Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 11: 1147625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936982

RESUMEN

Introduction: Proline/arginine-rich end leucine-rich repeat protein (PRELP), is a small secreted proteoglycan expressed by pericytes and vascular smooth muscle cells surrounding the brain vasculature of adult mouse. Methods: We utilised a Prelp knockout (Prelp -/-) mouse model to interrogate vasculature integrity in the brain alongside performing in vitro assays to characterise PRELP application to endothelial cells lines. Our findings were supplemented with RNA expression profiling to elucidate the mechanism of how PRELP maintains neurovasculature function. Results: Prelp -/- mice presented with neuroinflammation and reducedneurovasculature integrity, resulting in IgG and dextran leakage in the cerebellum and cortex. Histological analysis of Prelp -/- mice revealed reducedcell-cell integrity of the blood brain barrier, capillary attachment of pericytes andastrocyte end-feet. RNA-sequencing analysis found that cell-cell adhesion andinflammation are affected in Prelp -/- mice and gene ontology analysis as well as gene set enrichment analysis demonstrated that inflammation related processes and adhesion related processes such as epithelial-mesenchymal transition and apical junctions were significantly affected, suggesting PRELP is a regulator of cell-cell adhesion. Immunofluorescence analysis showed that adhesion junction protein expression levels of cadherin, claudin-5, and ZO-1, was suppressed in Prelp -/- mice neurovasculature. Additionally, in vitro studies revealed that PRELP application to endothelial cells enhances cell-cell integrity, induces mesenchymal-endothelial transition and inhibits TGF-ß mediated damage to cell-cell adhesion. Discussion: Our study indicates that PRELP is a novel endogenous secreted regulator of neurovasculature integrity and that PRELP application may be a potential treatment for diseases associated with neurovascular damage.

2.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230849

RESUMEN

Retinoblastoma (RB) is the most common intraocular pediatric cancer. Nearly all cases of RB are associated with mutations compromising the function of the RB1 tumor suppressor gene. We previously demonstrated that PRELP is widely downregulated in various cancers and our in vivo and in vitro analysis revealed PRELP as a novel tumor suppressor and regulator of EMT. In addition, PRELP is located at chromosome 1q31.1, around a region hypothesized to be associated with the initiation of malignancy in RB. Therefore, in this study, we investigated the role of PRELP in RB through in vitro analysis and next-generation sequencing. Immunostaining revealed that PRELP is expressed in Müller glial cells in the retina. mRNA expression profiling of PRELP-/- mouse retina and PRELP-treated RB cells found that PRELP contributes to RB progression via regulation of the cancer microenvironment, in which loss of PRELP reduces cell-cell adhesion and facilitates EMT. Our observations suggest that PRELP may have potential as a new strategy for RB treatment.

3.
Commun Biol ; 4(1): 802, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183774

RESUMEN

Regeneration of the testis from pluripotent stem cells is a real challenge, reflecting the complexity of the interaction of germ cells and somatic cells. Here we report the generation of testicular somatic cell-like cells (TesLCs) including Sertoli cell-like cells (SCLCs) from mouse embryonic stem cells (ESCs) in xeno-free culture. We find that Nr5a1/SF1 is critical for interaction between SCLCs and PGCLCs. Intriguingly, co-culture of TesLCs with epiblast-like cells (EpiLCs), rather than PGCLCs, results in self-organised aggregates, or testicular organoids. In the organoid, EpiLCs differentiate into PGCLCs or gonocyte-like cells that are enclosed within a seminiferous tubule-like structure composed of SCLCs. Furthermore, conditioned medium prepared from TesLCs has a robust inducible activity to differentiate EpiLCs into PGCLCs. Our results demonstrate conditions for in vitro reconstitution of a testicular environment from ESCs and provide further insights into the generation of sperm entirely in xeno-free culture.


Asunto(s)
Células Madre Embrionarias/citología , Estratos Germinativos/citología , Espermatozoides/citología , Testículo/citología , Animales , Diferenciación Celular , Técnicas de Cocultivo , Masculino , Ratones , Organoides/citología , Transcriptoma
4.
Am J Med Genet A ; 185(4): 1067-1075, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33399274

RESUMEN

SOX9, a transcription factor, is expressed in the undifferentiated XX and XY gonads. SRY induces significant upregulation of SOX9 expression in XY gonads. Loss-of-function SOX9 variants cause testicular dysgenesis in 46,XY patients, while duplication of the total gene or the upstream regulatory region results in testicular development in 46,XX patients. However, gain-of-function (GoF) SOX9 variants have not been reported previously. We report the case of a 16-year-old female patient with a 46,XX karyotype who had masculinized external genitalia and unilateral ovotestis. Next-generation sequencing-based genetic screening for disorders of sex development led to the identification of a novel SOX9 variant (p.Glu50Lys), transmitted from the phenotypically normal father. Expression analysis showed that E50K-SOX9 enhanced transactivation of the luciferase reporter containing the testis enhancer sequence core element compared with that containing the wildtype-SOX9. This GoF activity was not observed in the luciferase reporter containing Amh, the gene for anti-Müllerian hormone. We genetically engineered female mice (Sox9E50K/E50K ), and they showed no abnormalities in the external genitalia or ovaries. In conclusion, a novel SOX9 variant with a promoter-specific GoF activity was identified in vitro; however, the disease phenotype was not recapitulated by the mouse model. At present, the association between the GoF SOX9 variant and the ovotestis phenotype remains unclear. Future studies are needed to verify the possible association.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX/genética , Ovario/metabolismo , Trastornos Ovotesticulares del Desarrollo Sexual/genética , Factor de Transcripción SOX9/genética , Trastornos del Desarrollo Sexual 46, XX/patología , Adolescente , Animales , Hormona Antimülleriana/genética , Modelos Animales de Enfermedad , Femenino , Mutación con Ganancia de Función/genética , Humanos , Ratones , Ovario/crecimiento & desarrollo , Ovario/patología , Trastornos Ovotesticulares del Desarrollo Sexual/patología , Regiones Promotoras Genéticas/genética
5.
Science ; 360(6396): 1469-1473, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29903884

RESUMEN

Cell fate decisions require appropriate regulation of key genes. Sox9, a direct target of SRY, is pivotal in mammalian sex determination. In vivo high-throughput chromatin accessibility techniques, transgenic assays, and genome editing revealed several novel gonadal regulatory elements in the 2-megabase gene desert upstream of Sox9 Although others are redundant, enhancer 13 (Enh13), a 557-base pair element located 565 kilobases 5' from the transcriptional start site, is essential to initiate mouse testis development; its deletion results in XY females with Sox9 transcript levels equivalent to those in XX gonads. Our data are consistent with the time-sensitive activity of SRY and indicate a strict order of enhancer usage. Enh13 is conserved and embedded within a 32.5-kilobase region whose deletion in humans is associated with XY sex reversal, suggesting that it is also critical in humans.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Disgenesia Gonadal 46 XY/genética , Factor de Transcripción SOX9/genética , Procesos de Determinación del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología , Animales , Secuencia Conservada , Femenino , Humanos , Masculino , Ratones , Eliminación de Secuencia , Proteína de la Región Y Determinante del Sexo/genética , Sitio de Iniciación de la Transcripción
6.
Hum Mutat ; 38(1): 39-42, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27610946

RESUMEN

The role of monogenic mutations in the development of 46,XX testicular/ovotesticular disorders of sex development (DSD) remains speculative. Although mutations in NR5A1 are known to cause 46,XY gonadal dysgenesis and 46,XX ovarian insufficiency, such mutations have not been implicated in testicular development of 46,XX gonads. Here, we identified identical NR5A1 mutations in two unrelated Japanese patients with 46,XX testicular/ovotesticular DSD. The p.Arg92Trp mutation was absent from the clinically normal mothers and from 200 unaffected Japanese individuals. In silico analyses scored p.Arg92Trp as probably pathogenic. In vitro assays demonstrated that compared with wild-type NR5A1, the mutant protein was less sensitive to NR0B1-induced suppression on the SOX9 enhancer element. Other sequence variants found in the patients were unlikely to be associated with the phenotype. The results raise the possibility that specific mutations in NR5A1 underlie testicular development in genetic females.


Asunto(s)
Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/genética , Cariotipo , Mutación Missense , Factor Esteroidogénico 1/genética , Testículo/metabolismo , Alelos , Sustitución de Aminoácidos , Biomarcadores , Análisis Mutacional de ADN , Femenino , Genotipo , Gónadas/anomalías , Humanos , Lactante , Masculino , Modelos Moleculares , Fenotipo , Conformación Proteica , Factor Esteroidogénico 1/química
7.
Adv Genet ; 86: 135-65, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25172349

RESUMEN

The brain is a sexually dimorphic organ. Little is known about molecular mechanisms underlying sexual differentiation of the brain and behavior. The classical hypothesis of brain sexual differentiation suggests that a perinatal surge of organizational sex hormones secreted from the gonad leads to irreversible changes in morphology of the brain, followed by pubertal hormones that activate neural networks to express sex-specific behavioral phenotypes. However, recent studies propose that sex hormones are not the sole factor to establish sexual dimorphism in the brain. Since mammalian sex strictly relies on sex chromosome complement, i.e., XY for males and XX for females, intrinsic genetic differences between XY and XX cells are strong candidates for the cause of sexual dimorphism. Several genes on the Y chromosome are expressed in the male brain and may act in a dominant manner. Among these Y-linked genes, the testis-determining gene Sry is of particular interest. Although SRY is known to function as a transcriptional activator triggering testicular genetic pathway, several lines of evidence suggest that it also acts as an epigenetic regulator. This chapter provides a basic overview of mammalian sex determination and brain sexual differentiation. It summarizes current evidence of brain-specific epigenetic gene regulations in mammals and other species, and explores the common features between them. Potential roles of Sry during brain sexual development are described and prospects of this research field are discussed.


Asunto(s)
Encéfalo/fisiología , Regulación de la Expresión Génica , Genes sry , Diferenciación Sexual/genética , Animales , Epigénesis Genética , Femenino , Humanos , Masculino , Mamíferos
8.
Biol Reprod ; 89(4): 78, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23946534

RESUMEN

In mammals, sex differentiation depends on gonad development, which is controlled by two groups of sex-determining genes that promote one gonadal sex and antagonize the opposite one. SOX9 plays a key role during testis development in all studied vertebrates, whereas it is kept inactive in the XX gonad at the critical time of sex determination, otherwise, ovary-to-testis gonadal sex reversal occurs. However, molecular mechanisms underlying repression of Sox9 at the beginning of ovarian development, as well as other important aspects of gonad organogenesis, remain largely unknown. Because there is indirect evidence that micro-RNAs (miRNA) are necessary for testicular function, the possible involvement of miRNAs in mammalian sex determination deserved further research. Using microarray technology, we have identified 22 miRNAs showing sex-specific expression in the developing gonads during the critical period of sex determination. Bioinformatics analyses led to the identification of miR-124 as the candidate gene for ovarian development. We knocked down or overexpressed miR-124 in primary gonadal cell cultures and observed that miR-124 is sufficient to induce the repression of both SOX9 translation and transcription in ovarian cells. Our results provide the first evidence of the involvement of a miRNA in the regulation of the gene controlling gonad development and sex determination. The miRNA microarray data reported here will help promote further research in this field, to unravel the role of other miRNAs in the genetic control of mammalian sex determination.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Oogénesis , Ovario/metabolismo , Factor de Transcripción SOX9/antagonistas & inhibidores , Diferenciación Sexual , Animales , Animales no Consanguíneos , Células Cultivadas , Condrocitos/citología , Condrocitos/metabolismo , Biología Computacional , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Perfilación de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Células HEK293 , Humanos , Masculino , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Ovario/citología , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Testículo/citología , Testículo/metabolismo
9.
Endocrinology ; 153(4): 1948-58, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22294746

RESUMEN

Human DAX1 duplications cause dosage-sensitive sex reversal (DSS) whereby chromosomally XY individuals can develop as females due to gonadal dysgenesis. However, the mechanism of DSS-adrenal hypoplasia congenita on X, gene 1 (DAX1) action in the fetal testis is unknown. We show that in fetal testes from XY Dax1-overexpressing transgenic mice, the expression of the key testis-promoting gene sex-determining region on Y (SRY)-box-9 (Sox9) is reduced. Moreover, in XY Sox9 heterozygotes, in which testis development is usually normal, Dax1 overexpression results in ovotestes, suggesting a DAX1-SOX9 antagonism. The ovarian portion of the XY ovotestes was characterized by expression of the granulosa cell marker, Forkhead box-L2, with complete loss of the Sertoli cell markers, SOX9 and anti-Müllerian hormone, and the Leydig cell marker CYP17A1. However, the expression of SRY and steroidogenic factor-1 (SF1), two key transcriptional regulators of Sox9, was retained in the ovarian portion of the XY ovotestes. Using reporter mice, Dax1 overexpression reduced activation of TES, the testis enhancer of Sox9, indicating that DAX1 might repress Sox9 expression via TES. In cultured cells, increasing levels of DAX1 antagonized SF1-, SF1/SRY-, and SF1/SOX9-mediated activation of TES, due to reduced binding of SF1 to TES, providing a likely mechanism for DSS.


Asunto(s)
Receptor Nuclear Huérfano DAX-1/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Trastornos del Desarrollo Sexual/metabolismo , Factor de Transcripción SOX9/antagonistas & inhibidores , Factor Esteroidogénico 1/metabolismo , Testículo/metabolismo , Animales , Células Cultivadas , Proteínas del Citoesqueleto , Receptor Nuclear Huérfano DAX-1/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Trastornos del Desarrollo Sexual/genética , Femenino , Feto/metabolismo , Genotipo , Disgenesia Gonadal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Proteínas de Unión al ARN , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología
10.
Chromosome Res ; 20(1): 191-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22215485

RESUMEN

In most mammals, the Y chromosomal Sry gene initiates testis formation within the bipotential gonad, resulting in male development. SRY is a transcription factor and together with SF1 it directly up-regulates the expression of the pivotal sex-determining gene Sox9 via a 1.3-kb cis-regulatory element (TESCO) which contains an evolutionarily conserved region (ECR) of 180 bp. Remarkably, several rodent species appear to determine sex in the absence of Sry and a Y chromosome, including the mole voles Ellobius lutescens and Ellobius tancrei, whereas Ellobius fuscocapillus of the same genus retained Sry. The sex-determining mechanisms in the Sry-negative species remain elusive. We have cloned and sequenced 1.1 kb of E. lutescens TESCO which shares 75% sequence identity with mouse TESCO indicating that testicular Sox9 expression in E. lutescens might still be regulated via TESCO. We have also cloned and sequenced the ECRs of E. tancrei and E. fuscocapillus. While the three Ellobius ECRs are highly similar (94-97% sequence identity), they all display a 14-bp deletion (Δ14) removing a highly conserved SOX/TCF site. Introducing Δ14 into mouse TESCO increased both basal activity and SF1-mediated activation of TESCO in HEK293T cells. We propose a model whereby Δ14 may have triggered up-regulation of Sox9 in XX gonads leading to destabilization of the XY/XX sex-determining mechanism in Ellobius. E. lutescens/E. tancrei and E. fuscocapillus could have independently stabilized their sex determination mechanisms by Sry-independent and Sry-dependent approaches, respectively.


Asunto(s)
Arvicolinae/genética , Regulación de la Expresión Génica , Factor de Transcripción SOX9/metabolismo , Procesos de Determinación del Sexo , Cromosoma Y/metabolismo , Animales , Arvicolinae/metabolismo , Arvicolinae/fisiología , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Secuencia Conservada , Evolución Molecular , Femenino , Variación Genética , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Factor de Transcripción SOX9/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Eliminación de Secuencia , Testículo/citología , Testículo/metabolismo , Testículo/fisiología , Cromosoma Y/genética
11.
PLoS One ; 6(3): e17751, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21412441

RESUMEN

BACKGROUND: In human embryogenesis, loss of SRY (sex determining region on Y), SOX9 (SRY-related HMG box 9) or SF1 (steroidogenic factor 1) function causes disorders of sex development (DSD). A defining event of vertebrate sex determination is male-specific upregulation and maintenance of SOX9 expression in gonadal pre-Sertoli cells, which is preceded by transient SRY expression in mammals. In mice, Sox9 regulation is under the transcriptional control of SRY, SF1 and SOX9 via a conserved testis-specific enhancer of Sox9 (TES). Regulation of SOX9 in human sex determination is however poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We show that a human embryonal carcinoma cell line (NT2/D1) can model events in presumptive Sertoli cells that initiate human sex determination. SRY associates with transcriptionally active chromatin in NT2/D1 cells and over-expression increases endogenous SOX9 expression. SRY and SF1 co-operate to activate the human SOX9 homologous TES (hTES), a process dependent on phosphorylated SF1. SOX9 also activates hTES, augmented by SF1, suggesting a mechanism for maintenance of SOX9 expression by auto-regulation. Analysis of mutant SRY, SF1 and SOX9 proteins encoded by thirteen separate 46,XY DSD gonadal dysgenesis individuals reveals a reduced ability to activate hTES. CONCLUSIONS/SIGNIFICANCE: We demonstrate how three human sex-determining factors are likely to function during gonadal development around SOX9 as a hub gene, with different genetic causes of 46,XY DSD due a common failure to upregulate SOX9 transcription.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY/genética , Mutación/genética , Factor de Transcripción SOX9/genética , Proteína de la Región Y Determinante del Sexo/genética , Factor Esteroidogénico 1/genética , Línea Celular , Elementos de Facilitación Genéticos/genética , Humanos , Masculino , Proteínas Mutantes/metabolismo , Especificidad de Órganos/genética , Factor de Transcripción SOX9/metabolismo , Testículo/metabolismo , Transactivadores/metabolismo , Regulación hacia Arriba/genética
12.
J Clin Invest ; 121(1): 328-41, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21183788

RESUMEN

Sex in mammals is genetically determined and is defined at the cellular level by sex chromosome complement (XY males and XX females). The Y chromosome-linked gene sex-determining region Y (SRY) is believed to be the master initiator of male sex determination in almost all eutherian and metatherian mammals, functioning to upregulate expression of its direct target gene Sry-related HMG box-containing gene 9 (SOX9). Data suggest that SRY evolved from SOX3, although there is no direct functional evidence to support this hypothesis. Indeed, loss-of-function mutations in SOX3 do not affect sex determination in mice or humans. To further investigate Sox3 function in vivo, we generated transgenic mice overexpressing Sox3. Here, we report that in one of these transgenic lines, Sox3 was ectopically expressed in the bipotential gonad and that this led to frequent complete XX male sex reversal. Further analysis indicated that Sox3 induced testis differentiation in this particular line of mice by upregulating expression of Sox9 via a similar mechanism to Sry. Importantly, we also identified genomic rearrangements within the SOX3 regulatory region in three patients with XX male sex reversal. Together, these data suggest that SOX3 and SRY are functionally interchangeable in sex determination and support the notion that SRY evolved from SOX3 via a regulatory mutation that led to its de novo expression in the early gonad.


Asunto(s)
Trastornos Testiculares del Desarrollo Sexual 46, XX/genética , Factores de Transcripción SOXB1/genética , Trastornos Testiculares del Desarrollo Sexual 46, XX/metabolismo , Trastornos Testiculares del Desarrollo Sexual 46, XX/patología , Adulto , Aldehído Deshidrogenasa/genética , Familia de Aldehído Deshidrogenasa 1 , Animales , Secuencia de Bases , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Reordenamiento Génico , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Embarazo , Secuencias Reguladoras de Ácidos Nucleicos , Retinal-Deshidrogenasa , Factor de Transcripción SOX9/genética , Células de Sertoli/metabolismo , Células de Sertoli/patología , Testículo/embriología , Testículo/patología , Regulación hacia Arriba
13.
Int J Biochem Cell Biol ; 42(3): 417-20, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20005972

RESUMEN

Sry (sex-determining region Y) is the sex-determining gene on the mammalian Y chromosome, which encodes a transcription factor containing a DNA-binding domain characteristic of some high mobility group proteins (HMG box). It is the founder member of the Sox (Sry-related HMG box) gene family and is therefore classified in the Sox A group. In mice, the transient expression of Sry between 10.5 and 12.5 dpc triggers the differentiation of Sertoli cells from the supporting cell precursor lineage, which would otherwise give rise to granulosa cells in ovaries. However, little was known about the target genes of SRY and molecular mechanisms how SRY leads to testis development. Recent work has provided evidence that SRY binds directly to a testis-specific enhancer of Sox9 (TES) and activates Sox9 expression in co-operation with steroidogenic factor 1 (SF1). Furthermore, this SRY action is limited to a certain time period during embryogenesis.


Asunto(s)
Mamíferos/genética , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo/metabolismo , Testículo/embriología , Transactivadores/metabolismo , Animales , Masculino , Modelos Genéticos , Proteína de la Región Y Determinante del Sexo/química , Proteína de la Región Y Determinante del Sexo/genética , Transactivadores/química , Transactivadores/genética
14.
Cell ; 139(6): 1130-42, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20005806

RESUMEN

In mammals, the transcription factor SRY, encoded by the Y chromosome, is normally responsible for triggering the indifferent gonads to develop as testes rather than ovaries. However, testis differentiation can occur in its absence. Here we demonstrate in the mouse that a single factor, the forkhead transcriptional regulator FOXL2, is required to prevent transdifferentiation of an adult ovary to a testis. Inducible deletion of Foxl2 in adult ovarian follicles leads to immediate upregulation of testis-specific genes including the critical SRY target gene Sox9. Concordantly, reprogramming of granulosa and theca cell lineages into Sertoli-like and Leydig-like cell lineages occurs with testosterone levels comparable to those of normal XY male littermates. Our results show that maintenance of the ovarian phenotype is an active process throughout life. They might also have important medical implications for the understanding and treatment of some disorders of sexual development in children and premature menopause in women.


Asunto(s)
Transdiferenciación Celular , Factores de Transcripción Forkhead/metabolismo , Ovario/metabolismo , Testículo/metabolismo , Animales , Femenino , Proteína Forkhead Box L2 , Factores de Transcripción Forkhead/genética , Eliminación de Gen , Células de la Granulosa/citología , Masculino , Ratones , Oocitos/metabolismo , Ovario/citología , Células de Sertoli/citología , Testículo/citología
15.
Trends Genet ; 25(1): 19-29, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19027189

RESUMEN

Sex-determining region Y (Sry) is the crucial gene that initiates male sex determination in most mammals. Although several components of the pathway regulating sexual differentiation have been elucidated, the mechanism of Sry action within this was unclear. However, recent discoveries in cellular, genetic and molecular aspects of gonad development are shedding light on the precise role of SRY in the regulation of Sox9, a crucial downstream target gene. SRY is thought to act synergistically with SF1, a nuclear receptor, through an enhancer of Sox9 to promote Sertoli cell differentiation in mice. In this review, we focus on the regulation of these genes and their interaction with other genes involved in promoting testis or ovary development. We also explore the common features between sex determination in mammals and in other vertebrates that lack Sry.


Asunto(s)
Genes sry , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Trastornos del Desarrollo Sexual , Femenino , Humanos , Masculino , Ratones , Modelos Genéticos , Factor de Transcripción SOX9/genética , Testículo/embriología , Activación Transcripcional
16.
Nature ; 453(7197): 930-4, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18454134

RESUMEN

The mammalian Y chromosome acts as a dominant male determinant as a result of the action of a single gene, Sry, whose role in sex determination is to initiate testis rather than ovary development from early bipotential gonads. It does so by triggering the differentiation of Sertoli cells from supporting cell precursors, which would otherwise give follicle cells. The related autosomal gene Sox9 is also known from loss-of-function mutations in mice and humans to be essential for Sertoli cell differentiation; moreover, its abnormal expression in an XX gonad can lead to male development in the absence of Sry. These genetic data, together with the finding that Sox9 is upregulated in Sertoli cell precursors just after SRY expression begins, has led to the proposal that Sox9 could be directly regulated by SRY. However, the mechanism by which SRY action might affect Sox9 expression was not understood. Here we show that SRY binds to multiple elements within a Sox9 gonad-specific enhancer in mice, and that it does so along with steroidogenic factor 1 (SF1, encoded by the gene Nr5a1 (Sf1)), an orphan nuclear receptor. Mutation, co-transfection and sex-reversal studies all point to a feedforward, self-reinforcing pathway in which SF1 and SRY cooperatively upregulate Sox9 and then, together with SF1, SOX9 also binds to the enhancer to help maintain its own expression after that of SRY has ceased. Our results open up the field, permitting further characterization of the molecular mechanisms regulating sex determination and how they have evolved, as well as how they fail in cases of sex reversal.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Procesos de Determinación del Sexo , Proteína de la Región Y Determinante del Sexo/metabolismo , Factor Esteroidogénico 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Inmunoprecipitación de Cromatina , Femenino , Biblioteca de Genes , Masculino , Ratones , Factor de Transcripción SOX9 , Proteína de la Región Y Determinante del Sexo/genética , Factor Esteroidogénico 1/genética , Testículo/metabolismo
17.
Proc Natl Acad Sci U S A ; 104(42): 16558-63, 2007 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-17940049

RESUMEN

Targeted mutagenesis of Fgf9 in mice causes male-to-female sex reversal. Among the four FGF receptors, FGFR2 showed two highly specific patterns based on antibody staining, suggesting that it might be the receptor-mediating FGF9 signaling in the gonad. FGFR2 was detected at the plasma membrane in proliferating coelomic epithelial cells and in the nucleus in Sertoli progenitor cells. This expression pattern suggested that Fgfr2 might play more than one role in testis development. To test the hypothesis that Fgfr2 is required for male sex determination, we crossed mice carrying a floxed allele of Fgfr2 with two different Cre lines to induce a temporal or cell-specific deletion of this receptor. Results show that deletion of Fgfr2 in embryonic gonads phenocopies deletion of Fgf9 and leads to male-to-female sex reversal. Using these two Cre lines, we provide the first genetic evidence that Fgfr2 plays distinct roles in proliferation and Sertoli cell differentiation during testis development.


Asunto(s)
Diferenciación Celular/genética , Morfogénesis/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/fisiología , Células de Sertoli/citología , Procesos de Determinación del Sexo , Testículo/embriología , Animales , Proliferación Celular , Eliminación de Gen , Expresión Génica , Proteínas del Grupo de Alta Movilidad/genética , Integrasas/genética , Masculino , Ratones , Ratones Transgénicos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Factor de Transcripción SOX9 , Testículo/citología , Testículo/metabolismo , Factores de Transcripción/genética
18.
Dev Biol ; 302(1): 132-42, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17026980

RESUMEN

To understand mechanisms of sex determination, it is important to know the lineage relationships of cells comprising the gonads. For example, in mice, the Y-linked gene Sry triggers differentiation of Sertoli cells from a cell population originating in the coelomic epithelium overlying the nascent gonad that also gives rise to uncharacterised interstitial cells. In contrast, little is known about origins of somatic cell types in the chick testis, where there is no Sry gene and sex determination depends on a ZZ male/ZW female mechanism. To investigate this, we performed fate mapping experiments in ovo, labelling at indifferent stages the coelomic epithelium by electroporation with a lacZ reporter gene and the underlying nephrogenous (or mesonephric) mesenchyme with chemical dyes. After sex differentiation, LacZ-positive cells were exclusively outside testis cords and were 3betaHSD-negative, indicating that the coelomic epithelium contributes only to non-steroidogenic interstitial cells. However, we detected dye-labelled cells both inside and outside the cords. The former were AMH-positive while some of the latter were 3betaHSD-positive, showing that nephrogenous mesenchyme contributes to both Sertoli cells and steroidogenic cells. This is the first demonstration via lineage analysis that steroidogenic cells originate from nephrogenous mesenchyme, but the revelation that Sertoli cells have different origins between chick and mouse suggests that, during evolution, mechanisms of gonad morphogenesis may diverge alongside those of sex determination.


Asunto(s)
Gónadas/embriología , Morfogénesis , Células de Sertoli/citología , Animales , Movimiento Celular , Embrión de Pollo , Pollos , Femenino , Genes sry , Gónadas/citología , Células Intersticiales del Testículo/citología , Masculino , Mesodermo/citología , Mesonefro/citología , Ratones , Diferenciación Sexual , Esteroides/metabolismo
19.
Dev Biol ; 302(2): 389-98, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17070514

RESUMEN

In vertebrates the female reproductive tracts derive from a pair of tubular structures called Mullerian ducts, which are composed of three elements: a canalised epithelial tube, mesenchymal cells surrounding the tube and, most externally, coelomic epithelial cells. Since the first description by Johannes Peter Muller in 1830, the origin of the cells making up the Mullerian duct has remained controversial. We report the results from lineage-tracing experiments in chicken and mouse embryos aimed to provide information of the dynamics of Mullerian duct formation. We show that all Mullerian duct components derive from the coelomic epithelium in both species. Our data support a model of a Mullerian epithelial tube derived from an epithelial anlage at the mesonephros anterior end, which then segregates from the epithelium and extends caudal of its own accord, via a process involving rapid cell proliferation. This tube is surrounded by mesenchymal cells derived from local delamination of coelomic epithelium. We exclude any significant influx of cells from the Wolffian duct and also the view of a tube forming by coelomic epithelium invagination along the mesonephros. Our data provide clues of the underlying mechanism of tubulogenesis relevant to both normal and abnormal development of the female reproductive tract.


Asunto(s)
Linaje de la Célula/fisiología , Genitales Femeninos/embriología , Conductos Paramesonéfricos/embriología , Animales , Proliferación Celular , Embrión de Pollo , Células Epiteliales/citología , Células Epiteliales/fisiología , Femenino , Genitales Femeninos/citología , Técnicas In Vitro , Mesodermo/citología , Ratones , Conductos Paramesonéfricos/citología , Especificidad de la Especie , Conductos Mesonéfricos/citología , Conductos Mesonéfricos/embriología
20.
PLoS Biol ; 4(6): e187, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16700629

RESUMEN

The genes encoding members of the wingless-related MMTV integration site (WNT) and fibroblast growth factor (FGF) families coordinate growth, morphogenesis, and differentiation in many fields of cells during development. In the mouse, Fgf9 and Wnt4 are expressed in gonads of both sexes prior to sex determination. Loss of Fgf9 leads to XY sex reversal, whereas loss of Wnt4 results in partial testis development in XX gonads. However, the relationship between these signals and the male sex-determining gene, Sry, was unknown. We show through gain- and loss-of-function experiments that fibroblast growth factor 9 (FGF9) and WNT4 act as opposing signals to regulate sex determination. In the mouse XY gonad, Sry normally initiates a feed-forward loop between Sox9 and Fgf9, which up-regulates Fgf9 and represses Wnt4 to establish the testis pathway. Surprisingly, loss of Wnt4 in XX gonads is sufficient to up-regulate Fgf9 and Sox9 in the absence of Sry. These data suggest that the fate of the gonad is controlled by antagonism between Fgf9 and Wnt4. The role of the male sex-determining switch--Sry in the case of mammals--is to tip the balance between these underlying patterning signals. In principle, sex determination in other vertebrates may operate through any switch that introduces an imbalance between these two signaling pathways.


Asunto(s)
Factor 9 de Crecimiento de Fibroblastos/fisiología , Proteínas Proto-Oncogénicas/fisiología , Procesos de Determinación del Sexo , Transducción de Señal , Proteínas Wnt/fisiología , Animales , Femenino , Factor 9 de Crecimiento de Fibroblastos/genética , Factor 9 de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Gónadas/citología , Gónadas/embriología , Gónadas/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Masculino , Ratones , Mutación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Factor de Transcripción SOX9 , Proteína de la Región Y Determinante del Sexo/genética , Proteína de la Región Y Determinante del Sexo/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt4
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...