Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Nat Commun ; 15(1): 7694, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227587

RESUMEN

DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulación de la Expresión Génica de las Plantas , Histonas , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Histonas/metabolismo , Cromatina/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Giberelinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas
2.
ACS Chem Biol ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150956

RESUMEN

The human major histocompatibility complex (MHC) plays a pivotal role in the presentation of peptidic fragments from proteins, which can originate from self-proteins or from nonhuman antigens, such as those produced by viruses or bacteria. To prevent cytotoxicity against healthy cells, thymocytes expressing T cell receptors (TCRs) that recognize self-peptides are removed from circulation (negative selection), thus leaving T cells that recognize nonself-peptides. Current understanding suggests that post-translationally modified (PTM) proteins and the resulting peptide fragments they generate following proteolysis are largely excluded from negative selection; this feature means that PTMs can generate nonself-peptides that potentially contribute to the development of autoreactive T cells and subsequent autoimmune diseases. Although it is well-established that PTMs are prevalent in peptides present on MHCs, the precise mechanisms by which PTMs influence the antigen presentation machinery remain poorly understood. In the present work, we introduce chemical modifications mimicking PTMs on synthetic peptides. This is the first systematic study isolating the impact of PTMs on MHC binding and also their impact on TCR recognition. Our findings reveal various ways PTMs alter antigen presentation, which could have implications for tumor neoantigen presentation.

3.
Mol Cell Proteomics ; 23(9): 100814, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39029587

RESUMEN

Protein tandem mass spectrometry (MS/MS) often generates sequence-informative fragments from backbone bond cleavages near the termini. This lack of fragmentation in the protein interior is particularly apparent in native top-down mass spectrometry (MS). Improved sequence coverage, critical for reliable annotation of posttranslational modifications and sequence variants, may be obtained from internal fragments generated by multiple backbone cleavage events. However, internal fragment assignments can be error prone due to isomeric/isobaric fragments from different parts of a protein sequence. Also, internal fragment generation propensity depends on the chosen MS/MS activation strategy. Here, we examine internal fragment formation in electron capture dissociation (ECD) and electron transfer dissociation (ETD) following native and denaturing MS, as well as LC/MS of several proteins. Experiments were undertaken on multiple instruments, including quadrupole time-of-flight, Orbitrap, and high-field Fourier-transform ion cyclotron resonance (FT-ICR) across four laboratories. ECD was performed at both ultrahigh vacuum and at similar pressure to ETD conditions. Two complementary software packages were used for data analysis. When feasible, ETD-higher energy collision dissociation MS3 was performed to validate/refute potential internal fragment assignments, including differentiating MS3 fragmentation behavior of radical versus even-electron primary fragments. We show that, under typical operating conditions, internal fragments cannot be confidently assigned in ECD or ETD. On the other hand, such fragments, along with some b-type terminal fragments (not typically observed in ECD/ETD spectra) appear at atypical ECD operating conditions, suggesting they originate from a separate ion-electron activation process. Furthermore, atypical fragment ion types, e.g., x ions, are observed at such conditions as well as upon EThcD, presumably due to vibrational activation of radical z-type ions.

4.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895387

RESUMEN

While there is extensive information about sperm nuclear basic proteins (SNBP) in vertebrates, there is very little information about Arthropoda by comparison. This paper aims to contribute to filling this gap by analyzing these proteins in the sperm of the noble false widow spider Steatoda nobilis (Order Araneae, Family Theridiidae). To this end, we have developed a protein extraction method that allows the extraction of cysteine-containing protamines suitable for the preparation and analysis of SNBPs from samples where the amount of starting tissue material is limited. We carried out top-down mass spectrometry sequencing and molecular phylogenetic analyses to characterize the protamines of S. nobilis and other spiders. We also used electron microscopy to analyze the chromatin organization of the sperm, and we found it to exhibit liquid-liquid phase spinodal decomposition during the late stages of spermiogenesis. These studies further our knowledge of the distribution of SNBPs within the animal kingdom and provide additional support for a proposed evolutionary origin of many protamines from a histone H1 (H5) replication-independent precursor.

