Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Mol Gastroenterol Hepatol ; 17(6): 1007-1024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38336172

RESUMEN

BACKGROUND & AIMS: In the classic form of α1-antitrypsin deficiency (ATD), the misfolded α1-antitrypsin Z (ATZ) variant accumulates in the endoplasmic reticulum (ER) of liver cells. A gain-of-function proteotoxic mechanism is responsible for chronic liver disease in a subgroup of homozygotes. Proteostatic response pathways, including conventional endoplasmic reticulum-associated degradation and autophagy, have been proposed as the mechanisms that allow cellular adaptation and presumably protection from the liver disease phenotype. Recent studies have concluded that a distinct lysosomal pathway called endoplasmic reticulum-to-lysosome completely supplants the role of the conventional macroautophagy pathway in degradation of ATZ. Here, we used several state-of-the-art approaches to characterize the proteostatic responses more fully in cellular systems that model ATD. METHODS: We used clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing coupled to a cell selection step by fluorescence-activated cell sorter to perform screening for proteostasis genes that regulate ATZ accumulation and combined that with selective genome editing in 2 other model systems. RESULTS: Endoplasmic reticulum-associated degradation genes are key early regulators and multiple autophagy genes, from classic as well as from ER-to-lysosome and other newly described ER-phagy pathways, participate in degradation of ATZ in a manner that is temporally regulated and evolves as ATZ accumulation persists. Time-dependent changes in gene expression are accompanied by specific ultrastructural changes including dilation of the ER, formation of globular inclusions, budding of autophagic vesicles, and alterations in the overall shape and component parts of mitochondria. CONCLUSIONS: Macroautophagy is a critical component of the proteostasis response to cellular ATZ accumulation and it becomes more important over time as ATZ synthesis continues unabated. Multiple subtypes of macroautophagy and nonautophagic lysosomal degradative pathways are needed to respond to the high concentrations of misfolded protein that characterizes ATD and these pathways are attractive candidates for genetic variants that predispose to the hepatic phenotype.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico , Lisosomas , Macroautofagia , Proteostasis , Deficiencia de alfa 1-Antitripsina , alfa 1-Antitripsina , Deficiencia de alfa 1-Antitripsina/patología , Deficiencia de alfa 1-Antitripsina/genética , Deficiencia de alfa 1-Antitripsina/metabolismo , Humanos , Lisosomas/metabolismo , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/genética , Retículo Endoplásmico/metabolismo , Sistemas CRISPR-Cas , Autofagia/genética , Edición Génica
2.
J Med Chem ; 66(13): 9095-9119, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37399505

RESUMEN

The allosteric inhibitor of the mechanistic target of rapamycin (mTOR) everolimus reduces seizures in tuberous sclerosis complex (TSC) patients through partial inhibition of mTOR functions. Due to its limited brain permeability, we sought to develop a catalytic mTOR inhibitor optimized for central nervous system (CNS) indications. We recently reported an mTOR inhibitor (1) that is able to block mTOR functions in the mouse brain and extend the survival of mice with neuronal-specific ablation of the Tsc1 gene. However, 1 showed the risk of genotoxicity in vitro. Through structure-activity relationship (SAR) optimization, we identified compounds 9 and 11 without genotoxicity risk. In neuronal cell-based models of mTOR hyperactivity, both corrected aberrant mTOR activity and significantly improved the survival rate of mice in the Tsc1 gene knockout model. Unfortunately, 9 and 11 showed limited oral exposures in higher species and dose-limiting toxicities in cynomolgus macaque, respectively. However, they remain optimal tools to explore mTOR hyperactivity in CNS disease models.


Asunto(s)
Inhibidores mTOR , Sirolimus , Ratones , Animales , Síndrome , Sistema Nervioso Central/metabolismo , Encéfalo/metabolismo , Serina-Treonina Quinasas TOR , Adenosina Trifosfato
3.
Autophagy ; 19(8): 2171-2174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37255335

RESUMEN

As a maturing field that continues to provide fundamental insights into cell physiology, autophagy is also beginning to attract considerable interest from the biotechnology/pharmaceutical sector. For this Editor's corner, I thought it would be both useful and interesting to talk with somebody who has spent a lot of time in the commercial sphere, working on autophagy and related processes. I was fortunate that Dr. Leon Murphy, Chief Scientific Officer at Casma therapeutics, was willing and able to answer my questions. In addition to his insights on the commercial interest for autophagy, Dr. Murphy also shared his personal experience on the scientific life working in large and small pharmaceutical companies.


Asunto(s)
Autofagia , Preparaciones Farmacéuticas
4.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36757797

RESUMEN

Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Terpenos , Nucleósidos , Macrófagos/microbiología , Lípidos , Lisosomas
5.
Sci Adv ; 7(40): eabj2485, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34597140

RESUMEN

Adaptive changes in lysosomal capacity are driven by the transcription factors TFEB and TFE3 in response to increased autophagic flux and endolysosomal stress, yet the molecular details of their activation are unclear. LC3 and GABARAP members of the ATG8 protein family are required for selective autophagy and sensing perturbation within the endolysosomal system. Here, we show that during the conjugation of ATG8 to single membranes (CASM), Parkin-dependent mitophagy, and Salmonella-induced xenophagy, the membrane conjugation of GABARAP, but not LC3, is required for activation of TFEB/TFE3 to control lysosomal capacity. GABARAP directly binds to a previously unidentified LC3-interacting motif (LIR) in the FLCN/FNIP tumor suppressor complex and mediates sequestration to GABARAP-conjugated membrane compartments. This disrupts FLCN/FNIP GAP function toward RagC/D, resulting in impaired substrate-specific mTOR-dependent phosphorylation of TFEB. Thus, the GABARAP-FLCN/FNIP-TFEB axis serves as a molecular sensor that coordinates lysosomal homeostasis with perturbations and cargo flux within the autophagy-lysosomal network.

6.
PLoS One ; 15(8): e0235551, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32833964

RESUMEN

VPS34 is a key regulator of endomembrane dynamics and cargo trafficking, and is essential in cultured cell lines and in mice. To better characterize the role of VPS34 in cell growth, we performed unbiased cell line profiling studies with the selective VPS34 inhibitor PIK-III and identified RKO as a VPS34-dependent cellular model. Pooled CRISPR screen in the presence of PIK-III revealed endolysosomal genes as genetic suppressors. Dissecting VPS34-dependent alterations with transcriptional profiling, we found the induction of hypoxia response and cholesterol biosynthesis as key signatures. Mechanistically, acute VPS34 inhibition enhanced lysosomal degradation of transferrin and low-density lipoprotein receptors leading to impaired iron and cholesterol uptake. Excess soluble iron, but not cholesterol, was sufficient to partially rescue the effects of VPS34 inhibition on mitochondrial respiration and cell growth, indicating that iron limitation is the primary driver of VPS34-dependency in RKO cells. Loss of RAB7A, an endolysosomal marker and top suppressor in our genetic screen, blocked transferrin receptor degradation, restored iron homeostasis and reversed the growth defect as well as metabolic alterations due to VPS34 inhibition. Altogether, our findings suggest that impaired iron mobilization via the VPS34-RAB7A axis drive VPS34-dependence in certain cancer cells.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hierro/metabolismo , Neoplasias/metabolismo , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Colesterol/biosíntesis , Colesterol/genética , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Receptores de LDL/metabolismo , Transferrina/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
7.
Trends Biochem Sci ; 45(12): 1080-1093, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32839099

RESUMEN

Autophagy is a lysosome-dependent intracellular degradation system required for various physiological processes and can be dysregulated in human disease. To understand its biological significance and underlying mechanisms, measuring autophagic activity (i.e., autophagic flux) is critical. However, navigating which assays to use, and when, is complicated and at times the results are often interpreted inappropriately. This review will summarize both advantages and disadvantages of currently available methods to monitor autophagy. In addition, we discuss how these assays should be used in high-throughput screens to identify autophagy-modulating drugs and genes and the general features needed for biomarkers to assess autophagy in humans.


