSE 3 trial (Endovascular Therapy Following Imaging Evaluation for Ischemic Stroke). The trained DL algorithm was further applied on twelve 3-dimensional pCASL data sets acquired on 1.5T and 3T General Electric MR systems, without fine-tuning of parameters. Results- The DL algorithm can predict the dynamic susceptibility contrast-defined hypoperfusion region in pCASL with a voxel-wise area under the curve of 0.958, while the 6 ML algorithms ranged from 0.897 to 0.933. For retrospective determination for subject-level endovascular treatment eligibility, the DL algorithm achieved an accuracy of 92%, with a sensitivity of 0.89 and specificity of 0.95. When applied to the GE pCASL data, the DL algorithm achieved a voxel-wise area under the curve of 0.94 and a subject-level accuracy of 92% for endovascular treatment eligibility. Conclusions- pCASL perfusion magnetic resonance imaging in conjunction with the DL algorithm provides a promising approach for assisting decision-making for endovascular treatment in patients with acute ischemic stroke.


Asunto(s)
Isquemia Encefálica/diagnóstico , Aprendizaje Profundo , Imagen de Perfusión , Accidente Cerebrovascular/diagnóstico , Circulación Cerebrovascular/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Estudios Retrospectivos , Marcadores de Spin
17.
Neuroimage ; 199: 184-193, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158475

RESUMEN

OBJECTIVES: The lenticulostriate arteries (LSAs) with small diameters of a few hundred microns take origin directly from the high flow middle cerebral artery (MCA), making them especially susceptible to damage (e.g. by hypertension). This study aims to present high resolution (isotropic ∼0.5 mm), black blood MRI for the visualization and characterization of LSAs at both 3 T and 7 T. MATERIALS AND METHODS: T1-weighted 3D turbo spin-echo with variable flip angles (T1w TSE-VFA) sequences were optimized for the visualization of LSAs by performing extended phase graph (EPG) simulations. Twenty healthy volunteers (15 under 35 years old, 5 over 60 years old) were imaged with the T1w TSE-VFA sequences at both 3 T and 7 T. Contrast-to-noise ratio (CNR) was quantified, and LSAs were manually segmented using ITK-SNAP. Automated Reeb graph shape analysis was performed to extract features including vessel length and tortuosity. All quantitative metrics were compared between the two field strengths and two age groups using ANOVA. RESULTS: LSAs can be clearly delineated using optimized 3D T1w TSE-VFA at 3 T and 7 T, and a greater number of LSA branches can be detected compared to those by time-of-flight MR angiography (TOF MRA) at 7 T. The CNR of LSAs was comparable between 7 T and 3 T. T1w TSE-VFA showed significantly higher CNR than TOF MRA at the stem portion of the LSAs branching off the medial middle cerebral artery. The mean vessel length and tortuosity were greater on TOF MRA compared to TSE-VFA. The number of detected LSAs by both TSE-VFA and TOF MRA was significantly reduced in aged subjects, while the mean vessel length measured on 7 T TSE-VFA showed significant difference between the two age groups. CONCLUSION: The high-resolution black-blood 3D T1w TSE-VFA sequence offers a new method for the visualization and quantification of LSAs at both 3 T and 7 T, which may be applied for a number of pathological conditions related to the damage of LSAs.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Arteria Cerebral Media/diagnóstico por imagen , Adulto , Anciano , Humanos , Angiografía por Resonancia Magnética/métodos , Persona de Mediana Edad , Adulto Joven
18.
Magn Reson Med ; 81(5): 3065-3079, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30561821

RESUMEN

PURPOSE: To present a novel MR pulse sequence and modeling algorithm to quantify the water exchange rate (kw ) across the blood-brain barrier (BBB) without contrast, and to evaluate its clinical utility in a cohort of elderly subjects at risk of cerebral small vessel disease (SVD). METHODS: A diffusion preparation module with spoiling of non-Carr-Purcell-Meiboom-Gill signals was integrated with pseudo-continuous arterial spin labeling (pCASL) and 3D gradient and spin echo (GRASE) readout. The tissue/capillary fraction of the arterial spin labeling (ASL) signal was separated by appropriate diffusion weighting (b = 50 s/mm2 ). kw was quantified using a single-pass approximation (SPA) model with total generalized variation (TGV) regularization. Nineteen elderly subjects were recruited and underwent 2 MRIs to evaluate the reproducibility of the proposed technique. Correlation analysis was performed between kw and vascular risk factors, Clinical Dementia Rating (CDR) scale, neurocognitive assessments, and white matter hyperintensity (WMH). RESULTS: The capillary/tissue fraction of ASL signal can be reliably differentiated with the diffusion weighting of b = 50 s/mm2 , given ~100-fold difference between the (pseudo-)diffusion coefficients of the 2 compartments. Good reproducibility of kw measurements (intraclass correlation coefficient = 0.75) was achieved. Average kw was 105.0 ± 20.6, 109.6 ± 18.9, and 94.1 ± 19.6 min-1 for whole brain, gray and white matter. kw was increased by 28.2%/19.5% in subjects with diabetes/hypercholesterolemia. Significant correlations between kw and vascular risk factors, CDR, executive/memory function, and the Fazekas scale of WMH were observed. CONCLUSION: A diffusion prepared 3D GRASE pCASL sequence with TGV regularized SPA modeling was proposed to measure BBB water permeability noninvasively with good reproducibility. kw may serve as an imaging marker of cerebral SVD and associated cognitive impairment.


Asunto(s)
Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Enfermedades de los Pequeños Vasos Cerebrales/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Adulto , Anciano , Estudios de Cohortes , Demencia/diagnóstico por imagen , Difusión , Femenino , Voluntarios Sanos , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Permeabilidad , Reproducibilidad de los Resultados , Factores de Riesgo , Marcadores de Spin , Adulto Joven
19.
J Cereb Blood Flow Metab ; 38(3): 382-392, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28266894

RESUMEN

The purpose of this study was to develop and evaluate a scoring system for assessing reperfusion status based on arterial spin labeled (ASL) perfusion MRI in acute ischemic stroke (AIS) patients receiving thrombolysis and/or endovascular treatment. Pseudo-continuous ASL with background suppressed 3D GRASE was acquired along with DWI in 90 patients within 24 h post-treatment. An automatic reperfusion scoring system (auto-RPS) was devised based on the Alberta Stroke Program Early CT Score (ASPECTS) template, and compared with manual RPS and DWI-ASPECTS. TICI (thrombolysis in cerebral infarction) scores were graded in 48 patients who received endovascular treatment. Favorable outcomes were defined by a modified Rankin Scale score of 0-2 at three months. Auto-RPS was positively correlated with DWI-ASPECTS (ρ = 0.6, P < 0.001) and was on average 1 point lower than DWI-ASPECTS ( P < 0.001). The area under the receiver operating characteristic curve for discriminating poor functional outcome (n = 90) was 0.75 (95% CI, 0.64-0.86) for manual RPS, 0.85 (95% CI, 0.76-0.94) for auto-RPS, and 0.81 (95% CI, 0.71-0.90) for DWI-ASPECTS. Multiple logistic regression analysis in the TICI-graded patients (n = 48) showed that auto-RPS is highly associated with functional outcome (OR = 25.2, 95% CI 4.02-496, P < 0.01). Post treatment auto-RPS within 24 h provides a useful tool to predict functional outcome in AIS patients.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Arterias Cerebrales/diagnóstico por imagen , Daño por Reperfusión/diagnóstico por imagen , Accidente Cerebrovascular/diagnóstico por imagen , Adulto , Anciano , Anciano de 80 o más Años , Infarto Cerebral/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Procedimientos Endovasculares , Femenino , Humanos , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Curva ROC , Reperfusión , Marcadores de Spin , Terapia Trombolítica , Resultado del Tratamiento
20.
Proc SPIE Int Soc Opt Eng ; 9039: 90390I, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25076831

RESUMEN

Most white matter related neurological disease exhibit a large number of White Matter Hyperintensities (WMHs) on FLAIR MRI images. However, these lesions are not well understood. At the same time, Diffusion MRI has been gaining popularity as a powerful method of characterizing White Matter (WM) integrity. This work aims to study the behavior of the diffusion signal within the WMH voxels. The goal is to develop hybrid MR metrics that leverage information from multiple MR acquisitions to solve clinical problems. In our case, we are trying to address the WMH penumbra (as defined by Maillard et al 20112) where WMH delineates a foci that is more widespread than than the actual damage area presumably due to acute inflammation. Our results show that diffusion MR metrics may be able to better delineate tissue that is inflamed versus scar tissue but may be less specific to lesions than FLAIR. Therefore, a hybrid metric that encodes information from both FLAIR and Diffusion MR may yield new and novel imaging information about the progression of white matter disease progression. We hope that this work also demonstrates how future PACS systems could have image fusion capabilities that would be able to leverage information from multiple imaging series to yield new and novel imaging contrast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...