Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
J Med Internet Res ; 26: e46777, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38635981

RESUMEN

BACKGROUND: As global populations age and become susceptible to neurodegenerative illnesses, new therapies for Alzheimer disease (AD) are urgently needed. Existing data resources for drug discovery and repurposing fail to capture relationships central to the disease's etiology and response to drugs. OBJECTIVE: We designed the Alzheimer's Knowledge Base (AlzKB) to alleviate this need by providing a comprehensive knowledge representation of AD etiology and candidate therapeutics. METHODS: We designed the AlzKB as a large, heterogeneous graph knowledge base assembled using 22 diverse external data sources describing biological and pharmaceutical entities at different levels of organization (eg, chemicals, genes, anatomy, and diseases). AlzKB uses a Web Ontology Language 2 ontology to enforce semantic consistency and allow for ontological inference. We provide a public version of AlzKB and allow users to run and modify local versions of the knowledge base. RESULTS: AlzKB is freely available on the web and currently contains 118,902 entities with 1,309,527 relationships between those entities. To demonstrate its value, we used graph data science and machine learning to (1) propose new therapeutic targets based on similarities of AD to Parkinson disease and (2) repurpose existing drugs that may treat AD. For each use case, AlzKB recovers known therapeutic associations while proposing biologically plausible new ones. CONCLUSIONS: AlzKB is a new, publicly available knowledge resource that enables researchers to discover complex translational associations for AD drug discovery. Through 2 use cases, we show that it is a valuable tool for proposing novel therapeutic hypotheses based on public biomedical knowledge.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Reconocimiento de Normas Patrones Automatizadas , Bases del Conocimiento , Aprendizaje Automático , Conocimiento
2.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645167

RESUMEN

Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best and worst performing quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects - across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account non-linear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

3.
Nat Commun ; 15(1): 2604, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521789

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood. This study investigated the genetic architecture of three brain age gaps (BAG) derived from gray matter volume (GM-BAG), white matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We identified sixteen genomic loci that reached genome-wide significance (P-value < 5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG displayed the most pronounced heritability enrichment in genetic variants within conserved regions. Oligodendrocytes and astrocytes, but not neurons, exhibited notable heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several chronic diseases on brain aging, such as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at https://labs.loni.usc.edu/medicine .


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Humanos , Encéfalo , Sustancia Gris , Imagen por Resonancia Magnética/métodos , Sustancia Blanca/fisiología , Análisis de la Aleatorización Mendeliana
4.
medRxiv ; 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38260403

RESUMEN

Genome-wide association studies (GWAS) have been instrumental in identifying genetic associations for various diseases and traits. However, uncovering genetic underpinnings among traits beyond univariate phenotype associations remains a challenge. Multi-phenotype associations (MPA), or genetic pleiotropy, offer important insights into shared genes and pathways among traits, enhancing our understanding of genetic architectures of complex diseases. GWAS of biobank-linked electronic health record (EHR) data are increasingly being utilized to identify MPA among various traits and diseases. However, methodologies that can efficiently take advantage of distributed EHR to detect MPA are still lacking. Here, we introduce mixWAS, a novel algorithm that efficiently and losslessly integrates multiple EHRs via summary statistics, allowing the detection of MPA among mixed phenotypes while accounting for heterogeneities across EHRs. Simulations demonstrate that mixWAS outperforms the widely used MPA detection method, Phenome-wide association study (PheWAS), across diverse scenarios. Applying mixWAS to data from seven EHRs in the US, we identified 4,534 MPA among blood lipids, BMI, and circulatory diseases. Validation in an independent EHR data from UK confirmed 97.7% of the associations. mixWAS fundamentally improves the detection of MPA and is available as a free, open-source software.

5.
Radiology ; 310(1): e223170, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38259208

RESUMEN

Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help other hospital practices leverage ML to improve patient care. Clinical trial registration no. 04242667 © RSNA, 2024 Supplemental material is available for this article.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Radiografía , Algoritmos , Aprendizaje Automático
6.
Br J Nutr ; 131(1): 156-162, 2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37519237

RESUMEN

Though diet quality is widely recognised as linked to risk of chronic disease, health systems have been challenged to find a user-friendly, efficient way to obtain information about diet. The Penn Healthy Diet (PHD) survey was designed to fill this void. The purposes of this pilot project were to assess the patient experience with the PHD, to validate the accuracy of the PHD against related items in a diet recall and to explore scoring algorithms with relationship to the Healthy Eating Index (HEI)-2015 computed from the recall data. A convenience sample of participants in the Penn Health BioBank was surveyed with the PHD, the Automated Self-Administered 24-hour recall (ASA24) and experience questions. Kappa scores and Spearman correlations were used to compare related questions in the PHD to the ASA24. Numerical scoring, regression tree and weighted regressions were computed for scoring. Participants assessed the PHD as easy to use and were willing to repeat the survey at least annually. The three scoring algorithms were strongly associated with HEI-2015 scores using National Health and Nutrition Examination Survey 2017-2018 data from which the PHD was developed and moderately associated with the pilot replication data. The PHD is acceptable to participants and at least moderately correlated with the HEI-2015. Further validation in a larger sample will enable the selection of the strongest scoring approach.


Asunto(s)
Dieta Saludable , Dieta , Humanos , Encuestas Nutricionales , Proyectos Piloto , Encuestas sobre Dietas
7.
Pac Symp Biocomput ; 29: 594-610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160309

RESUMEN

Access to safe and effective antiretroviral therapy (ART) is a cornerstone in the global response to the HIV pandemic. Among people living with HIV, there is considerable interindividual variability in absolute CD4 T-cell recovery following initiation of virally suppressive ART. The contribution of host genetics to this variability is not well understood. We explored the contribution of a polygenic score which was derived from large, publicly available summary statistics for absolute lymphocyte count from individuals in the general population (PGSlymph) due to a lack of publicly available summary statistics for CD4 T-cell count. We explored associations with baseline CD4 T-cell count prior to ART initiation (n=4959) and change from baseline to week 48 on ART (n=3274) among treatment-naïve participants in prospective, randomized ART studies of the AIDS Clinical Trials Group. We separately examined an African-ancestry-derived and a European-ancestry-derived PGSlymph, and evaluated their performance across all participants, and also in the African and European ancestral groups separately. Multivariate models that included PGSlymph, baseline plasma HIV-1 RNA, age, sex, and 15 principal components (PCs) of genetic similarity explained ∼26-27% of variability in baseline CD4 T-cell count, but PGSlymph accounted for <1% of this variability. Models that also included baseline CD4 T-cell count explained ∼7-9% of variability in CD4 T-cell count increase on ART, but PGSlymph accounted for <1% of this variability. In univariate analyses, PGSlymph was not significantly associated with baseline or change in CD4 T-cell count. Among individuals of African ancestry, the African PGSlymph term in the multivariate model was significantly associated with change in CD4 T-cell count while not significant in the univariate model. When applied to lymphocyte count in a general medical biobank population (Penn Medicine BioBank), PGSlymph explained ∼6-10% of variability in multivariate models (including age, sex, and PCs) but only ∼1% in univariate models. In summary, a lymphocyte count PGS derived from the general population was not consistently associated with CD4 T-cell recovery on ART. Nonetheless, adjusting for clinical covariates is quite important when estimating such polygenic effects.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Humanos , Linfocitos T CD4-Positivos , Estudios Prospectivos , Fármacos Anti-VIH/uso terapéutico , Biología Computacional , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Recuento de Linfocito CD4 , Carga Viral
8.
Pac Symp Biocomput ; 29: 611-626, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160310

RESUMEN

Polygenic risk scores (PRS) have predominantly been derived from genome-wide association studies (GWAS) conducted in European ancestry (EUR) individuals. In this study, we present an in-depth evaluation of PRS based on multi-ancestry GWAS for five cardiometabolic phenotypes in the Penn Medicine BioBank (PMBB) followed by a phenome-wide association study (PheWAS). We examine the PRS performance across all individuals and separately in African ancestry (AFR) and EUR ancestry groups. For AFR individuals, PRS derived using the multi-ancestry LD panel showed a higher effect size for four out of five PRSs (DBP, SBP, T2D, and BMI) than those derived from the AFR LD panel. In contrast, for EUR individuals, the multi-ancestry LD panel PRS demonstrated a higher effect size for two out of five PRSs (SBP and T2D) compared to the EUR LD panel. These findings underscore the potential benefits of utilizing a multi-ancestry LD panel for PRS derivation in diverse genetic backgrounds and demonstrate overall robustness in all individuals. Our results also revealed significant associations between PRS and various phenotypic categories. For instance, CAD PRS was linked with 18 phenotypes in AFR and 82 in EUR, while T2D PRS correlated with 84 phenotypes in AFR and 78 in EUR. Notably, associations like hyperlipidemia, renal failure, atrial fibrillation, coronary atherosclerosis, obesity, and hypertension were observed across different PRSs in both AFR and EUR groups, with varying effect sizes and significance levels. However, in AFR individuals, the strength and number of PRS associations with other phenotypes were generally reduced compared to EUR individuals. Our study underscores the need for future research to prioritize 1) conducting GWAS in diverse ancestry groups and 2) creating a cosmopolitan PRS methodology that is universally applicable across all genetic backgrounds. Such advances will foster a more equitable and personalized approach to precision medicine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipertensión , Humanos , Puntuación de Riesgo Genético , Estudio de Asociación del Genoma Completo/métodos , Predisposición Genética a la Enfermedad , Medicina de Precisión , Herencia Multifactorial , Biología Computacional , Fenotipo , Hipertensión/genética , Diabetes Mellitus Tipo 2/genética , Factores de Riesgo
9.
Proc Natl Acad Sci U S A ; 120(52): e2300842120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38127979

RESUMEN

Normal and pathologic neurobiological processes influence brain morphology in coordinated ways that give rise to patterns of structural covariance (PSC) across brain regions and individuals during brain aging and diseases. The genetic underpinnings of these patterns remain largely unknown. We apply a stochastic multivariate factorization method to a diverse population of 50,699 individuals (12 studies and 130 sites) and derive data-driven, multi-scale PSCs of regional brain size. PSCs were significantly correlated with 915 genomic loci in the discovery set, 617 of which are newly identified, and 72% were independently replicated. Key pathways influencing PSCs involve reelin signaling, apoptosis, neurogenesis, and appendage development, while pathways of breast cancer indicate potential interplays between brain metastasis and PSCs associated with neurodegeneration and dementia. Using support vector machines, multi-scale PSCs effectively derive imaging signatures of several brain diseases. Our results elucidate genetic and biological underpinnings that influence structural covariance patterns in the human brain.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Mapeo Encefálico/métodos , Genómica , Neoplasias Encefálicas/patología
10.
medRxiv ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37986758

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, with one in nine people over the age of 65 living with the disease in 2023. In this study, we used a phenome wide association study (PheWAS) approach to identify cross-phenotype associations between previously identified genetic AD and for electronic health record (EHR) diagnoses from the UK Biobank (UKBB) (n=361,194 of European ancestry) and the eMERGE Network (n=105,108 of diverse ancestry). Based on 497 previously identified AD-associated variants from the Alzheimer's Disease Variant Portal (ADVP), we found significant associations primarily in immune and cardiac related diseases in our PheWAS. Replicating variants have widespread impacts on immune genes in diverse tissue types. This study demonstrates the potential of using the PheWAS strategy to improve our understanding of AD progression as well as identify potential drug repurposing opportunities for new treatment and disease prevention strategies.

12.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873439

RESUMEN

Background: High on-treatment platelet reactivity (HTPR) with clopidogrel is predictive of ischemic events in adults with coronary artery disease. Despite strong data suggesting HTPR varies with ethnicity, including clinical and genetic variables, no genome-wide association study (GWAS) of clopidogrel response has been performed among Caribbean Hispanics. This study aimed to identify genetic predictors of HTPR in a cohort of Caribbean Hispanic cardiovascular patients from Puerto Rico. Methods: Local Ancestry inference (LAI) and traditional GWASs were performed on a cohort of 511 clopidogrel-treated patients, stratified based on their P2Y12 reaction units (PRU) into responders and non-responders (HTPR). Results: The LAI GWAS identified variants within the CYP2C19 region associated with HTPR, predominantly driven by individuals of European ancestry and absent in those with native ancestry. Incorporating local ancestry adjustment notably enhanced our ability to detect associations. While no loci reached traditional GWAS significance, three variants showed suggestive significance at chromosomes 3, 14 and 22 (OSBPL10 rs1376606, DERL3 rs5030613, and RGS6 rs9323567). In addition, a variant in the UNC5C gene on chromosome 4 was associated with an increased risk of HTPR. These findings were not identified in other cohorts, highlighting the unique genetic landscape of Caribbean Hispanics. Conclusion: This is the first GWAS of clopidogrel response in Hispanics, confirming the relevance of the CYP2C19 cluster, particularly among those with European ancestry, and also identifying novel markers in a diverse patient population. Further studies are warranted to replicate our findings in other diverse cohorts and meta-analyses.

13.
Sci Rep ; 13(1): 18532, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898691

RESUMEN

Clostridioides difficile (C. diff.) infection (CDI) is a leading cause of hospital acquired diarrhea in North America and Europe and a major cause of morbidity and mortality. Known risk factors do not fully explain CDI susceptibility, and genetic susceptibility is suggested by the fact that some patients with colons that are colonized with C. diff. do not develop any infection while others develop severe or recurrent infections. To identify common genetic variants associated with CDI, we performed a genome-wide association analysis in 19,861 participants (1349 cases; 18,512 controls) from the Electronic Medical Records and Genomics (eMERGE) Network. Using logistic regression, we found strong evidence for genetic variation in the DRB locus of the MHC (HLA) II region that predisposes individuals to CDI (P > 1.0 × 10-14; OR 1.56). Altered transcriptional regulation in the HLA region may play a role in conferring susceptibility to this opportunistic enteric pathogen.


Asunto(s)
Infecciones por Clostridium , Estudio de Asociación del Genoma Completo , Humanos , Infecciones por Clostridium/genética , Diarrea , Antígenos de Histocompatibilidad , Antígenos HLA/genética , Antígenos de Histocompatibilidad Clase II , Variación Genética
14.
Am J Hum Genet ; 110(10): 1628-1647, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37757824

RESUMEN

Pharmacogenomics (PGx) is an integral part of precision medicine and contributes to the maximization of drug efficacy and reduction of adverse drug event risk. Accurate information on PGx allele frequencies improves the implementation of PGx. Nonetheless, curating such information from published allele data is time and resource intensive. The limited number of allelic variants in most studies leads to an underestimation of certain alleles. We applied the Pharmacogenomics Clinical Annotation Tool (PharmCAT) on an integrated 200K UK Biobank genetic dataset (N = 200,044). Based on PharmCAT results, we estimated PGx frequencies (alleles, diplotypes, phenotypes, and activity scores) for 17 pharmacogenes in five biogeographic groups: European, Central/South Asian, East Asian, Afro-Caribbean, and Sub-Saharan African. PGx frequencies were distinct for each biogeographic group. Even biogeographic groups with similar proportions of phenotypes were driven by different sets of dominant PGx alleles. PharmCAT also identified "no-function" alleles that were rare or seldom tested in certain groups by previous studies, e.g., SLCO1B1∗31 in the Afro-Caribbean (3.0%) and Sub-Saharan African (3.9%) groups. Estimated PGx frequencies are disseminated via the PharmGKB (The Pharmacogenomics Knowledgebase: www.pharmgkb.org). We demonstrate that genetic biobanks such as the UK Biobank are a robust resource for estimating PGx frequencies. Improving our understanding of PGx allele and phenotype frequencies provides guidance for future PGx studies and clinical genetic test panel design, and better serves individuals from wider biogeographic backgrounds.


Asunto(s)
Bancos de Muestras Biológicas , Farmacogenética , Humanos , Farmacogenética/métodos , Alelos , Medicina de Precisión/métodos , Frecuencia de los Genes/genética , Transportador 1 de Anión Orgánico Específico del Hígado
15.
Nat Commun ; 14(1): 5562, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689782

RESUMEN

Genes act in concert with each other in specific contexts to perform their functions. Determining how these genes influence complex traits requires a mechanistic understanding of expression regulation across different conditions. It has been shown that this insight is critical for developing new therapies. Transcriptome-wide association studies have helped uncover the role of individual genes in disease-relevant mechanisms. However, modern models of the architecture of complex traits predict that gene-gene interactions play a crucial role in disease origin and progression. Here we introduce PhenoPLIER, a computational approach that maps gene-trait associations and pharmacological perturbation data into a common latent representation for a joint analysis. This representation is based on modules of genes with similar expression patterns across the same conditions. We observe that diseases are significantly associated with gene modules expressed in relevant cell types, and our approach is accurate in predicting known drug-disease pairs and inferring mechanisms of action. Furthermore, using a CRISPR screen to analyze lipid regulation, we find that functionally important players lack associations but are prioritized in trait-associated modules by PhenoPLIER. By incorporating groups of co-expressed genes, PhenoPLIER can contextualize genetic associations and reveal potential targets missed by single-gene strategies.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epistasis Genética , Causalidad , Redes Reguladoras de Genes , Transcriptoma
16.
medRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37609227

RESUMEN

Loss of function variants in the NF1 gene cause neurofibromatosis type 1 (NF1), a genetic disorder characterized by complete penetrance, prevalence of 1 in 3,000, characteristic physical exam findings, and a substantially increased risk for malignancy. However, our understanding of the disorder is entirely based on patients ascertained through phenotype-first approaches. Leveraging a genotype-first approach in two large patient cohorts, we demonstrate unexpectedly high prevalence (1 in 450-750) of NF1 pathogenic variants. Half were identified in individuals lacking clinical features of NF1, with many appearing to have post-zygotic mosaicism for the identified variant. Incidentally discovered variants were not associated with classic NF1 features but were associated with an increased incidence of malignancy compared to a control population. Our findings suggest that NF1 pathogenic variants are substantially more common than previously thought, often characterized by somatic mosaicism and reduced penetrance, and are important contributors to cancer risk in the general population.

17.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37503172

RESUMEN

Heart failure (HF) is a complex trait, influenced by environmental and genetic factors, that affects over 30 million individuals worldwide. Historically, the genetics of HF have been studied in Mendelian forms of disease, where rare genetic variants have been linked to familial cardiomyopathies. More recently, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with risk of HF. However, the relative importance of genetic variants across the allele-frequency spectrum remains incompletely characterized. Here, we report the results of common- and rare-variant association studies of all-cause heart failure, applying recently developed methods to quantify the heritability of HF attributable to different classes of genetic variation. We combine GWAS data across multiple populations including 207,346 individuals with HF and 2,151,210 without, identifying 176 risk loci at genome-wide significance (p < 5×10-8). Signals at newly identified common-variant loci include coding variants in Mendelian cardiomyopathy genes (MYBPC3, BAG3), as well as regulators of lipoprotein (LPL) and glucose metabolism (GIPR, GLP1R), and are enriched in cardiac, muscle, nerve, and vascular tissues, as well as myocyte and adipocyte cell types. Gene burden studies across three biobanks (PMBB, UKB, AOU) including 27,208 individuals with HF and 349,126 without uncover exome-wide significant (p < 3.15×10-6) associations for HF and rare predicted loss-of-function (pLoF) variants in TTN, MYBPC3, FLNC, and BAG3. Total burden heritability of rare coding variants (2.2%, 95% CI 0.99-3.5%) is highly concentrated in a small set of Mendelian cardiomyopathy genes, and is lower than heritability attributable to common variants (4.3%, 95% CI 3.9-4.7%) which is more diffusely spread throughout the genome. Finally, we demonstrate that common-variant background, in the form of a polygenic risk score (PRS), significantly modifies the risk of HF among carriers of pathogenic truncating variants in the Mendelian cardiomyopathy gene TTN. These findings suggest a significant polygenic component to HF exists that is not captured by current clinical genetic testing.

18.
Nat Genet ; 55(7): 1106-1115, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37308786

RESUMEN

The current understanding of the genetic determinants of thoracic aortic aneurysms and dissections (TAAD) has largely been informed through studies of rare, Mendelian forms of disease. Here, we conducted a genome-wide association study (GWAS) of TAAD, testing ~25 million DNA sequence variants in 8,626 participants with and 453,043 participants without TAAD in the Million Veteran Program, with replication in an independent sample of 4,459 individuals with and 512,463 without TAAD from six cohorts. We identified 21 TAAD risk loci, 17 of which have not been previously reported. We leverage multiple downstream analytic methods to identify causal TAAD risk genes and cell types and provide human genetic evidence that TAAD is a non-atherosclerotic aortic disorder distinct from other forms of vascular disease. Our results demonstrate that the genetic architecture of TAAD mirrors that of other complex traits and that it is not solely inherited through protein-altering variants of large effect size.


Asunto(s)
Aneurisma de la Aorta Torácica , Disección Aórtica , Veteranos , Humanos , Estudio de Asociación del Genoma Completo , Linaje , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética
19.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37333190

RESUMEN

The complex biological mechanisms underlying human brain aging remain incompletely understood, involving multiple body organs and chronic diseases. In this study, we used multimodal magnetic resonance imaging and artificial intelligence to examine the genetic architecture of the brain age gap (BAG) derived from gray matter volume (GM-BAG, N=31,557 European ancestry), white matter microstructure (WM-BAG, N=31,674), and functional connectivity (FC-BAG, N=32,017). We identified sixteen genomic loci that reached genome-wide significance (P-value<5×10-8). A gene-drug-disease network highlighted genes linked to GM-BAG for treating neurodegenerative and neuropsychiatric disorders and WM-BAG genes for cancer therapy. GM-BAG showed the highest heritability enrichment for genetic variants in conserved regions, whereas WM-BAG exhibited the highest heritability enrichment in the 5' untranslated regions; oligodendrocytes and astrocytes, but not neurons, showed significant heritability enrichment in WM and FC-BAG, respectively. Mendelian randomization identified potential causal effects of several exposure variables on brain aging, such as type 2 diabetes on GM-BAG (odds ratio=1.05 [1.01, 1.09], P-value=1.96×10-2) and AD on WM-BAG (odds ratio=1.04 [1.02, 1.05], P-value=7.18×10-5). Overall, our results provide valuable insights into the genetics of human brain aging, with clinical implications for potential lifestyle and therapeutic interventions. All results are publicly available at the MEDICINE knowledge portal: https://labs.loni.usc.edu/medicine.

20.
AMIA Jt Summits Transl Sci Proc ; 2023: 525-533, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350880

RESUMEN

Amyloid imaging has been widely used in Alzheimer's disease (AD) diagnosis and biomarker discovery through detecting the regional amyloid plaque density. It is essential to be normalized by a reference region to reduce noise and artifacts. To explore an optimal normalization strategy, we employ an automated machine learning (AutoML) pipeline, STREAMLINE, to conduct the AD diagnosis binary classification and perform permutation-based feature importance analysis with thirteen machine learning models. In this work, we perform a comparative study to evaluate the prediction performance and biomarker discovery capability of three amyloid imaging measures, including one original measure and two normalized measures using two reference regions (i.e., the whole cerebellum and the composite reference region). Our AutoML results indicate that the composite reference region normalization dataset yields a higher balanced accuracy, and identifies more AD-related regions based on the fractioned feature importance ranking.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA