Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(21): 14912-14927, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37861679

RESUMEN

Genetic mutation of the leucine-rich repeat kinase 2 (LRRK2) protein has been associated with Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder that is devoid of efficacious disease-modifying therapies. Herein, we describe the invention of an amidoisoquinoline (IQ)-derived LRRK2 inhibitor lead chemical series. Knowledge-, structure-, and property-based drug design in concert with rigorous application of in silico calculations and presynthesis predictions enabled the prioritization of molecules with favorable CNS "drug-like" physicochemical properties. This resulted in the discovery of compound 8, which was profiled extensively before human ether-a-go-go (hERG) ion channel inhibition halted its progression. Strategic reduction of lipophilicity and basicity resulted in attenuation of hERG ion channel inhibition while maintaining a favorable CNS efflux transporter profile. Further structure- and property-based optimizations resulted in the discovery of preclinical candidate MK-1468. This exquisitely selective LRRK2 inhibitor has a projected human dose of 48 mg BID and a preclinical safety profile that supported advancement toward GLP toxicology studies.


Asunto(s)
Enfermedad de Parkinson , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Encéfalo/metabolismo , Mutación , Canales Iónicos/metabolismo
2.
Bioorg Med Chem Lett ; 84: 129193, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822300

RESUMEN

Inhibiting Arginase 1 (ARG1), a metalloenzyme that hydrolyzes l-arginine in the urea cycle, has been demonstrated as a promising therapeutic avenue in immuno-oncology through the restoration of suppressed immune response in several types of cancers. Most of the currently reported small molecule inhibitors are boronic acid based. Herein, we report the discovery of non-boronic acid ARG1 inhibitors through virtual screening. Biophysical and biochemical methods were used to experimentally profile the hits while X-ray crystallography confirmed a class of trisubstituted pyrrolidine derivatives as optimizable alternatives for the development of novel classes of immuno-oncology agents targeting this enzyme.


Asunto(s)
Arginasa , Neoplasias , Humanos , Modelos Moleculares , Arginasa/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Ácidos Borónicos/farmacología , Ácidos Borónicos/química , Arginina/química
3.
J Med Chem ; 65(24): 16801-16817, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36475697

RESUMEN

Inhibition of leucine-rich repeat kinase 2 (LRRK2) kinase activity represents a genetically supported, chemically tractable, and potentially disease-modifying mechanism to treat Parkinson's disease. Herein, we describe the optimization of a novel series of potent, selective, central nervous system (CNS)-penetrant 1-heteroaryl-1H-indazole type I (ATP competitive) LRRK2 inhibitors. Type I ATP-competitive kinase physicochemical properties were integrated with CNS drug-like properties through a combination of structure-based drug design and parallel medicinal chemistry enabled by sp3-sp2 cross-coupling technologies. This resulted in the discovery of a unique sp3-rich spirocarbonitrile motif that imparted extraordinary potency, pharmacokinetics, and favorable CNS drug-like properties. The lead compound, 25, demonstrated exceptional on-target potency in human peripheral blood mononuclear cells, excellent off-target kinase selectivity, and good brain exposure in rat, culminating in a low projected human dose and a pre-clinical safety profile that warranted advancement toward pre-clinical candidate enabling studies.


Asunto(s)
Enfermedad de Parkinson , Ratas , Humanos , Animales , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson/tratamiento farmacológico , Indazoles/farmacología , Indazoles/uso terapéutico , Leucocitos Mononucleares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/química , Encéfalo/metabolismo , Adenosina Trifosfato
4.
Bioorg Med Chem ; 66: 116820, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594650

RESUMEN

Synthesis of medium-sized rings is known to be challenging due to high transannular strain especially for 9- and 10-membered rings. Herein we report design and synthesis of unprecedented 9- and 10-membered purine 8,5'-cyclonucleosides as the first cyclonucleoside PRMT5 inhibitors. The cocrystal structure of PRMT5:MEP50 in complex with the synthesized 9-membered cyclonucleoside 1 revealed its binding mode in the SAM binding pocket of PRMT5.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteína-Arginina N-Metiltransferasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína-Arginina N-Metiltransferasas/química
5.
J Med Chem ; 65(1): 838-856, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34967623

RESUMEN

The leucine-rich repeat kinase 2 (LRRK2) protein has been genetically and functionally linked to Parkinson's disease (PD), a disabling and progressive neurodegenerative disorder whose current therapies are limited in scope and efficacy. In this report, we describe a rigorous hit-to-lead optimization campaign supported by structural enablement, which culminated in the discovery of brain-penetrant, candidate-quality molecules as represented by compounds 22 and 24. These compounds exhibit remarkable selectivity against the kinome and offer good oral bioavailability and low projected human doses. Furthermore, they showcase the implementation of stereochemical design elements that serve to enable a potency- and selectivity-enhancing increase in polarity and hydrogen bond donor (HBD) count while maintaining a central nervous system-friendly profile typified by low levels of transporter-mediated efflux and encouraging brain penetration in preclinical models.


