Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Chem Neuroanat ; 106: 101787, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32339654

RESUMEN

Spasticity is a disabling motor disorder affecting 70% of people with brain and spinal cord injury. The rate-dependent depression (RDD) of the H reflex is the only electrophysiological measurement correlated with the degree of spasticity assessed clinically in spastic patients. Several lines of evidence suggest that the mechanism underlying the H reflex RDD depends on the strength of synaptic inhibition through GABAA (GABAAR) and glycine receptors (GlyR). In adult rats with spinal cord transection (SCT), we studied the time course of the expression of GABAAR and GlyR at the membrane of retrogradely identified Gastrocnemius and Tibialis anterior motoneurons (MNs) 3, 8 and 16 weeks after injury, and measured the RDD of the H reflex at similar post lesion times. Three weeks after SCT, a significant decrease in the expression of GABAA and GlyR was observed compared to intact rats, and the H-reflex RDD was much less pronounced than in controls. Eight weeks after SCT, GlyR values returned to normal. Simultaneously, we observed a tendency to recover normal RDD of the H reflex at higher frequencies. We tested whether an anti-inflammatory treatment using methylprednisolone performed immediately after SCT could prevent alterations in GABAA/glycine receptors and/or the development of spasticity observed 3 weeks after injury. This treatment restored control levels of GlyR but not the expression of GABAAR, and it completely prevented the attenuation of RDD. These data strongly suggest that alteration of glycinergic inhibition of lumbar MNs is involved in the mechanisms underlying spasticity after SCI.


Asunto(s)
Neuronas Motoras/metabolismo , Espasticidad Muscular/metabolismo , Receptores de Glicina/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Femenino , Glicina/metabolismo , Región Lumbosacra , Espasticidad Muscular/etiología , Ratas , Ratas Wistar , Receptores de GABA-A/metabolismo , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/complicaciones
2.
Exp Neurol ; 299(Pt A): 1-14, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28917641

RESUMEN

Rats with complete spinal cord transection (SCT) can recover hindlimb locomotor function under strategies combining exercise training and 5-HT agonist treatment. This recovery is expected to result from structural and functional re-organization within the spinal cord below the lesion. To begin to understand the nature of this reorganization, we examined synaptic changes to identified gastrocnemius (GS) or tibialis anterior (TA) motoneurons (MNs) in SCT rats after a schedule of early exercise training and delayed 5-HT agonist treatment. In addition, we analyzed changes in distribution and number of lumbar interneurons (INs) presynaptic to GS MNs using retrograde transneuronal transport of rabies virus. In SCT-untrained rats, we found few changes in the density and size of inhibitory and excitatory inputs impinging on cell bodies of TA and GS MNs compared to intact rats, whereas there was a marked trend for a reduction in the number of premotor INs connected to GS MNs. In contrast, after training of SCT rats, a significant increase of the density of GABAergic and glycinergic axon terminals was observed on both GS and TA motoneuronal cell bodies, as well as of presynaptic P-boutons on VGLUT1 afferents. Despite these changes in innervation the number of premotor INs connected to GS MNs was similar to control values although some new connections to MNs were observed. These results suggest that adaptation of gait patterns in SCT-trained rats was accompanied by changes in the innervation of lumbar MNs while the distribution of the spinal premotor circuitry was relatively preserved.


Asunto(s)
Región Lumbosacra/inervación , Neuronas Motoras/patología , Red Nerviosa/patología , Condicionamiento Físico Animal , Traumatismos de la Médula Espinal/fisiopatología , Animales , Femenino , Glicina/metabolismo , Miembro Posterior/fisiología , Interneuronas/patología , Locomoción/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/patología , Terminales Presinápticos/patología , Virus de la Rabia , Ratas , Ratas Wistar , Recuperación de la Función , Agonistas de Receptores de Serotonina/uso terapéutico , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
J Neurosci ; 36(23): 6199-212, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27277799

RESUMEN

UNLABELLED: Reactive cell proliferation occurs rapidly in the cat vestibular nuclei (VN) after unilateral vestibular neurectomy (UVN) and has been reported to facilitate the recovery of posturo-locomotor functions. Interestingly, whereas animals experience impairments for several weeks, extraordinary plasticity mechanisms take place in the local microenvironment of the VN: newborn cells survive and acquire different phenotypes, such as microglia, astrocytes, or GABAergic neurons, whereas animals eventually recover completely from their lesion-induced deficits. Because brain-derived neurotrophic factor (BDNF) can modulate vestibular functional recovery and neurogenesis in mammals, in this study, we examined the effect of BDNF chronic intracerebroventricular infusion versus K252a (a Trk receptor antagonist) in our UVN model. Results showed that long-term intracerebroventricular infusion of BDNF accelerated the restoration of vestibular functions and significantly increased UVN-induced neurogenesis, whereas K252a blocked that effect and drastically delayed and prevented the complete restoration of vestibular functions. Further, because the level of excitability in the deafferented VN is correlated with behavioral recovery, we examined the state of neuronal excitability using two specific markers: the cation-chloride cotransporter KCC2 (which determines the hyperpolarizing action of GABA) and GABAA receptors. We report for the first time that, during an early time window after UVN, significant BDNF-dependent remodeling of excitability markers occurs in the brainstem. These data suggest that GABA acquires a transient depolarizing action during recovery from UVN, which potentiates the observed reactive neurogenesis and accelerates vestibular functional recovery. These findings suggest that BDNF and/or KCC2 could represent novel treatment strategies for vestibular pathologies. SIGNIFICANCE STATEMENT: In this study, we report for the first time that brain-derived neurotrophic factor potentiates vestibular neurogenesis and significantly accelerates functional recovery after unilateral vestibular injury. We also show that specific markers of excitability, the potassium-chloride cotransporter KCC2 and GABAA receptors, undergo remarkable fluctuations within vestibular nuclei (VN), strongly suggesting that GABA acquires a transient depolarizing action in the VN during the recovery period. This novel plasticity mechanism could explain in part how the system returns to electrophysiological homeostasis between the deafferented and intact VN, considered in the literature to be a key parameter of vestibular compensation. In this context, our results open new perspectives for the development of therapeutic approaches to alleviate the vestibular symptoms and favor vestibular function recovery.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Receptores de GABA-A/genética , Simportadores/genética , Núcleos Vestibulares/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Carbazoles/farmacología , Gatos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Neuronas Colinérgicas/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Lateralidad Funcional , Neuronas GABAérgicas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glutamato Descarboxilasa/metabolismo , Alcaloides Indólicos/farmacología , Locomoción , Masculino , Neurogénesis/efectos de los fármacos , Nistagmo Patológico/fisiopatología , Fosfopiruvato Hidratasa/metabolismo , Postura , Receptores de GABA-A/metabolismo , Recuperación de la Función , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Simportadores/metabolismo , Núcleos Vestibulares/efectos de los fármacos , Núcleos Vestibulares/lesiones , Cotransportadores de K Cl
4.
Proc Natl Acad Sci U S A ; 110(1): 348-53, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23248270

RESUMEN

In healthy adults, activation of γ-aminobutyric acid (GABA)(A) and glycine receptors inhibits neurons as a result of low intracellular chloride concentration ([Cl(-)](i)), which is maintained by the potassium-chloride cotransporter KCC2. A reduction of KCC2 expression or function is implicated in the pathogenesis of several neurological disorders, including spasticity and chronic pain following spinal cord injury (SCI). Given the critical role of KCC2 in regulating the strength and robustness of inhibition, identifying tools that may increase KCC2 function and, hence, restore endogenous inhibition in pathological conditions is of particular importance. We show that activation of 5-hydroxytryptamine (5-HT) type 2A receptors to serotonin hyperpolarizes the reversal potential of inhibitory postsynaptic potentials (IPSPs), E(IPSP), in spinal motoneurons, increases the cell membrane expression of KCC2 and both restores endogenous inhibition and reduces spasticity after SCI in rats. Up-regulation of KCC2 function by targeting 5-HT(2A) receptors, therefore, has therapeutic potential in the treatment of neurological disorders involving altered chloride homeostasis. However, these receptors have been implicated in several psychiatric disorders, and their effects on pain processing are controversial, highlighting the need to further investigate the potential systemic effects of specific 5-HT(2A)R agonists, such as (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2).


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/fisiología , Neuronas Motoras/metabolismo , Espasticidad Muscular/tratamiento farmacológico , Receptor de Serotonina 5-HT2A/metabolismo , Serotonina/farmacología , Traumatismos de la Médula Espinal/complicaciones , Simportadores/metabolismo , Animales , Western Blotting , Compuestos Bicíclicos con Puentes/farmacología , Cloruros/metabolismo , Reflejo H , Inmunohistoquímica , Metilaminas/farmacología , Espasticidad Muscular/etiología , Ratas , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Cotransportadores de K Cl
5.
Prog Brain Res ; 188: 3-14, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21333799

RESUMEN

GABA and glycine are classically called "inhibitory" amino acids, despite the fact that their action can rapidly switch from inhibition to excitation and vice versa. The postsynaptic action depends on the intracellular concentration of chloride ions ([Cl(-)](i)), which is regulated by proteins in the plasma membrane: the K(+)-Cl(-) cotransporter KCC2 and the Na(+)-K(+)-Cl(-) cotransporter NKCC1, which extrude and intrude Cl(-) ions, respectively. A high [Cl(-)](i) leads to a depolarizing (excitatory) action of GABA and glycine, as observed in mature dorsal root ganglion neurons and in motoneurons both early during development and in several pathological conditions, such as following spinal cord injury. Here, we review some recent data regarding chloride homeostasis in the spinal cord and its contribution to network operation involved in locomotion.


Asunto(s)
Cloruros/metabolismo , Homeostasis/fisiología , Locomoción/fisiología , Red Nerviosa/fisiología , Periodicidad , Animales , Ganglios Espinales/citología , Glicina/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/citología , Neuronas/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
6.
J Neurosci ; 30(9): 3358-69, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20203195

RESUMEN

Maturation of inhibitory postsynaptic transmission onto motoneurons in the rat occurs during the perinatal period, a time window during which pathways arising from the brainstem reach the lumbar enlargement of the spinal cord. There is a developmental switch in miniature IPSCs (mIPSCs) from predominantly long-duration GABAergic to short-duration glycinergic events. We investigated the effects of a complete neonatal [postnatal day 0 (P0)] spinal cord transection (SCT) on the expression of Glycine and GABA(A) receptor subunits (GlyR and GABA(A)R subunits) in lumbar motoneurons. In control rats, the density of GlyR increased from P1 to P7 to reach a plateau, whereas that of GABA(A)R subunits dropped during the same period. In P7 animals with neonatal SCT (SCT-P7), the GlyR densities were unchanged compared with controls of the same age, while the developmental downregulation of GABA(A)R was prevented. Whole-cell patch-clamp recordings of mIPSCs performed in lumbar motoneurons at P7 revealed that the decay time constant of miniature IPSCs and the proportion of GABAergic events significantly increased after SCT. After daily injections of the 5-HT(2)R agonist DOI, GABA(A)R immunolabeling on SCT-P7 motoneurons dropped down to values reported in control-P7, while GlyR labeling remained stable. A SCT made at P5 significantly upregulated the expression of GABA(A)R 1 week later with little, if any, influence on GlyR. We conclude that the plasticity of GlyR is independent of supraspinal influences whereas that of GABA(A)R is markedly influenced by descending pathways, in particular serotoninergic projections.


Asunto(s)
Vías Eferentes/crecimiento & desarrollo , Neuronas Motoras/metabolismo , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Traumatismos de la Médula Espinal/metabolismo , Médula Espinal/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Tronco Encefálico/crecimiento & desarrollo , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Vías Eferentes/citología , Vías Eferentes/lesiones , Glicina/metabolismo , Inmunohistoquímica , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Técnicas de Placa-Clamp , Subunidades de Proteína/metabolismo , Ratas , Ratas Wistar , Receptores de GABA-A/metabolismo , Receptores de Glicina/metabolismo , Médula Espinal/citología , Traumatismos de la Médula Espinal/fisiopatología , Transmisión Sináptica/fisiología , Regulación hacia Arriba/fisiología , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...