Asunto(s)
Autofagia , Bioensayo , Autofagia/efectos de los fármacos , Autofagia/genética , Biomarcadores/análisis , Evaluación Preclínica de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Lisosomas/metabolismo
8.
J Med Chem ; 63(3): 1068-1083, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31955578

RESUMEN

Recent clinical evaluation of everolimus for seizure reduction in patients with tuberous sclerosis complex (TSC), a disease with overactivated mechanistic target of rapamycin (mTOR) signaling, has demonstrated the therapeutic value of mTOR inhibitors for central nervous system (CNS) indications. Given that everolimus is an incomplete inhibitor of the mTOR function, we sought to develop a new mTOR inhibitor that has improved properties and is suitable for CNS disorders. Starting from an in-house purine-based compound, optimization of the physicochemical properties of a thiazolopyrimidine series led to the discovery of the small molecule 7, a potent and selective brain-penetrant ATP-competitive mTOR inhibitor. In neuronal cell-based models of mTOR hyperactivity, 7 corrected the mTOR pathway activity and the resulting neuronal overgrowth phenotype. The new mTOR inhibitor 7 showed good brain exposure and significantly improved the survival rate of mice with neuronal-specific ablation of the Tsc1 gene. These results demonstrate the potential utility of this tool compound to test therapeutic hypotheses that depend on mTOR hyperactivity in the CNS.


Asunto(s)
Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Convulsiones/tratamiento farmacológico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Tiazoles/uso terapéutico , Animales , Anticonvulsivantes/metabolismo , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapéutico , Sitios de Unión , Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/metabolismo , Pirimidinas/farmacocinética , Ratas , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Tiazoles/metabolismo , Tiazoles/farmacocinética , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética
9.
Leukemia ; 33(4): 981-994, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30185934

RESUMEN

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Asunto(s)
Aminoquinolinas/farmacología , Autofagia , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Células Madre Neoplásicas/patología , Poliaminas/farmacología , Animales , Apoptosis , Proliferación Celular , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Tumorales Cultivadas
10.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30126924

RESUMEN

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Asunto(s)
Autofagia/fisiología , Movilización Lipídica/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/fisiología , Retículo Endoplásmico/metabolismo , Ácidos Grasos/metabolismo , Técnicas de Inactivación de Genes , Células HeLa , Homeostasis , Humanos , Lentivirus , Gotas Lipídicas/metabolismo , Movilización Lipídica/genética , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
11.
mSystems ; 2(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29152585

RESUMEN

Cohabitation of microbial communities with the host enables the formation of a symbiotic relationship that maintains homeostasis in the gut and beyond. One prevailing model suggests that this relationship relies on the capacity of host cells and tissues to remain tolerant to the strong immune stimulation generated by the microbiota such as the activation of Toll-like receptor 4 (TLR4) pathways by lipopolysaccharide (LPS). Indeed, gut microbial LPS is thought to be one of the most potent activators of innate immune signaling and an important mediator of the microbiome's influence on host physiology. In this study, we performed computational and experimental analyses of healthy human fecal samples to examine the TLR4 signaling capacity of the gut microbiota. These analyses revealed that an immunoinhibitory activity of LPS, conserved across the members of the order Bacteroidales and derived from an underacylated structural feature, silences TLR4 signaling for the entire consortium of organisms inhabiting the human gut. Comparative analysis of metagenomic data from the Human Microbiome Project and healthy-donor samples indicates that immune silencing via LPS is a microbe-intrinsic feature in all healthy adults. These findings challenge the current belief that robust TLR4 signaling is a feature of the microbiome and demonstrate that microbiome-derived LPS has the ability to facilitate host tolerance of gut microbes. These findings have broad implications for how we model host-microbe interactions and for our understanding of microbiome-linked disease. IMPORTANCE While the ability for humans to host a complex microbial ecosystem is an essential property of life, the mechanisms allowing for immune tolerance of such a large microbial load are not completely understood and are currently the focus of intense research. This study shows that an important proinflammatory pathway that is commonly triggered by pathogenic bacteria upon interaction with the host is, in fact, actively repressed by the bacteria of the gut microbiome, supporting the idea that beneficial microbes themselves contribute to the immune tolerance in support of homeostasis. These findings are important for two reasons. First, many currently assume that proinflammatory signaling by lipopolysaccharide is a fundamental feature of the gut flora. This assumption influences greatly how host-microbiome interactions are theoretically modeled but also how they are experimentally studied, by using robust TLR signaling conditions to simulate commensals. Second, elucidation of the mechanisms that support host-microbe tolerance is key to the development of therapeutics for both intestinal and systemic inflammatory disorders.

12.
Nat Commun ; 8(1): 1804, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-29180704

RESUMEN

Vps34 PI3K is thought to be the main producer of phosphatidylinositol-3-monophosphate, a lipid that controls intracellular vesicular trafficking. The organismal impact of systemic inhibition of Vps34 kinase activity is not completely understood. Here we show that heterozygous Vps34 kinase-dead mice are healthy and display a robustly enhanced insulin sensitivity and glucose tolerance, phenotypes mimicked by a selective Vps34 inhibitor in wild-type mice. The underlying mechanism of insulin sensitization is multifactorial and not through the canonical insulin/Akt pathway. Vps34 inhibition alters cellular energy metabolism, activating the AMPK pathway in liver and muscle. In liver, Vps34 inactivation mildly dampens autophagy, limiting substrate availability for mitochondrial respiration and reducing gluconeogenesis. In muscle, Vps34 inactivation triggers a metabolic switch from oxidative phosphorylation towards glycolysis and enhanced glucose uptake. Our study identifies Vps34 as a new drug target for insulin resistance in Type-2 diabetes, in which the unmet therapeutic need remains substantial.


Asunto(s)
Resistencia a la Insulina , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia/fisiología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasas Clase III , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Técnicas de Sustitución del Gen , Glucosa/análisis , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Glucólisis/fisiología , Hepatocitos , Heterocigoto , Humanos , Insulina/metabolismo , Hígado/citología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Cultivo Primario de Células
13.
Cell Rep ; 20(10): 2341-2356, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877469

RESUMEN

Iron is vital for many homeostatic processes, and its liberation from ferritin nanocages occurs in the lysosome. Studies indicate that ferritin and its binding partner nuclear receptor coactivator-4 (NCOA4) are targeted to lysosomes by a form of selective autophagy. By using genome-scale functional screening, we identify an alternative lysosomal transport pathway for ferritin that requires FIP200, ATG9A, VPS34, and TAX1BP1 but lacks involvement of the ATG8 lipidation machinery that constitutes classical macroautophagy. TAX1BP1 binds directly to NCOA4 and is required for lysosomal trafficking of ferritin under basal and iron-depleted conditions. Under basal conditions ULK1/2-FIP200 controls ferritin turnover, but its deletion leads to TAX1BP1-dependent activation of TBK1 that regulates redistribution of ATG9A to the Golgi enabling continued trafficking of ferritin. Cells expressing an amyotrophic lateral sclerosis (ALS)-associated TBK1 allele are incapable of degrading ferritin suggesting a molecular mechanism that explains the presence of iron deposits in patient brain biopsies.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/fisiología , ADN Complementario/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Línea Celular , Línea Celular Tumoral , Ferritinas/genética , Ferritinas/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas de Transporte Vesicular/genética
14.
Cell Host Microbe ; 22(1): 25-37.e6, 2017 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-28704649

RESUMEN

Host factors in the intestine help select for bacteria that promote health. Certain commensals can utilize mucins as an energy source, thus promoting their colonization. However, health conditions such as inflammatory bowel disease (IBD) are associated with a reduced mucus layer, potentially leading to dysbiosis associated with this disease. We characterize the capability of commensal species to cleave and transport mucin-associated monosaccharides and identify several Clostridiales members that utilize intestinal mucins. One such mucin utilizer, Peptostreptococcus russellii, reduces susceptibility to epithelial injury in mice. Several Peptostreptococcus species contain a gene cluster enabling production of the tryptophan metabolite indoleacrylic acid (IA), which promotes intestinal epithelial barrier function and mitigates inflammatory responses. Furthermore, metagenomic analysis of human stool samples reveals that the genetic capability of microbes to utilize mucins and metabolize tryptophan is diminished in IBD patients. Our data suggest that stimulating IA production could promote anti-inflammatory responses and have therapeutic benefits.


Asunto(s)
Indoles/metabolismo , Indoles/farmacología , Inflamación/metabolismo , Mucosa Intestinal/microbiología , Peptostreptococcus/metabolismo , Simbiosis , Animales , Antiinflamatorios/farmacología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Clostridiales/genética , Clostridiales/metabolismo , Colon/microbiología , Colon/patología , Citocinas/metabolismo , Disbiosis/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Ratones , Mucina 2/genética , Mucina 2/metabolismo , Mucinas/genética , Mucinas/metabolismo , Organoides
15.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28596378

RESUMEN

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Asunto(s)
Autofagia , Terminología como Asunto , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Redes Reguladoras de Genes , Ratones , Saccharomyces cerevisiae/fisiología
16.
Elife ; 52016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27351204

RESUMEN

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Citometría de Flujo , Marcación de Gen , Pruebas Genéticas , Humanos , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
17.
JAMA Neurol ; 73(7): 836-845, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27159400

RESUMEN

IMPORTANCE: Focal cortical dysplasia (FCD), hemimegalencephaly, and megalencephaly constitute a spectrum of malformations of cortical development with shared neuropathologic features. These disorders are associated with significant childhood morbidity and mortality. OBJECTIVE: To identify the underlying molecular cause of FCD, hemimegalencephaly, and diffuse megalencephaly. DESIGN, SETTING, AND PARTICIPANTS: Patients with FCD, hemimegalencephaly, or megalencephaly (mean age, 11.7 years; range, 2-32 years) were recruited from Pediatric Hospital A. Meyer, the University of Hong Kong, and Seattle Children's Research Institute from June 2012 to June 2014. Whole-exome sequencing (WES) was performed on 8 children with FCD or hemimegalencephaly using standard-depth (50-60X) sequencing in peripheral samples (blood, saliva, or skin) from the affected child and their parents and deep (150-180X) sequencing in affected brain tissue. Targeted sequencing and WES were used to screen 93 children with molecularly unexplained diffuse or focal brain overgrowth. Histopathologic and functional assays of phosphatidylinositol 3-kinase-AKT (serine/threonine kinase)-mammalian target of rapamycin (mTOR) pathway activity in resected brain tissue and cultured neurons were performed to validate mutations. MAIN OUTCOMES AND MEASURES: Whole-exome sequencing and targeted sequencing identified variants associated with this spectrum of developmental brain disorders. RESULTS: Low-level mosaic mutations of MTOR were identified in brain tissue in 4 children with FCD type 2a with alternative allele fractions ranging from 0.012 to 0.086. Intermediate-level mosaic mutation of MTOR (p.Thr1977Ile) was also identified in 3 unrelated children with diffuse megalencephaly and pigmentary mosaicism in skin. Finally, a constitutional de novo mutation of MTOR (p.Glu1799Lys) was identified in 3 unrelated children with diffuse megalencephaly and intellectual disability. Molecular and functional analysis in 2 children with FCD2a from whom multiple affected brain tissue samples were available revealed a mutation gradient with an epicenter in the most epileptogenic area. When expressed in cultured neurons, all MTOR mutations identified here drive constitutive activation of mTOR complex 1 and enlarged neuronal size. CONCLUSIONS AND RELEVANCE: In this study, mutations of MTOR were associated with a spectrum of brain overgrowth phenotypes extending from FCD type 2a to diffuse megalencephaly, distinguished by different mutations and levels of mosaicism. These mutations may be sufficient to cause cellular hypertrophy in cultured neurons and may provide a demonstration of the pattern of mosaicism in brain and substantiate the link between mosaic mutations of MTOR and pigmentary mosaicism in skin.


Asunto(s)
Malformaciones del Desarrollo Cortical/genética , Megalencefalia/genética , Mosaicismo , Mutación/genética , Serina-Treonina Quinasas TOR/genética , Adolescente , Adulto , Aminoácidos/farmacología , Animales , Células Cultivadas , Corteza Cerebral/citología , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/genética , Embrión de Mamíferos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Estudios de Asociación Genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Diana Mecanicista del Complejo 1 de la Rapamicina , Megalencefalia/diagnóstico por imagen , Complejos Multiproteicos/farmacología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Ratas , Estudios Retrospectivos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacología , Adulto Joven
18.
ACS Med Chem Lett ; 7(1): 72-6, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26819669

RESUMEN

Autophagy is a dynamic process that regulates lysosomal-dependent degradation of cellular components. Until recently the study of autophagy has been hampered by the lack of reliable pharmacological tools, but selective inhibitors are now available to modulate the PI 3-kinase VPS34, which is required for autophagy. Here we describe the discovery of potent and selective VPS34 inhibitors, their pharmacokinetic (PK) properties, and ability to inhibit autophagy in cellular and mouse models.

19.
Proc Natl Acad Sci U S A ; 113(1): 182-7, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26677873

RESUMEN

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Cloroquina/farmacología , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Autofagia/genética , Proteína 7 Relacionada con la Autofagia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Clorhidrato de Erlotinib/farmacología , Técnicas de Inactivación de Genes , Humanos , Indoles/farmacología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Tolerancia a Radiación/genética , Sunitinib , Enzimas Activadoras de Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...