Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Neurobiol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060907

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an unknown pathogenesis. It has been reported that mutations in the gene for Cu/Zn superoxide dismutase (SOD1) cause familial ALS. Mutant SOD1 undergoes aggregation and forms amyloid more easily, and SOD1-immunopositive inclusions have been observed in the spinal cords of ALS patients. Because of this, SOD1 aggregation is thought to be related to the pathogenesis of ALS. Some core regions of amyloid have been identified, but the issue of whether these regions form aggregates in living cells remains unclear, and the mechanism responsible for intracellular SOD1 aggregation also remains unclear. The findings reported in this study indicate that the aggregation of the ALS-linked mutant SOD1-EGFP was significantly enhanced when the BioID2 gene was fused to the N-terminus of the mutant SOD1-EGFP plasmid for cellular expression. Expression of a series of BioID2-(C-terminal deletion peptides of SOD1)-EGFP permitted us to identify 1-35 as a minimal N-terminal sequence and Ile35 as an essential amino acid residue that contributes to the intracellular aggregation of SOD1. The findings also showed that an additional substitution of Ile35 with Ser into the ALS mutant SOD1 resulted in the significant suppression of aggregate formation. The fact that no Ile35 mutations have been reported to date in ALS patients indicates that all ALS mutant SOD1s contain Ile35. Taken together, we propose that Ile35 plays a pivotal role in the aggregation of the ALS-linked SOD1 and that this study will contribute to our understanding of the mechanism responsible for SOD1 aggregation.

2.
Biosci Biotechnol Biochem ; 88(8): 941-947, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782732

RESUMEN

Triokinase/FMN cyclase (Tkfc) is involved in fructose metabolism and is responsible for the phosphorylation of glyceraldehyde to glyceraldehyde-3-phosphate. In this study, we showed that refeeding induced hepatic expression of Tkfc in mice. Luciferase reporter gene assays using the Tkfc promoter revealed the existence of 2 hepatocyte nuclear factor 4α (HNF4α)-responsive elements (HNF4RE1 and HNF4RE2) and 1 carbohydrate-responsive element-binding protein (ChREBP)-responsive element (ChoRE1). Deletion and mutation of HNF4RE1 and HNF4RE2 or ChoRE1 abolished HNF4α and ChREBP responsiveness, respectively. HNF4α and ChREBP synergistically stimulated Tkfc promoter activity. ChoRE1 mutation attenuated but maintained HNF4α responsiveness, whereas HNF4RE1 and HNF4RE2 mutations abolished ChREBP responsiveness. Moreover, Tkfc promoter activity stimulation by ChREBP was attenuated upon HNF4α knockdown. Furthermore, Tkfc expression was decreased in the livers of ChREBP-/- and liver-specific HNF4-/- (Hnf4αΔHep) mice. Altogether, our data indicate that Tkfc is a target gene of ChREBP and HNF4α, and Tkfc promoter activity stimulation by ChREBP requires HNF4α.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Factor Nuclear 4 del Hepatocito , Hígado , Regiones Promotoras Genéticas , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ratones , Hígado/metabolismo , Humanos , Elementos de Respuesta , Masculino , Activación Transcripcional , Regulación de la Expresión Génica , Ratones Noqueados
3.
Free Radic Res ; 56(7-8): 544-554, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36469660

RESUMEN

Iron, an essential element for most of living organisms, participates in many biological functions. Since iron is redox-active transition metal, it is known that excessive levels stimulate the formation of reactive oxygen species (ROS) and exacerbate cytotoxicity. An iron deficiency is the most common nutritional deficiency disorder in the world (about 30% of the population) and is more common than cases of iron overload. However, the effects of iron deficiency on ROS-induced cytotoxicity and the maintenance of intracellular redox homeostasis are not fully understood. The present study reports on an evaluation of the effects of iron deficiency on cytotoxicity induced by several ROS generators. In contrast to hydrogen peroxide and erastin, the cytotoxicity of 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a redox cycling agent that induces intracellular superoxide anion formation, was exacerbated by iron deficiency. Cytochrome b5 reductase was identified as a candidate enzyme responsible for the redox cycling of DMNQ under conditions of iron depletion. Moreover, the DMNQ-induced intracellular accumulation of ROS and a decrease in NADH/NAD+ ratios were enhanced by an iron deficiency. These negative changes were found to be ameliorated by overexpressing NAD(P)H:quinone oxidoreductase 1 (NQO1) in kidney-derived cells that originally showed a very low expression of NQO1. These results indicate that NQO1 plays a protective role against redox cycling quinone-mediated cytotoxicity under iron-depleted conditions. This is because NQO1 generates less-toxic hydroquinones via the two-electron reduction of quinones. The collective findings reported herein demonstrate that not only an iron overload but also an iron deficiency exacerbates ROS-mediated cytotoxicity.