5.
iScience ; 27(4): 109458, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38571760

RESUMEN

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

6.
Biochem Cell Biol ; 102(3): 238-251, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408323

RESUMEN

Insects are the largest group of animals when it comes to the number and diversity of species. Yet, with the exception of Drosophila, no information is currently available on the primary structure of their sperm nuclear basic proteins (SNBPs). This paper represents the first attempt in this regard and provides information about six species of Neoptera: Poecillimon thessalicus, Graptosaltria nigrofuscata, Apis mellifera, Nasonia vitripennis, Parachauliodes continentalis, and Tribolium castaneum. The SNBPs of these species were characterized by acetic acid urea gel electrophoresis (AU-PAGE) and high-performance liquid chromatography fractionated. Protein sequencing was obtained using a combination of mass spectrometry sequencing, Edman N-terminal degradation sequencing and genome mining. While the SNBPs of several of these species exhibit a canonical arginine-rich protamine nature, a few of them exhibit a protamine-like composition. They appear to be the products of extensive cleavage processing from a precursor protein which are sometimes further processed by other post-translational modifications that are likely involved in the chromatin transitions observed during spermiogenesis in these organisms.


Asunto(s)
Secuencia de Aminoácidos , Protaminas , Animales , Masculino , Protaminas/metabolismo , Protaminas/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/genética , Insectos/metabolismo , Datos de Secuencia Molecular , Espermatozoides/metabolismo
7.
Epigenetics ; 18(1): 2276425, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976174

RESUMEN

An immortalized neural cell line derived from the human ventral mesencephalon, called ReNCell, and its MeCP2 knock out were used. With it, we characterized the chromatin compositional transitions undergone during differentiation, with special emphasis on linker histones. While the WT cells displayed the development of dendrites and axons the KO cells did not, despite undergoing differentiation as monitored by NeuN. ReNCell expressed minimal amounts of histone H1.0 and their linker histone complement consisted mainly of histone H1.2, H1.4 and H1.5. The overall level of histone H1 exhibited a trend to increase during the differentiation of MeCP2 KO cells. The phosphorylation levels of histone H1 proteins decreased dramatically during ReNCell's cell differentiation independently of the presence of MeCP2. Immunofluorescence analysis showed that MeCP2 exhibits an extensive co-localization with linker histones. Interestingly, the average size of the nucleus decreased during differentiation but in the MeCP2 KO cells, the smaller size of the nuclei at the start of differentiation increased by almost 40% after differentiation by 8 days (8 DIV). In summary, our data provide a compelling perspective on the dynamic changes of H1 histones during neural differentiation, coupled with the intricate interplay between H1 variants and MeCP2.Abbreviations: ACN, acetonitrile; A230, absorbance at 230 nm; bFGF, basic fibroblast growth factor; CM, chicken erythrocyte histone marker; CNS, central nervous system; CRISPR, clustered regulated interspaced short palindromic repeatsDAPI, 4,'6-diaminidino-2-phenylindole; DIV, days in vitro (days after differentiation is induced); DMEM, Dulbecco's modified Eagle medium; EGF, epidermal growth factor; ESC, embryonic stem cell; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic proteinHPLC, high-performance liquid chromatography; IF, immunofluorescence; iPSCs, induced pluripotent stem cells; MAP2, microtubule-associated protein 2; MBD, methyl-binding domain; MeCP2, methyl-CpG binding protein 2; MS, mass spectrometry; NCP, nucleosome core particle; NeuN, neuron nuclear antigen; NPC, neural progenitor cellPAGE, polyacrylamide gel electrophoresis; PBS, phosphate buffered saline; PFA, paraformaldehyde; PTM, posttranslational modification; RP-HPLC, reversed phase HPLC; ReNCells, ReNCells VM; RPLP0, ribosomal protein lateral stalk subunit P0; RT-qPCR, reverse transcription quantitative polymerase-chain reaction; RTT, Rett Syndrome; SDS, sodium dodecyl sulphate; TAD, topologically associating domain; Triple KO, triple knockout.