Asunto(s)
Antiparkinsonianos/síntesis química , Antiparkinsonianos/farmacología , Encéfalo/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Quinazolinas/síntesis química , Quinazolinas/farmacología , Antiparkinsonianos/farmacocinética , Disponibilidad Biológica , Diseño de Fármacos , Humanos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacocinética , Relación Estructura-Actividad
7.
ACS Med Chem Lett ; 12(11): 1678-1688, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34795856

RESUMEN

Comprehensive synthetic strategies afforded a diverse set of structurally unique bicyclic proline-containing arginase inhibitors with a high degree of three-dimensionality. The analogs that favored the Cγ-exo conformation of the proline improved the arginase potency over the initial lead. The novel synthetic strategies reported here not only enable access to previously unknown stereochemically complex proline derivatives but also provide a foundation for the future synthesis of bicyclic proline analogs, which incorporate inherent three-dimensional character into building blocks, medicine, and catalysts and could have a profound impact on the conformation of proline-containing peptides and macrocycles.

8.
ACS Med Chem Lett ; 12(9): 1380-1388, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34527178

RESUMEN

Recent data suggest that the inhibition of arginase (ARG) has therapeutic potential for the treatment of a number of indications ranging from pulmonary and vascular disease to cancer. Thus, high demand exists for selective small molecule ARG inhibitors with favorable druglike properties and good oral bioavailability. In light of the significant challenges associated with the unique physicochemical properties of previously disclosed ARG inhibitors, we use structure-based drug design combined with a focused optimization strategy to discover a class of boronic acids featuring a privileged proline scaffold with superior potency and oral bioavailability. These compounds, exemplified by inhibitors 4a, 18, and 27, demonstrated a favorable overall profile, and 4a was well tolerated following multiple days of dosing at concentrations that exceed those required for serum arginase inhibition and concomitant arginine elevation in a syngeneic mouse carcinoma model.

9.
Commun Biol ; 4(1): 927, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326456

RESUMEN

Human Arginase 1 (hArg1) is a metalloenzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea, and modulates T-cell-mediated immune response. Arginase-targeted therapies have been pursued across several disease areas including immunology, oncology, nervous system dysfunction, and cardiovascular dysfunction and diseases. Currently, all published hArg1 inhibitors are small molecules usually less than 350 Da in size. Here we report the cryo-electron microscopy structures of potent and inhibitory anti-hArg antibodies bound to hArg1 which form distinct macromolecular complexes that are greater than 650 kDa. With local resolutions of 3.5 Å or better we unambiguously mapped epitopes and paratopes for all five antibodies and determined that the antibodies act through orthosteric and allosteric mechanisms. These hArg1:antibody complexes present an alternative mechanism to inhibit hArg1 activity and highlight the ability to utilize antibodies as probes in the discovery and development of peptide and small molecule inhibitors for enzymes in general.


Asunto(s)
Arginasa/genética , Arginasa/metabolismo , Arginina/química , Sitios de Unión , Microscopía por Crioelectrón , Ornitina/química , Unión Proteica , Especificidad por Sustrato
10.
J Med Chem ; 64(7): 3911-3939, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33755451

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the post-translational symmetric dimethylation of protein substrates. PRMT5 plays a critical role in regulating biological processes including transcription, cell cycle progression, RNA splicing, and DNA repair. As such, dysregulation of PRMT5 activity is implicated in the development and progression of multiple cancers and is a target of growing clinical interest. Described herein are the structure-based drug designs, robust synthetic efforts, and lead optimization strategies toward the identification of two novel 5,5-fused bicyclic nucleoside-derived classes of potent and efficacious PRMT5 inhibitors. Utilization of compound docking and strain energy calculations inspired novel designs, and the development of flexible synthetic approaches enabled access to complex chemotypes with five contiguous stereocenters. Additional efforts in balancing bioavailability, solubility, potency, and CYP3A4 inhibition led to the identification of diverse lead compounds with favorable profiles, promising in vivo activity, and low human dose projections.


Asunto(s)
Aminoquinolinas/uso terapéutico , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Neoplasias/tratamiento farmacológico , Nucleósidos/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Aminoquinolinas/síntesis química , Aminoquinolinas/metabolismo , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Femenino , Humanos , Ratones SCID , Simulación del Acoplamiento Molecular , Estructura Molecular , Nucleósidos/síntesis química , Nucleósidos/metabolismo , Unión Proteica , Proteína-Arginina N-Metiltransferasas/metabolismo , Relación Estructura-Actividad
11.
J Org Chem ; 86(7): 5142-5151, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33755465

RESUMEN

In the context of a PRMT5 inhibitor program, we describe our efforts to develop a flexible and robust strategy to access tetrahydrofuro[3,4-b]furan nucleoside analogues. Ultimately, it was found that a Wolfe type carboetherification from an alkenol derived from d-glucofuranose diacetonide was capable of furnishing the B-ring and installing the desired heteroaryl group in a single step. Using this approach, key intermediate 1.3-A was delivered on a gram scale in a 62% yield and 9.1:1 dr in favor of the desired S-isomer. After deprotection of 1.3-A, a late-stage glycosylation was performed under Mitsunobu conditions to install the pyrrolopyrimidine base. This provided serviceable yields of nucleoside analogues in the range of 31-48% yield. Compound 1.1-C was profiled in biochemical and cellular assays and was demonstrated to be a potent and cellularly active PRMT5 inhibitor, with a PRMT5-MEP50 biochemical IC50 of 0.8 nM, a MCF-7 target engagement EC50 of 3 nM, and a Z138 cell proliferation EC50 of 15 nM. This work sets the stage for the development of new inhibitors of PRMT5 and novel nucleoside chemical matter for alternate drug discovery programs.


Asunto(s)
Nucleósidos , Proteína-Arginina N-Metiltransferasas , Proliferación Celular , Inhibidores Enzimáticos , Furanos
12.
ACS Med Chem Lett ; 11(9): 1688-1693, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32944135

RESUMEN

Protein arginine methyltransferase 5 (PRMT5) belongs to a family of enzymes that regulate the posttranslational modification of histones and other proteins via methylation of arginine. Methylation of histones is linked to an increase in transcription and regulates a manifold of functions such as signal transduction and transcriptional regulation. PRMT5 has been shown to be upregulated in the tumor environment of several cancer types, and the inhibition of PRMT5 activity was identified as a potential way to reduce tumor growth. Previously, four different modes of PRMT5 inhibition were known-competing (covalently or non-covalently) with the essential cofactor S-adenosyl methionine (SAM), blocking the substrate binding pocket, or blocking both simultaneously. Herein we describe an unprecedented conformation of PRMT5 in which the formation of an allosteric binding pocket abrogates the enzyme's canonical binding site and present the discovery of potent small molecule allosteric PRMT5 inhibitors.

13.
ACS Med Chem Lett ; 11(4): 582-588, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32292567

RESUMEN

The action of arginase, a metalloenzyme responsible for the hydrolysis of arginine to urea and ornithine, is hypothesized to suppress immune-cell activity within the tumor microenvironment, and thus its inhibition may constitute a means by which to potentiate the efficacy of immunotherapeutics such as anti-PD-1 checkpoint inhibitors. Taking inspiration from reported enzyme-inhibitor cocrystal structures, we designed and synthesized novel inhibitors of human arginase possessing a fused 5,5-bicyclic ring system. The prototypical member of this class, 3, when dosed orally, successfully demonstrated serum arginase inhibition and concomitant arginine elevation in a syngeneic mouse carcinoma model, despite modest oral bioavailability. Structure-based design strategies to improve the bioavailability of this class, including scaffold modification, fluorination, and installation of active-transport recognition motifs were explored.

14.
ACS Med Chem Lett ; 11(2): 114-119, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32071676

RESUMEN

The clinical success of anti-IL-17 monoclonal antibodies (i.e., Cosentyx and Taltz) has validated Th17 pathway modulation for the treatment of autoimmune diseases. The nuclear hormone receptor RORγt is a master regulator of Th17 cells and affects the production of a host of cytokines, including IL-17A, IL-17F, IL-22, IL-26, and GM-CSF. Substantial interest has been spurred across both academia and industry to seek small molecules suitable for RORγt inhibition. A variety of RORγt inhibitors have been reported in the past few years, the majority of which are orthosteric binders. Here we disclose the discovery and optimization of a class of inhibitors, which bind differently to an allosteric binding pocket. Starting from a weakly active hit 1, a tool compound 14 was quickly identified that demonstrated superior potency, selectivity, and off-target profile. Further optimization focused on improving metabolic stability. Replacing the benzoic acid moiety with piperidinyl carboxylate, modifying the 4-aza-indazole core in 14 to 4-F-indazole, and incorporating a key hydroxyl group led to the discovery of 25, which possesses exquisite potency and selectivity, as well as an improved pharmacokinetic profile suitable for oral dosing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA