Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38800660

RESUMEN

Extant life contains numerous non-equilibrium mechanisms to create order not achievable at equilibrium; it is generally assumed that these mechanisms evolved because the resulting order was sufficiently beneficial to overcome associated costs of time and energy. Here, we identify a broad range of conditions under which non-equilibrium order-creating mechanisms will evolve as an inevitable consequence of self-replication, even if the order is not directly functional. We show that models of polymerases, when expanded to include known stalling effects, can evolve kinetic proofreading through selection for fast replication alone, consistent with data from recent mutational screens. Similarly, replication contingent on fast self-assembly can select for non-equilibrium instabilities and result in more ordered structures without any direct selection for order. We abstract these results into a framework that predicts that self-replication intrinsically amplifies dissipative order-enhancing mechanisms if the distribution of replication times is wide enough. Our work suggests the intriguing possibility that non-equilibrium order can arise more easily than assumed, even before that order is directly functional, with consequences impacting mutation rate evolution and kinetic traps in self-assembly to the origin of life.

2.
Nature ; 625(7995): 500-507, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38233621

RESUMEN

Inspired by biology's most sophisticated computer, the brain, neural networks constitute a profound reformulation of computational principles1-3. Analogous high-dimensional, highly interconnected computational architectures also arise within information-processing molecular systems inside living cells, such as signal transduction cascades and genetic regulatory networks4-7. Might collective modes analogous to neural computation be found more broadly in other physical and chemical processes, even those that ostensibly play non-information-processing roles? Here we examine nucleation during self-assembly of multicomponent structures, showing that high-dimensional patterns of concentrations can be discriminated and classified in a manner similar to neural network computation. Specifically, we design a set of 917 DNA tiles that can self-assemble in three alternative ways such that competitive nucleation depends sensitively on the extent of colocalization of high-concentration tiles within the three structures. The system was trained in silico to classify a set of 18 grayscale 30 × 30 pixel images into three categories. Experimentally, fluorescence and atomic force microscopy measurements during and after a 150 hour anneal established that all trained images were correctly classified, whereas a test set of image variations probed the robustness of the results. Although slow compared to previous biochemical neural networks, our approach is compact, robust and scalable. Our findings suggest that ubiquitous physical phenomena, such as nucleation, may hold powerful information-processing capabilities when they occur within high-dimensional multicomponent systems.


Asunto(s)
ADN , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas , Simulación por Computador , ADN/química , ADN/ultraestructura , Cinética , Microscopía de Fuerza Atómica , Microscopía Fluorescente
3.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260536

RESUMEN

Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.

4.
ArXiv ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38259349

RESUMEN

Microbial ecosystems are commonly modeled by fixed interactions between species in steady exponential growth states. However, microbes often modify their environments so strongly that they are forced out of the exponential state into stressed or non-growing states. Such dynamics are typical of ecological succession in nature and serial-dilution cycles in the laboratory. Here, we introduce a phenomenological model, the Community State model, to gain insight into the dynamic coexistence of microbes due to changes in their physiological states. Our model bypasses specific interactions (e.g., nutrient starvation, stress, aggregation) that lead to different combinations of physiological states, referred to collectively as "community states", and modeled by specifying the growth preference of each species along a global ecological coordinate, taken here to be the total community biomass density. We identify three key features of such dynamical communities that contrast starkly with steady-state communities: increased tolerance of community diversity to fast growth rates of species dominating different community states, enhanced community stability through staggered dominance of different species in different community states, and increased requirement on growth dominance for the inclusion of late-growing species. These features, derived explicitly for simplified models, are proposed here to be principles aiding the understanding of complex dynamical communities. Our model shifts the focus of ecosystem dynamics from bottom-up studies based on idealized inter-species interaction to top-down studies based on accessible macroscopic observables such as growth rates and total biomass density, enabling quantitative examination of community-wide characteristics.

5.
Proc Natl Acad Sci U S A ; 120(52): e2309387120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127977

RESUMEN

Our planet is a self-sustaining ecosystem powered by light energy from the sun, but roughly closed to matter. Many ecosystems on Earth are also approximately closed to matter and recycle nutrients by self-organizing stable nutrient cycles, e.g., microbial mats, lakes, open ocean gyres. However, existing ecological models do not exhibit the self-organization and dynamical stability widely observed in such planetary-scale ecosystems. Here, we advance a conceptual model that explains the self-organization, stability, and emergent features of closed microbial ecosystems. Our model incorporates the bioenergetics of metabolism into an ecological framework. By studying this model, we uncover a crucial thermodynamic feedback loop that enables metabolically diverse communities to almost always stabilize nutrient cycles. Surprisingly, highly diverse communities self-organize to extract [Formula: see text]10[Formula: see text] of the maximum extractable energy, or [Formula: see text]100 fold more than randomized communities. Further, with increasing diversity, distinct ecosystems show strongly correlated fluxes through nutrient cycles. However, as the driving force from light increases, the fluxes of nutrient cycles become more variable and species-dependent. Our results highlight that self-organization promotes the efficiency and stability of complex ecosystems at extracting energy from the environment, even in the absence of any centralized coordination.


Asunto(s)
Sistemas Ecológicos Cerrados , Ecosistema , Modelos Teóricos , Termodinámica , Nutrientes
6.
Dev Cell ; 58(16): 1462-1476.e8, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37339629

RESUMEN

Cell proliferation is a central process in tissue development, homeostasis, and disease, yet how proliferation is regulated in the tissue context remains poorly understood. Here, we introduce a quantitative framework to elucidate how tissue growth dynamics regulate cell proliferation. Using MDCK epithelial monolayers, we show that a limiting rate of tissue expansion creates confinement that suppresses cell growth; however, this confinement does not directly affect the cell cycle. This leads to uncoupling between rates of cell growth and division in epithelia and, thereby, reduces cell volume. Division becomes arrested at a minimal cell volume, which is consistent across diverse epithelia in vivo. Here, the nucleus approaches the minimum volume capable of packaging the genome. Loss of cyclin D1-dependent cell-volume regulation results in an abnormally high nuclear-to-cytoplasmic volume ratio and DNA damage. Overall, we demonstrate how epithelial proliferation is regulated by the interplay between tissue confinement and cell-volume regulation.


Asunto(s)
Células Epiteliales , Células Epiteliales/metabolismo , Ciclo Celular/fisiología , División Celular , Epitelio , Proliferación Celular
7.
Proc Natl Acad Sci U S A ; 120(27): e2219558120, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37364104

RESUMEN

Evolution in time-varying environments naturally leads to adaptable biological systems that can easily switch functionalities. Advances in the synthesis of environmentally responsive materials therefore open up the possibility of creating a wide range of synthetic materials which can also be trained for adaptability. We consider high-dimensional inverse problems for materials where any particular functionality can be realized by numerous equivalent choices of design parameters. By periodically switching targets in a given design algorithm, we can teach a material to perform incompatible functionalities with minimal changes in design parameters. We exhibit this learning strategy for adaptability in two simulated settings: elastic networks that are designed to switch deformation modes with minimal bond changes and heteropolymers whose folding pathway selections are controlled by a minimal set of monomer affinities. The resulting designs can reveal physical principles, such as nucleation-controlled folding, that enable such adaptability.

8.
Phys Rev E ; 107(2-2): 025001, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932611

RESUMEN

Disordered mechanical systems can deform along a network of pathways that branch and recombine at special configurations called bifurcation points. Multiple pathways are accessible from these bifurcation points; consequently, computer-aided design algorithms have been sought to achieve a specific structure of pathways at bifurcations by rationally designing the geometry and material properties of these systems. Here, we explore an alternative physical training framework in which the topology of folding pathways in a disordered sheet is changed in a desired manner due to changes in crease stiffnesses induced by prior folding. We study the quality and robustness of such training for different "learning rules," that is, different quantitative ways in which local strain changes the local folding stiffness. We experimentally demonstrate these ideas using sheets with epoxy-filled creases whose stiffnesses change due to folding before the epoxy sets. Our work shows how specific forms of plasticity in materials enable them to learn nonlinear behaviors through their prior deformation history in a robust manner.

9.
ArXiv ; 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38235062

RESUMEN

Learning algorithms based on backpropagation have enabled transformative technological advances but alternatives based on local energy-based rules offer benefits in terms of biological plausibility and decentralized training. A broad class of such local learning rules involve \textit{contrasting} a clamped configuration with the free, spontaneous behavior of the system. However, comparisons of clamped and free configurations require explicit memory or switching between Hebbian and anti-Hebbian modes. Here, we show how a simple form of implicit non-equilibrium memory in the update dynamics of each ``synapse'' of a network naturally allows for contrastive learning. During training, free and clamped behaviors are shown in sequence over time using a sawtooth-like temporal protocol that breaks the symmetry between those two behaviors when combined with non-equilibrium update dynamics at each synapse. We show that the needed dynamics is implicit in integral feedback control, broadening the range of physical and biological systems naturally capable of contrastive learning. Finally, we show that non-equilibrium dissipation improves learning quality and determine the Landauer energy cost of contrastive learning through physical dynamics.

11.
Nat Chem ; 14(11): 1224-1232, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35927329

RESUMEN

Engineered far-from-equilibrium synthetic chemical networks that pulse or switch states in response to environmental signals could precisely regulate the kinetics of chemical synthesis or self-assembly. Currently, such networks must be extensively tuned to compensate for the different activities of and unintended reactions between a network's various chemical components. Modular elements with standardized performance could be used to rapidly construct networks with designed functions. Here we develop standardized excitable chemical regulatory elements, termed genelets, and use them to construct complex in vitro transcriptional networks. We develop a protocol for identifying >15 interchangeable genelet elements with uniform performance and minimal crosstalk. These elements can be combined to engineer feedforward and feedback modules whose dynamics match those predicted by a simple kinetic model. Modules can then be rationally integrated and organized into networks that produce tunable temporal pulses and act as multistate switchable memories. Standardized genelet elements, and the workflow to identify more, should make engineering complex far-from-equilibrium chemical dynamics routine.


Asunto(s)
Redes Reguladoras de Genes , Cinética
12.
Cell Syst ; 13(5): 408-425.e12, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35421362

RESUMEN

In multicellular organisms, secreted ligands selectively activate, or "address," specific target cell populations to control cell fate decision-making and other processes. Key cell-cell communication pathways use multiple promiscuously interacting ligands and receptors, provoking the question of how addressing specificity can emerge from molecular promiscuity. To investigate this issue, we developed a general mathematical modeling framework based on the bone morphogenetic protein (BMP) pathway architecture. We find that promiscuously interacting ligand-receptor systems allow a small number of ligands, acting in combinations, to address a larger number of individual cell types, defined by their receptor expression profiles. Promiscuous systems outperform seemingly more specific one-to-one signaling architectures in addressing capability. Combinatorial addressing extends to groups of cell types, is robust to receptor expression noise, grows more powerful with increases in the number of receptor variants, and is maximized by specific biochemical parameter relationships. Together, these results identify design principles governing cellular addressing by ligand combinations.


Asunto(s)
Proteínas Morfogenéticas Óseas , Transducción de Señal , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Ligandos
13.
Sci Signal ; 14(666)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34211635

RESUMEN

Cells receive a wide range of dynamic signaling inputs during immune regulation, but how gene regulatory networks measure such dynamic inputs is not well understood. Here, we used microfluidic single-cell analysis and mathematical modeling to study how the NF-κB pathway responds to immune inputs that vary over time such as increasing, decreasing, or fluctuating cytokine signals. We found that NF-κB activity responded to the absolute difference in cytokine concentration and not to the concentration itself. Our analyses revealed that negative feedback by the regulatory proteins A20 and IκBα enabled differential responses to changes in cytokine dose by providing a short-term memory of previous cytokine concentrations and by continuously resetting kinase cycling and receptor abundance. Investigation of NF-κB target gene expression showed that cells exhibited distinct transcriptional responses under different dynamic cytokine profiles. Our results demonstrate how cells use simple network motifs and transcription factor dynamics to efficiently extract information from complex signaling environments.


Asunto(s)
Citocinas , FN-kappa B , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica , Inhibidor NF-kappaB alfa , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
14.
Phys Biol ; 18(4)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477124

RESUMEN

Biological organisms experience constantly changing environments, from sudden changes in physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological changes over evolutionary timescales. Living organisms have evolved to thrive in this changing world but the general principles by which organisms shape and are shaped by time varying environments remain elusive. Our understanding is particularly poor in the intermediate regime with no separation of timescales, where the environment changes on the same timescale as the physiological or evolutionary response. Experiments to systematically characterize the response to dynamic environments are challenging since such environments are inherently high dimensional. This roadmap deals with the unique role played by time varying environments in biological phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities and the challenges faced in this emerging area of research.


Asunto(s)
Evolución Biológica , Ambiente , Fenómenos Fisiológicos , Factores de Tiempo
15.
Elife ; 92020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33357378

RESUMEN

Key enzymatic processes use the nonequilibrium error correction mechanism called kinetic proofreading to enhance their specificity. The applicability of traditional proofreading schemes, however, is limited because they typically require dedicated structural features in the enzyme, such as a nucleotide hydrolysis site or multiple intermediate conformations. Here, we explore an alternative conceptual mechanism that achieves error correction by having substrate binding and subsequent product formation occur at distinct physical locations. The time taken by the enzyme-substrate complex to diffuse from one location to another is leveraged to discard wrong substrates. This mechanism does not have the typical structural requirements, making it easier to overlook in experiments. We discuss how the length scales of molecular gradients dictate proofreading performance, and quantify the limitations imposed by realistic diffusion and reaction rates. Our work broadens the applicability of kinetic proofreading and sets the stage for studying spatial gradients as a possible route to specificity.


Asunto(s)
Replicación del ADN/fisiología , Cinética , Biosíntesis de Proteínas/fisiología , Especificidad por Sustrato/fisiología , Fenómenos Biofísicos , Hidrólisis , Modelos Biológicos
16.
Proc Natl Acad Sci U S A ; 117(26): 14843-14850, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32546522

RESUMEN

Mechanical metamaterials are usually designed to show desired responses to prescribed forces. In some applications, the desired force-response relationship is hard to specify exactly, but examples of forces and desired responses are easily available. Here, we propose a framework for supervised learning in thin, creased sheets that learn the desired force-response behavior by physically experiencing training examples and then, crucially, respond correctly (generalize) to previously unseen test forces. During training, we fold the sheet using training forces, prompting local crease stiffnesses to change in proportion to their experienced strain. We find that this learning process reshapes nonlinearities inherent in folding a sheet so as to show the correct response for previously unseen test forces. We show the relationship between training error, test error, and sheet size (model complexity) in learning sheets and compare them to counterparts in machine-learning algorithms. Our framework shows how the rugged energy landscape of disordered mechanical materials can be sculpted to show desired force-response behaviors by a local physical learning process.

17.
Mol Biol Evol ; 37(10): 2865-2874, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32421772

RESUMEN

Living systems evolve one mutation at a time, but a single mutation can alter the effect of subsequent mutations. The underlying mechanistic determinants of such epistasis are unclear. Here, we demonstrate that the physical dynamics of a biological system can generically constrain epistasis. We analyze models and experimental data on proteins and regulatory networks. In each, we find that if the long-time physical dynamics is dominated by a slow, collective mode, then the dimensionality of mutational effects is reduced. Consequently, epistatic coefficients for different combinations of mutations are no longer independent, even if individually strong. Such epistasis can be summarized as resulting from a global nonlinearity applied to an underlying linear trait, that is, as global epistasis. This constraint, in turn, reduces the ruggedness of the sequence-to-function map. By providing a generic mechanistic origin for experimentally observed global epistasis, our work suggests that slow collective physical modes can make biological systems evolvable.


Asunto(s)
Epistasis Genética , Evolución Molecular , Modelos Químicos , Modelos Genéticos , Mutación , Redes Reguladoras de Genes
18.
Proc Natl Acad Sci U S A ; 117(23): 12693-12699, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32457160

RESUMEN

Natural environments can present diverse challenges, but some genotypes remain fit across many environments. Such "generalists" can be hard to evolve, outcompeted by specialists fitter in any particular environment. Here, inspired by the search for broadly neutralizing antibodies during B cell affinity maturation, we demonstrate that environmental changes on an intermediate timescale can reliably evolve generalists, even when faster or slower environmental changes are unable to do so. We find that changing environments on timescales comparable with evolutionary transients in a population enhance the rate of evolving generalists from specialists, without enhancing the reverse process. The yield of generalists is further increased in more complex dynamic environments, such as a "chirp" of increasing frequency. Our work offers design principles for how nonequilibrium fitness "seascapes" can dynamically funnel populations to genotypes unobtainable in static environments.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Especificidad de Anticuerpos/genética , Ambiente , Evolución Molecular , Modelos Genéticos , Animales , Anticuerpos Neutralizantes/genética , Especificidad de Anticuerpos/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Diferenciación Celular , Genotipo , Humanos
19.
Neural Comput ; 32(6): 1033-1068, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32343645

RESUMEN

Continuous attractors have been used to understand recent neuroscience experiments where persistent activity patterns encode internal representations of external attributes like head direction or spatial location. However, the conditions under which the emergent bump of neural activity in such networks can be manipulated by space and time-dependent external sensory or motor signals are not understood. Here, we find fundamental limits on how rapidly internal representations encoded along continuous attractors can be updated by an external signal. We apply these results to place cell networks to derive a velocity-dependent nonequilibrium memory capacity in neural networks.


Asunto(s)
Interpretación Estadística de Datos , Redes Neurales de la Computación , Neuronas/fisiología , Células de Lugar/fisiología , Humanos , Percepción Espacial/fisiología
20.
Cell Syst ; 9(5): 459-465.e6, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31563474

RESUMEN

Living organisms need to be sensitive to a changing environment while also ignoring uninformative environmental fluctuations. Here, we argue that living cells can navigate these conflicting demands by dynamically tuning their environmental sensitivity. We analyze the circadian clock in Synechococcus elongatus, showing that clock-metabolism coupling can detect mismatch between clock predictions and the day-night light cycle, temporarily raise the clock's sensitivity to light changes, and thus re-entraining faster. We find analogous behavior in recent experiments on switching between slow and fast osmotic-stress-response pathways in yeast. In both cases, cells can raise their sensitivity to new external information in epochs of frequent challenging stress, much like a Kalman filter with adaptive gain in signal processing. Our work suggests a new class of experiments that probe the history dependence of environmental sensitivity in biophysical sensing mechanisms.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Synechococcus/fisiología , Teorema de Bayes , Fenómenos Biofísicos/fisiología , Luz , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...