Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(30): eadd8766, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506208

RESUMEN

Soluble human lectins are critical components of innate immunity. Genetic models suggest that lectins influence host-resident microbiota, but their specificity for commensal and mutualist species is understudied. Elucidating lectins' roles in regulating microbiota requires an understanding of which microbial species they bind within native communities. To profile human lectin recognition, we developed Lectin-Seq. We apply Lectin-Seq to human fecal microbiota using the soluble mannose-binding lectin (MBL) and intelectin-1 (hItln1). Although each lectin binds a substantial percentage of the samples (10 to 20%), the microbial interactomes of MBL and hItln1 differ markedly in composition and diversity. MBL binding is highly selective for a small subset of species commonly associated with humans. In contrast, hItln1's interaction profile encompasses a broad range of lower-abundance species. Our data uncover stark differences in the commensal recognition properties of human lectins.


Asunto(s)
Inmunidad Innata , Lectinas , Humanos , Lectinas/genética
2.
Proc Natl Acad Sci U S A ; 120(22): e2216304120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216558

RESUMEN

The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.


Asunto(s)
Interacciones Microbiota-Huesped , Péptidos y Proteínas de Señalización Intercelular , Lectinas , Humanos , Pared Celular/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polisacáridos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
3.
mBio ; 11(1)2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32047134

RESUMEN

Macrodomain (MD), a highly conserved protein fold present in a subset of plus-strand RNA viruses, binds to and hydrolyzes ADP-ribose (ADPr) from ADP-ribosylated proteins. ADPr-binding by the alphavirus nonstructural protein 3 (nsP3) MD is necessary for the initiation of virus replication in neural cells, whereas hydrolase activity facilitates replication complex amplification. To determine the importance of these activities for pathogenesis of alphavirus encephalomyelitis, mutations were introduced into the nsP3 MD of Sindbis virus (SINV), and the effects on ADPr binding and hydrolase activities, virus replication, immune responses, and disease were assessed. Elimination of ADPr-binding and hydrolase activities (G32E) severely impaired in vitro replication of SINV in neural cells and in vivo replication in the central nervous systems of 2-week-old mice with reversion to wild type (WT) (G) or selection of a less compromising change (S) during replication. SINVs with decreased binding and hydrolase activities (G32S and G32A) or with hydrolase deficiency combined with better ADPr-binding (Y114A) were less virulent than WT virus. Compared to the WT, the G32S virus replicated less well in both the brain and spinal cord, induced similar innate responses, and caused less severe disease with full recovery of survivors, whereas the Y114A virus replicated well, induced higher expression of interferon-stimulated and NF-κB-induced genes, and was cleared more slowly from the spinal cord with persistent paralysis in survivors. Therefore, MD function was important for neural cell replication both in vitro and in vivo and determined the outcome from alphavirus encephalomyelitis in mice.IMPORTANCE Viral encephalomyelitis is an important cause of long-term disability, as well as acute fatal disease. Identifying viral determinants of outcome helps in assessing disease severity and developing new treatments. Mosquito-borne alphaviruses infect neurons and cause fatal disease in mice. The highly conserved macrodomain of nonstructural protein 3 binds and can remove ADP-ribose (ADPr) from ADP-ribosylated proteins. To determine the importance of these functions for virulence, recombinant mutant viruses were produced. If macrodomain mutations eliminated ADPr-binding or hydrolase activity, viruses did not grow. If the binding and hydrolase activities were impaired, the viruses grew less well than the wild-type virus, induced similar innate responses, and caused less severe disease, and most of the infected mice recovered. If binding was improved, but hydrolase activity was decreased, the virus replicated well and induced greater innate responses than did the WT, but clearance from the nervous system was impaired, and mice remained paralyzed. Therefore, macrodomain function determined the outcome of alphavirus encephalomyelitis.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Hidrolasas/metabolismo , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Proteínas no Estructurales Virales/metabolismo , Adenosina Difosfato Ribosa/genética , Animales , Encéfalo/virología , Línea Celular , Encefalomielitis/virología , Femenino , Hidrolasas/genética , Ratones , Mutación , Neuronas/virología , Transducción de Señal , Proteínas no Estructurales Virales/genética , Virulencia , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA