RESUMEN
The in vitro transcription (IVT) of messenger ribonucleic acid (mRNA) from the linearized deoxyribonucleic acid (DNA) template of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant (B.1.617.2) was optimized for total mRNA yield and purity (by percent intact mRNA) utilizing machine learning in conjunction with automated, high-throughput liquid handling technology. An iterative Bayesian optimization approach successfully optimized 11 critical process parameters in 42 reactions across 5 experimental rounds. Once the optimized conditions were achieved, an automated, high-throughput screen was conducted to evaluate commercially available T7 RNA polymerases for rate and quality of mRNA production. Final conditions showed a 12% yield improvement and a 50% reduction in reaction time, while simultaneously significantly decreasing (up to 44% reduction) the use of expensive reagents. This novel platform offers a powerful new approach for optimizing IVT reactions for mRNA production.
Asunto(s)
ARN Mensajero , SARS-CoV-2 , Transcripción Genética , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Mensajero/genética , Humanos , Vacunas contra la COVID-19 , Ensayos Analíticos de Alto Rendimiento/métodos , ARN Viral/genética , ARN Viral/metabolismo , Algoritmos , Vacunas de ARNm , Aprendizaje Automático , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Teorema de Bayes , COVID-19/virología , COVID-19/prevención & control , Vacunas Sintéticas/biosíntesis , Proteínas ViralesRESUMEN
Inhibition of leucine-rich repeat kinase 2 is a genetically supported mechanism for the treatment of Parkinson's disease. We previously disclosed the discovery of an indazole series lead that demonstrated both safety and translational risks. The safety risks were hypothesized to be of unknown origin, so structural diversity in subsequent chemical matter was prioritized. The translational risks were identified due to a low brain Kpu,u in nonhuman primate studies, which raised concern over the use of an established peripheral biomarker as a surrogate for central target engagement. Given these challenges, the team sought to leverage structure- and property-based drug design and expanded efflux transporter profiling to identify structurally distinct leads with enhanced CNS drug-likeness. Herein, we describe the discovery of a "reinvented" indazole series with improved physicochemical properties and efflux transporter profiles while maintaining excellent potency and off-target kinase selectivity, which resulted in advanced lead, compound 23.
Asunto(s)
Indazoles , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Inhibidores de Proteínas Quinasas , Indazoles/farmacología , Indazoles/química , Indazoles/síntesis química , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Animales , Relación Estructura-Actividad , Descubrimiento de Drogas , Ratas , Estructura MolecularRESUMEN
Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.
Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Encéfalo/metabolismo , Mutación , Canales Iónicos/metabolismoRESUMEN
Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.
Asunto(s)
Enfermedad de Parkinson , Ratas , Humanos , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson/tratamiento farmacológico , Indazoles/farmacología , Indazoles/uso terapéutico , Leucocitos Mononucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Encéfalo/metabolismo , Adenosina TrifosfatoRESUMEN
Research in the field of asymmetric catalysis over the past half century has resulted in landmark advances, enabling the efficient synthesis of chiral building blocks, pharmaceuticals and natural products1-3. A small number of asymmetric catalytic reactions have been identified that display high selectivity across a broad scope of substrates; not coincidentally, these are the reactions that have the greatest impact on how enantioenriched compounds are synthesized4-8. We postulate that substrate generality in asymmetric catalysis is rare not simply because it is intrinsically difficult to achieve, but also because of the way chiral catalysts are identified and optimized9. Typical discovery campaigns rely on a single model substrate, and thus select for high performance in a narrow region of chemical space. Here we put forth a practical approach for using multiple model substrates to select simultaneously for both enantioselectivity and generality in asymmetric catalytic reactions from the outset10,11. Multisubstrate screening is achieved by conducting high-throughput chiral analyses by supercritical fluid chromatography-mass spectrometry with pooled samples. When applied to Pictet-Spengler reactions, the multisubstrate screening approach revealed a promising and unexpected lead for the general enantioselective catalysis of this important transformation, which even displayed high enantioselectivity for substrate combinations outside of the screening set.
Asunto(s)
Productos Biológicos , Técnicas de Química Sintética , Preparaciones Farmacéuticas , Productos Biológicos/síntesis química , Productos Biológicos/química , Catálisis , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Estereoisomerismo , Especificidad por Sustrato , Cromatografía con Fluido Supercrítico , Espectrometría de Masas , Técnicas de Química Sintética/métodosRESUMEN
The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.
Asunto(s)
Antiparkinsonianos/síntesis química , Antiparkinsonianos/farmacología , Encéfalo/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Quinazolinas/síntesis química , Quinazolinas/farmacología , Antiparkinsonianos/farmacocinética , Disponibilidad Biológica , Diseño de Fármacos , Humanos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacocinética , Relación Estructura-ActividadRESUMEN
Comprehensive synthetic strategies afforded a diverse set of structurally unique bicyclic proline-containing arginase inhibitors with a high degree of three-dimensionality. The analogs that favored the Cγ-exo conformation of the proline improved the arginase potency over the initial lead. The novel synthetic strategies reported here not only enable access to previously unknown stereochemically complex proline derivatives but also provide a foundation for the future synthesis of bicyclic proline analogs, which incorporate inherent three-dimensional character into building blocks, medicine, and catalysts and could have a profound impact on the conformation of proline-containing peptides and macrocycles.