Asunto(s)
Deficiencias de Hierro , NAD , Humanos , Especies Reactivas de Oxígeno/metabolismo , NAD/metabolismo , Oxidación-Reducción , Quinonas/metabolismo , Quinonas/farmacología , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Riñón , Hierro/metabolismo
4.
J Clin Biochem Nutr ; 71(3): 221-228, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36447485

RESUMEN

Obesity appears to be a major contributing factor for many health problems. Effective treatments for reducing weight gain, other than caloric restriction and exercise, are limited. The consumption of sugars is a major factor in the development of obesity in part by stimulating the transcription factor, carbohydrate response element binding protein (ChREBP), a process that is driven by de novo lipogenesis. Therefore, we hypothesized that inhibiting the action of ChREBP would be a promising strategy for alleviating these diseases. Using ChREBP deficient mice, the effect of a high intake of sucrose on body weight and blood glucose levels were investigated. Unlike wild type mice, ChREBP deficient mice did not gain much weight and their blood glucose and cholesterol levels remained relatively constant. In tracing it's cause, we found that the levels of expression of sucrase, an enzyme that digests sucrose, and both Glut2 and Glut5, a transporter of glucose and fructose, were not induced by feeding a high sucrose diet in the small intestine of ChREBP deficient mice. Our findings suggest that the inhibition of ChREBP could suppress weight gain even on a high sucrose diet.

5.
Mol Cell Biochem ; 476(10): 3577-3590, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34021470

RESUMEN

The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that increases the transcription of multiple genes. ChREBP is highly localized in the liver, where it upregulates the expression of genes that code for glycolytic and lipogenic enzymes, resulting in the conversion of excess carbohydrate into storage fat. ChREBP knockout (KO) mice display an anti-obese phenotype. However, at this time, role of ChREBP in adipose tissue remains unclear. Therefore, the energy metabolism and morphology of mitochondrial brown adipose tissue (BAT) in ChREBP KO mice was examined. We found increased expression levels of electron transport system proteins including the mitochondrial uncoupling protein (UCP1), and mitochondrial structural alterations such as dysplasia of the cristae and the presence of small mitochondria in BAT of ChREBP KO mice. Mass spectrometry analyses revealed that fatty acid synthase was absent in the BAT of ChREBP KO mice, which probably led to a reduction in fatty acids and cardiolipin, a regulator of various mitochondrial events. Our study clarified the new role of ChREBP in adipose tissue and its involvement in mitochondrial function. A clearer understanding of ChREBP in mitochondria could pave the way for improvements in obesity management.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/deficiencia , Metabolismo Energético , Mitocondrias/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Obesidad/genética , Obesidad/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
FEBS Open Bio ; 11(7): 2008-2018, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34051057

RESUMEN

The carbohydrate response element-binding protein (ChREBP), a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis, exists as two isoforms: ChREBPα and ChREBPß. However, the mechanism responsible for regulating the expression of both ChREBPα and ß, as well as the mechanism that determines which specific isoform is more responsive to different stimuli, remains unclear. To address this issue, we compared the effects of several stimuli, including oxidative stress, on the mRNA and protein expression levels of ChREBPα and ß in the hepatocyte cell line, HepG2. We found that H2 O2 stimulation suppressed the expression of both mRNA and protein in HepG2 cells, but the mRNA expression level of ChREBPß was < 1% of that for ChREBPα levels. In addition, the reduction in both ChREBPα and ß mRNA levels was reversed by PD98059, a selective and cell permeable inhibitor of the MEK/ERK pathway. Additionally, the administration of 12-O-tetradecanoylphorbol 13-acetate (TPA) and staurosporine (STS), activators of extracellular-signal-regulated kinase (ERK) signaling, also resulted in a decrease in the levels of both ChREBPα and ß mRNA in HepG2 cells through ERK signaling. These collective data suggest that oxidative stress, including STS treatment, suppresses the expression of ChREBPα and ß via the activation of ERK signaling in HepG2 cells. Such a decrease in the levels of expression of ChREBPα and ß could result in the suppression of hepatic glycolysis and lipogenesis, and this would be expected to prevent further oxidative stress.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Células Hep G2 , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal
7.
Biochem Mol Biol Educ ; 49(3): 383-391, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33378596

RESUMEN

Team-based learning (TBL) is an active learning method used in many educational institutions. However, there are few examples of its use in basic medicine, such as biochemistry in medical schools. This study used TBL to teach glucose metabolism to first-year medical students. The process was in four phases: preclass preparation, readiness assurance tests, advanced questions, and a TBL test, with peer evaluation and a questionnaire. There were positive correlations between the TBL test, peer evaluation, and individual readiness test performance. Tests were taken immediately after learning and 2 weeks later, and scores decreased significantly less with TBL than traditional lectures (-2.3% vs. -17.5%). This suggests that TBL was more effective than traditional lectures in supporting knowledge retention. We used a Moodle system to facilitate communication between students and teachers, and this was evaluated positively by both groups. It was particularly useful for managing TBL. These findings suggest that TBL could be used to improve student performance in biochemistry.


Asunto(s)
Bioquímica/educación , Educación de Pregrado en Medicina/métodos , Evaluación Educacional/métodos , Glucosa/metabolismo , Procesos de Grupo , Aprendizaje Basado en Problemas/métodos , Estudiantes de Medicina/psicología , Curriculum , Femenino , Humanos , Masculino , Grupo Paritario , Facultades de Medicina , Encuestas y Cuestionarios
8.
Biochem J ; 477(17): 3253-3269, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32776146

RESUMEN

The carbohydrate response element binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in glucose-mediated induction of genes involved in hepatic glycolysis and lipogenesis. In response to fluctuating blood glucose levels ChREBP activity is regulated mainly by nucleocytoplasmic shuttling of ChREBP. Under high glucose ChREBP binds to importin α and importin ß and translocates into the nucleus to initiate transcription. We have previously shown that the nuclear localization signal site (NLS) for ChREBP is bipartite with the NLS extending from Arg158 to Lys190. Here, we report the 2.5 Šcrystal structure of the ChREBP-NLS peptide bound to importin α. The structure revealed that the NLS binding is monopartite, with the amino acid residues K171RRI174 from the ChREBP-NLS interacting with ARM2-ARM5 on importin α. We discovered that importin α also binds to the primary binding site of the 14-3-3 proteins with high affinity, which suggests that both importin α and 14-3-3 are each competing with the other for this broad-binding region (residues 117-196) on ChREBP. We screened a small compound library and identified two novel compounds that inhibit the ChREBP-NLS/importin α interaction, nuclear localization, and transcription activities of ChREBP. These candidate molecules support developing inhibitors of ChREBP that may be useful in treatment of obesity and the associated diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Señales de Localización Nuclear/química , alfa Carioferinas/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cristalografía por Rayos X , Células Hep G2 , Humanos , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
9.
Biochem Mol Biol Educ ; 47(3): 279-287, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30829447

RESUMEN

University lectures are mainly passive in nature, and there are few subjects in which students need to learn and function independently. Tutorial education and related activities at universities that specialize in medical and pharmaceutical training have been actively carried out, and lectures in conjunction with practical skills are gradually being developed, although progress has been slow in this area. In past years, our biochemistry practice classes have been evaluated in reports dealing with experiments and written examinations, as is done in other universities. However, using this methodology, we are not able to evaluate the extent to which students master biochemical experimental skills. To address this, we introduced a basic skill test to our biochemical curriculum for the first time. Our exams contributed to a deeper understanding of student skills and could be good tools for evaluating the degree of understanding of the students. The students understood the contents of the training well and felt interested in research in the field of basic medicine. Thus, we conclude that introducing practical testing to biochemical practice was effective for medical students in the field of biochemistry. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):279-287, 2019.


Asunto(s)
Bioquímica/educación , Aprendizaje , Entrenamiento Simulado , Estudiantes de Medicina , Educación de Pregrado en Medicina , Femenino , Humanos , Masculino
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 271-280, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30553055

RESUMEN

Caffeine intake is associated with a reduced risk developing non-alcoholic fatty liver disease (NAFLD), but the underlying molecular mechanisms remain to be fully elucidated. We report here that caffeine markedly improved high fat diet-induced NAFLD in mice resulting in a 10-fold increase in circulating IL-6 levels, leading to STAT3 activation in the liver. Interestingly, the expression of IL-6 mRNA was not increased in the liver, but increased substantially in the muscles of caffeine-treated mice. Caffeine was found to stimulate IL-6 production in cultured myotubes but not in hepatocytes, adipocytes, or macrophages. The inhibition of p38/MAPK abrogated caffeine-induced IL-6 production in muscle cells. Caffeine failed to improve NAFLD in IL-6 and hepatocyte-specific STAT3 knockout mice, indicating that the IL-6/STAT3 pathway is vital for the hepatoprotective effects of caffeine in NAFLD. The possibility that IL-6/STAT3-mediated hepatic autophagosome induction and hepatocytic oxygen consumption are involved in the anti-NAFLD effects of caffeine cannot be excluded, based on the findings presented here. Our results reveal that caffeine ameliorates NAFLD via crosstalk between muscle IL-6 production and liver STAT3 activation.


Asunto(s)
Cafeína/farmacología , Interleucina-6/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Adipocitos/metabolismo , Animales , Cafeína/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Interleucina-6/fisiología , Metabolismo de los Lípidos/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
11.
PLoS One ; 13(10): e0205090, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30289953

RESUMEN

Under certain conditions, amyloid-like fibrils can develop into three-dimensional networks and form hydrogels by a self-assembly process. When Cu/Zn superoxide dismutase (SOD1), an anti-oxidative enzyme, undergoes misfolding, fibrillar aggregates are formed, which are a hallmark of a certain form of familial amyotrophic lateral sclerosis (ALS). However, the issue of whether SOD1 fibrils can be assembled into hydrogels remains to be tested. Here, we show that the SOD1 polypeptides undergo hydrogelation accompanied by the formation of thioflavin T-positive fibrils at pH 3.0 and 4.0, but not at pH 5.0 where precipitates are formed. The results of viscoelastic analyses indicate that the properties of SOD1 hydrogels (2%) were similar to and slightly more fragile than a 0.25% agarose gel. In addition, monitoring by a quartz crystal microbalance with admittance analysis showed that the denaturing of immobilized SOD1 on a sensor under the hydrogelation conditions at pH 3.0 and 4.0 resulted in an increase in the effective acoustic thickness from ~3.3 nm (a folded rigid form) to ~50 and ~100 nm (an extended water-rich state), respectively. In contrast, when SOD1 was denatured under the same conditions at pH 5.0, a compact water-poor state with an effective acoustic thickness of ~10 nm was formed. The addition of physiological concentrations of NaCl to the pH 4.0 sample induced a further extension of the SOD1 with larger amounts of water molecules (with an effective acoustic thickness of ~200 nm) but suppressed hydrogel formation. These results suggest that different denatured intermediate states of the protein before self-assembly play a major role in determining the characteristics of the resulting aggregates and that a conformational change to a suitable level of extended water-rich intermediate state before and/or during intermolecular assembling is required for fibrillation and hydrogelation in the case of globular proteins.


Asunto(s)
Hidrogeles/metabolismo , Superóxido Dismutasa-1/metabolismo , Amiloide/química , Amiloide/metabolismo , Benzotiazoles/química , Benzotiazoles/metabolismo , Humanos , Hidrogeles/química , Concentración de Iones de Hidrógeno , Cinética , Desnaturalización Proteica , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Cloruro de Sodio/química , Cloruro de Sodio/metabolismo , Superóxido Dismutasa-1/química , Sustancias Viscoelásticas/química , Sustancias Viscoelásticas/metabolismo , Agua/química , Agua/metabolismo
12.
Free Radic Res ; 50(11): 1245-1256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27629432

RESUMEN

Copper/zinc superoxide dismutase (SOD1), a primary anti-oxidative enzyme, protects cells against oxidative stress. We report herein on a comparison of behavioral and neurobiological changes between SOD1 knockout (KO) and wild-type mice, in an attempt to assess the role of SOD1 in brain functions. SOD1 KO mice exhibited impaired motivational behavior in both shuttle-box learning and three-chamber social interaction tests. High levels of dopamine transporter protein and an acceleration of serotonin turnover were also detected in the cerebrums of the SOD1 KO mice. These findings suggest that SOD1 deficiency disturbs monoaminergic neurotransmission leading to a decrease in motivational behavior.


Asunto(s)
Superóxido Dismutasa/genética , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Especies Reactivas de Oxígeno , Estrés Psicológico , Superóxido Dismutasa/metabolismo , Transmisión Sináptica
13.
Free Radic Res ; 50(6): 666-77, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26981929

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic diseases, and results in the development of fibrosis. Oxidative stress is thought to be one of the underlying causes of NAFLD. Copper/zinc superoxide dismutase (SOD1) is a primary antioxidative enzyme that scavenges superoxide anion radicals. Although SOD1 knockout (KO) mice have been reported to develop fatty livers, it is not known whether this lack of SOD1 leads to the development of fibrosis. Since the accumulation of collagen typically precedes liver fibrosis, we assessed the balance between the synthesis and degradation of collagen in liver tissue from SOD1 KO mice. We found a higher accumulation of collagen in the livers of SOD1 KO mice compared to wild type mice. The level of expression of HSP47, a chaperone of collagen, and a tissue inhibitor (TIMP1) of matrix metalloproteinases (a collagen degradating enzyme) was also increased in SOD1 KO mice livers. These results indicate that collagen synthesis is increased but that its degradation is inhibited in SOD1 KO mice livers. Moreover, SOD1 KO mice liver sections were extensively modified by advanced glycation end products (AGEs), which suggest that collagen in SOD1 KO mice liver might be also modified with AGEs and then would be more resistant to the action of collagen degrading enzymes. These findings clearly show that oxidative stress plays an important role in the progression of liver fibrosis.


Asunto(s)
Colágeno/metabolismo , Cobre/deficiencia , Hígado/metabolismo , Superóxido Dismutasa/deficiencia , Zinc/deficiencia , Animales , Cobre/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/metabolismo , Zinc/metabolismo
14.
J Biol Chem ; 291(20): 10515-27, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-26984404

RESUMEN

The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis.


Asunto(s)
Adenosina Monofosfato/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Regulación Alostérica , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Núcleo Celular/metabolismo , Células Cultivadas , Cristalografía por Rayos X , Dieta Alta en Grasa , Sacarosa en la Dieta/administración & dosificación , Hepatocitos/metabolismo , Carioferinas/metabolismo , Cuerpos Cetónicos/metabolismo , Masculino , Modelos Biológicos , Ratas , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
15.
Free Radic Res ; 46(6): 750-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22435664

RESUMEN

Copper/zinc-superoxide dismutase knockout (SOD1 KO) mice have been extensively used as an experimental animal model of pathology associated with oxidative stress. The mice spontaneously develop mild chronic hemolytic anaemia (HA). We previously reported that the kidneys of these types of mice contain massive amounts of iron. In this study, to clarify the role of the kidney for iron metabolism under HA, changes in the levels of expression and functions of iron-related proteins were examined. In SOD1 KO mice kidneys, protein levels of iron transporters, the iron-responsive element (IRE)-binding activity of IRP1 and the levels of phosphorylation of IRP1 are all increased. These findings indicate that oxidative stress caused by a SOD1 deficiency probably enhances the phosphorylation of and the conversion of IRP1 to the IRE-binding form, which may accelerate the reabsorption of iron by renal tubular cells. Kidney could play an important role in iron homeostasis under conditions of HA.


Asunto(s)
Hierro/metabolismo , Riñón/metabolismo , Superóxido Dismutasa/deficiencia , Animales , Técnicas de Cultivo de Célula , Activación Enzimática , Femenino , Humanos , Proteína 1 Reguladora de Hierro/metabolismo , Riñón/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Fosforilación , Proteína Quinasa C/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
16.
Neurosci Lett ; 494(1): 29-33, 2011 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-21354265

RESUMEN

Activated microglia produces inflammatory cytokines and nitric oxide (NO) that involved in neuronal injury and neurodegenerative diseases. We report herein, that H(2)O(2) intensifies the LPS-triggered expression of iNOS in the microglia cell line, BV-2, resulting in an enhancement in the production of NO. The NO production induced by a combination of LPS and H(2)O(2) was blocked by the addition of an anti-interferonß (IFNß) neutral antibody, suggesting that IFNß levels are correlated with the LPS/H(2)O(2)-induced production of NO. However, although the expression of IFNß was induced by H(2)O(2) treatment alone, neither the expression of iNOS mRNA nor the production of NO were induced. In addition, the expression of IFN receptor (IFNR) was induced by LPS but not by H(2)O(2). These data indicate that although H(2)O(2) alone cannot induce iNOS expression because of the insufficient expression of IFNR, in the presence of LPS, H(2)O(2) enhances iNOS expression via the expression of IFNß. Our findings suggest that H(2)O(2) produced by activated microglia further enhances NO production in various inflammatory states.


Asunto(s)
Peróxido de Hidrógeno/farmacología , Interferón beta/metabolismo , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Óxido Nítrico/biosíntesis , Animales , Línea Celular , Células Cultivadas , Peróxido de Hidrógeno/inmunología , Interferón beta/genética , Interferón beta/inmunología , Lipopolisacáridos/inmunología , Ratones , Microglía/inmunología , Microglía/metabolismo , Óxido Nítrico/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo
17.
Biochem Biophys Res Commun ; 402(4): 784-9, 2010 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-21036147

RESUMEN

The carbohydrate response element-binding protein (ChREBP) functions as a transcription factor in mediating the glucose-activated gene expression of multiple liver enzymes, which are responsible for converting excess carbohydrate to storage fat. ChREBP is translocated into the nucleus in response to high glucose levels, and then up-regulates transcriptional activity. Although this glucose activation of ChREBP is generally observed only in liver cells, overexpression of wild type max-like protein X (Mlx), but not an inactive mutant Mlx, resulted in the exhibition of the ChREBP functions also in a human kidney cell line. Because high glucose conditions induce the glycosylation of cellular proteins, the effect of O-linked GlcNAc modification on ChREBP functions was examined. Treatment with an O-GlcNAcase inhibitor (PUGNAc), which increases the O-linked GlcNAc modification of cellular proteins, caused an increase in the glucose response of ChREBP. In contrast, treatment with a glutamine fructose amidotransferase inhibitor (DON), which decreases O-GlcNAcylation by inhibiting the hexosamine biosynthetic pathway, completely blocked the glucose response of ChREBP. These results suggest that the O-linked glycosylation of ChREBP itself or other proteins that regulate ChREBP is essential for the production of functional ChREBP.


Asunto(s)
Acetilglucosamina/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Glucosa/metabolismo , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Glucosa/farmacología , Glicosilación , Humanos , Mutación , Oximas/farmacología , Fenilcarbamatos/farmacología , Transcripción Genética/efectos de los fármacos , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores , beta-N-Acetilhexosaminidasas/metabolismo
18.
Free Radic Biol Med ; 47(5): 559-67, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19482077

RESUMEN

Copper/zinc-superoxide dismutase (SOD1) plays a protective role in cells by catalyzing the conversion of the superoxide anion into molecular oxygen and hydrogen peroxide. Although SOD1 knockout (KO) mice exhibit a reduced life span and an elevated incidence of dysfunctions in old age, young SOD1 KO mice grow normally and exhibit no abnormalities. This fact leads to the hypothesis that other antioxidative proteins prevent oxidative stress, compensating for SOD1. Differently expressed genes in 3-week-old SOD1 KO and littermate wild-type mice were explored. A gene remarkably elevated in SOD1 KO mouse kidneys was identified as the glutathione S-transferase Alpha 4 gene (Gsta4), which encodes the GSTA4 subunit. The GSTA4 protein level and activity were also significantly increased in SOD1 KO mouse kidneys. The administration of an iron complex, a free radical generator, induced GSTA4 expression in wild-type mouse kidneys. Iron deposition detected in SOD1 KO mouse kidney is thought to be an inducer of GSTA4. In addition, overexpression of mouse GSTA4 cDNA in human embryonic kidney cells decreased cell death caused by both 4-hydroxynonenal and hydrogen peroxide. These findings suggest that compensatory induced GSTA4 plays a protective role against oxidative stress in young SOD1 KO mouse kidneys.


Asunto(s)
Citoprotección/genética , Glutatión Transferasa/fisiología , Superóxido Dismutasa/genética , Aldehídos/toxicidad , Animales , Células Cultivadas , Reactivos de Enlaces Cruzados/toxicidad , Citoprotección/efectos de los fármacos , Femenino , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Hierro/metabolismo , Hierro/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Distribución Tisular , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
19.
J Biol Chem ; 283(36): 24899-908, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18606808

RESUMEN

Carbohydrate response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays a critical role in the glucose-mediated induction of gene products involved in hepatic glycolysis and lipogenesis. Glucose affects the activity of ChREBP largely through post-translational mechanisms involving phosphorylation-dependent cellular localization. In this work we show that the N-terminal region of ChREBP (residues 1-251) regulates its subcellular localization via an interaction with 14-3-3. 14-3-3 binds an alpha-helix in this region (residues 125-135) to retain ChREBP in the cytosol, and binding of 14-3-3 is facilitated by phosphorylation of nearby Ser-140 and Ser-196. Phosphorylation of ChREBP at these sites was essential for its interaction with CRM1 for export to the cytosol, whereas nuclear import of ChREBP requires dephosphorylated ChREBP to interact with importin alpha. Notably, 14-3-3 appears to compete with importin alpha for ChREBP binding. 14-3-3beta bound to a synthetic peptide spanning residues 125-144 and bearing a phosphate at Ser-140 with a dissociation constant of 1.1 microm, as determined by isothermal calorimetry. The interaction caused a shift in the fluorescence maximum of the tryptophan residues of the peptide. The corresponding unphosphorylated peptide failed to bind 14-3-3beta. These results suggest that interactions with importin alpha and 14-3-3 regulate movement of ChREBP into and out of the nucleus, respectively, and that these interactions are regulated by the ChREBP phosphorylation status.


Asunto(s)
Proteínas 14-3-3/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas 14-3-3/genética , Transporte Activo de Núcleo Celular/fisiología , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Línea Celular , Núcleo Celular/genética , Citosol/metabolismo , Glucosa/genética , Glucosa/metabolismo , Glucólisis/fisiología , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Lipogénesis/fisiología , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Ratas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/genética , Proteína Exportina 1
20.
J Biochem ; 139(3): 391-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16567404

RESUMEN

alpha1,6-Fucosyltransferase (Fut8) catalyzes the transfer of a fucose residue from GDP-fucose to the innermost N-acetylglucosamine residue of N-glycans. Here we report that the loss of core fucosylation impairs the function of low-density lipoprotein (LDL) receptor-related protein-1 (LRP-1), a multifunctional scavenger and signaling receptor, resulting in a reduction in the endocytosis of insulin like growth factor (IGF)-binding protein-3 (IGFBP-3) in the cells derived from Fut8-null (Fut8-/-) mice. The reduced endocytosis was restored by the re-introduction of Fut8. Serum levels of IGFBP-3 were markedly upregulated in Fut8-/- mice. These data clearly indicate that core fucosylation is crucial for the scavenging activity of LRP-1 in vivo.


Asunto(s)
Fucosa/metabolismo , Fucosiltransferasas/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/fisiología , Animales , Fucosa/química , Fucosiltransferasas/deficiencia , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/química , Ratones , Ratones Noqueados , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...