Asunto(s)
Metilación de ADN , Histonas , Humanos , Diferenciación Celular , Cromatina , Histonas/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Células Madre/metabolismo
8.
bioRxiv ; 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37790377

RESUMEN

Histone chaperones-structurally diverse, non-catalytic proteins enriched with acidic intrinsically disordered regions (IDRs)-protect histones from spurious nucleic acid interactions and guide their deposition into and out of nucleosomes. Despite their conservation and ubiquity, the function of the chaperone acidic IDRs remains unclear. Here, we show that the Xenopus laevis Npm2 and Nap1 acidic IDRs are substrates for TTLL4 (Tubulin Tyrosine Ligase Like 4)-catalyzed post-translational glutamate-glutamylation. We demonstrate that, to bind, stabilize, and deposit histones into nucleosomes, chaperone acidic IDRs function as DNA mimetics. Our biochemical, computational, and biophysical studies reveal that glutamylation of these chaperone polyelectrolyte acidic stretches functions to enhance DNA electrostatic mimicry, promoting the binding and stabilization of H2A/H2B heterodimers and facilitating nucleosome assembly. This discovery provides insights into both the previously unclear function of the acidic IDRs and the regulatory role of post-translational modifications in chromatin dynamics.

9.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873288

RESUMEN

DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via its GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)- conjugation to alter its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O -fucosylation, but inhibited by O -linked N -acetylglucosamine ( O -GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear. Here, we identified phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by tandem mass spectrometry analysis, and showed that phosphorylation of the RGA LKS-peptide in the poly- S/T region enhances RGA-H2A interaction and RGA association with target promoters. Interestingly, phosphorylation does not affect RGA-TF interactions. Our study has uncovered that phosphorylation is a new regulatory mechanism of DELLA activity.

10.
Circ Res ; 132(9): 1127-1140, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36919600

RESUMEN

BACKGROUND: Extracellular renal interstitial guanosine cyclic 3',5'-monophosphate (cGMP) inhibits renal proximal tubule (RPT) sodium (Na+) reabsorption via Src (Src family kinase) activation. Through which target extracellular cGMP acts to induce natriuresis is unknown. We hypothesized that cGMP binds to the extracellular α1-subunit of NKA (sodium-potassium ATPase) on RPT basolateral membranes to inhibit Na+ transport similar to ouabain-a cardiotonic steroid. METHODS: Urine Na+ excretion was measured in uninephrectomized 12-week-old female Sprague-Dawley rats that received renal interstitial infusions of vehicle (5% dextrose in water), cGMP (18, 36, and 72 µg/kg per minute; 30 minutes each), or cGMP+rostafuroxin (12 ng/kg per minute) or were subjected to pressure-natriuresis±rostafuroxin infusion. Rostafuroxin is a digitoxigenin derivative that displaces ouabain from NKA. RESULTS: Renal interstitial cGMP and raised renal perfusion pressure induced natriuresis and increased phosphorylated SrcTyr416 and Erk 1/2 (extracellular signal-regulated protein kinase 1/2)Thr202/Tyr204; these responses were abolished with rostafuroxin coinfusion. To assess cGMP binding to NKA, we performed competitive binding studies with isolated rat RPTs using bodipy-ouabain (2 µM)+cGMP (10 µM) or rostafuroxin (10 µM) and 8-biotin-11-cGMP (2 µM)+ouabain (10 µM) or rostafuroxin (10 µM). cGMP or rostafuroxin reduced bodipy-ouabain fluorescence intensity, and ouabain or rostafuroxin reduced 8-biotin-11-cGMP staining. We cross-linked isolated rat RPTs with 4-N3-PET-8-biotin-11-cGMP (2 µM); 8-N3-6-biotin-10-cAMP served as negative control. Precipitation with streptavidin beads followed by immunoblot analysis showed that RPTs after cross-linking with 4-N3-PET-8-biotin-11-cGMP exhibited a significantly stronger signal for NKA than non-cross-linked samples and cross-linked or non-cross-linked 8-N3-6-biotin-10-cAMP RPTs. Ouabain (10 µM) reduced NKA in cross-linked 4-N3-PET-8-biotin-11-cGMP RPTs confirming fluorescence staining. 4-N3-PET-8-biotin-11-cGMP cross-linked samples were separated by SDS gel electrophoresis and slices corresponding to NKA molecular weight excised and processed for mass spectrometry. NKA was the second most abundant protein with 50 unique NKA peptides covering 47% of amino acids in NKA. Molecular modeling demonstrated a potential cGMP docking site in the ouabain-binding pocket of NKA. CONCLUSIONS: cGMP can bind to NKA and thereby mediate natriuresis.


Asunto(s)
GMP Cíclico , Natriuresis , ATPasa Intercambiadora de Sodio-Potasio , Animales , Femenino , Ratas , Adenosina Trifosfatasas/metabolismo , Biotina/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Natriuresis/fisiología , Ouabaína/farmacología , Potasio/metabolismo , Ratas Sprague-Dawley , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
11.
Nat Commun ; 14(1): 1538, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941311

RESUMEN

SPINDLY (SPY) in Arabidopsis thaliana is a novel nucleocytoplasmic protein O-fucosyltransferase (POFUT), which regulates diverse developmental processes. Sequence analysis indicates that SPY is distinct from ER-localized POFUTs and contains N-terminal tetratricopeptide repeats (TPRs) and a C-terminal catalytic domain resembling the O-linked-N-acetylglucosamine (GlcNAc) transferases (OGTs). However, the structural feature that determines the distinct enzymatic selectivity of SPY remains unknown. Here we report the cryo-electron microscopy (cryo-EM) structure of SPY and its complex with GDP-fucose, revealing distinct active-site features enabling GDP-fucose instead of UDP-GlcNAc binding. SPY forms an antiparallel dimer instead of the X-shaped dimer in human OGT, and its catalytic domain interconverts among multiple conformations. Analysis of mass spectrometry, co-IP, fucosylation activity, and cryo-EM data further demonstrates that the N-terminal disordered peptide in SPY contains trans auto-fucosylation sites and inhibits the POFUT activity, whereas TPRs 1-5 dynamically regulate SPY activity by interfering with protein substrate binding.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Represoras , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Microscopía por Crioelectrón , Fucosa/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Proteínas Represoras/metabolismo
12.
Plant Physiol ; 191(3): 1546-1560, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36740243

RESUMEN

SPINDLY (SPY) is a novel nucleocytoplasmic protein O-fucosyltransferase that regulates target protein activity or stability via O-fucosylation of specific Ser/Thr residues. Previous genetic studies indicate that AtSPY regulates plant development during vegetative and reproductive growth by modulating gibberellin and cytokinin responses. AtSPY also regulates the circadian clock and plant responses to biotic and abiotic stresses. The pleiotropic phenotypes of spy mutants point to the likely role of AtSPY in regulating key proteins functioning in diverse cellular pathways. However, very few AtSPY targets are known. Here, we identified 88 SPY targets from Arabidopsis (Arabidopsis thaliana) and Nicotiana benthamiana via the purification of O-fucosylated peptides using Aleuria aurantia lectin followed by electron transfer dissociation-MS/MS analysis. Most AtSPY targets were nuclear proteins that function in DNA repair, transcription, RNA splicing, and nucleocytoplasmic transport. Cytoplasmic AtSPY targets were involved in microtubule-mediated cell division/growth and protein folding. A comparison with the published O-linked-N-acetylglucosamine (O-GlcNAc) proteome revealed that 30% of AtSPY targets were also O-GlcNAcylated, indicating that these distinct glycosylations could co-regulate many protein functions. This study unveiled the roles of O-fucosylation in modulating many key nuclear and cytoplasmic proteins and provided a valuable resource for elucidating the regulatory mechanisms involved.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Represoras/metabolismo , Espectrometría de Masas en Tándem , Arabidopsis/metabolismo , Plantas/metabolismo , Acetilglucosamina/metabolismo
13.
Anal Chem ; 93(47): 15728-15735, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34788003

RESUMEN

Electron transfer dissociation (ETD) is an analytically useful tool for primary structure interrogation of intact proteins, but its utility is limited by higher-order reactions with the products. To inhibit these higher-order reactions, first-generation fragment ions are kinetically excited by applying an experimentally tailored parallel ion parking waveform during ETD (ETD-PIP). In combination with subsequent ion/ion proton transfer reactions, precursor-to-product conversion was maximized as evidenced by the consumption of more than 90% of the 21 kDa Protein G precursor to form ETD product ions. The employment of ETD-PIP increased sequence coverage to 90% from 80% with standard ETD. Additionally, the inhibition of sequential electron transfers was reflected in the high number of complementary ion pairs from ETD-PIP (90%) compared to standard ETD (39%).


Asunto(s)
Electrones , Proteínas , Transporte de Electrón , Iones , Análisis de Secuencia
14.
Cancers (Basel) ; 13(20)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680183

RESUMEN

The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has provided some of the most in-depth analyses of the phenotypes of human tumors ever constructed. Today, the majority of proteomic data analysis is still performed using software housed on desktop computers which limits the number of sequence variants and post-translational modifications that can be considered. The original CPTAC studies limited the search for PTMs to only samples that were chemically enriched for those modified peptides. Similarly, the only sequence variants considered were those with strong evidence at the exon or transcript level. In this multi-institutional collaborative reanalysis, we utilized unbiased protein databases containing millions of human sequence variants in conjunction with hundreds of common post-translational modifications. Using these tools, we identified tens of thousands of high-confidence PTMs and sequence variants. We identified 4132 phosphorylated peptides in nonenriched samples, 93% of which were confirmed in the samples which were chemically enriched for phosphopeptides. In addition, our results also cover 90% of the high-confidence variants reported by the original proteogenomics study, without the need for sample specific next-generation sequencing. Finally, we report fivefold more somatic and germline variants that have an independent evidence at the peptide level, including mutations in ERRB2 and BCAS1. In this reanalysis of CPTAC proteomic data with cloud computing, we present an openly available and searchable web resource of the highest-coverage proteomic profiling of human tumors described to date.

15.
Anal Chem ; 93(43): 14365-14368, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34670079

RESUMEN

Gas phase ion/ion reactions between singly charged radical reagent anions and multiply charged cation precursors primarily result in either proton or electron transfer. These ion/ion reactions have been extensively studied for bioanalysis, and many reagent anions have been tested and reported. Here, nitrogen-containing aromatic radical anions were tested for the ability to conduct proton or electron transfer by their reaction with the ubiquitin [M + 13H]+13 precursor. The singly charged anion of 2,2'-biquinoline was found to undergo charge inversion to singly protonated cations via near-simultaneous proton and electron transfers while reactants were bound in a single ion/ion reaction complex. Although the focus of this paper was 2,2'-biquinoline, all three nitrogen-containing aromatic compounds tested produced similar results.


Asunto(s)
Nitrógeno , Protones , Aniones , Cationes , Electrones
16.
Front Immunol ; 12: 723566, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504498

RESUMEN

There is a pressing need for novel immunotherapeutic targets in colorectal cancer (CRC). Cytotoxic T cell infiltration is well established as a key prognostic indicator in CRC, and it is known that these tumor infiltrating lymphocytes (TILs) target and kill tumor cells. However, the specific antigens that drive these CD8+ T cell responses have not been well characterized. Recently, phosphopeptides have emerged as strong candidates for tumor-specific antigens, as dysregulated signaling in cancer leads to increased and aberrant protein phosphorylation. Here, we identify 120 HLA-I phosphopeptides from primary CRC tumors, CRC liver metastases and CRC cell lines using mass spectrometry and assess the tumor-resident immunity against these posttranslationally modified tumor antigens. Several CRC tumor-specific phosphopeptides were presented by multiple patients' tumors in our cohort (21% to 40%), and many have previously been identified on other malignancies (58% of HLA-A*02 CRC phosphopeptides). These shared antigens derived from mitogenic signaling pathways, including p53, Wnt and MAPK, and are therefore markers of malignancy. The identification of public tumor antigens will allow for the development of broadly applicable targeted therapeutics. Through analysis of TIL cytokine responses to these phosphopeptides, we have established that they are already playing a key role in tumor-resident immunity. Multifunctional CD8+ TILs from primary and metastatic tumors recognized the HLA-I phosphopeptides presented by their originating tumor. Furthermore, TILs taken from other CRC patients' tumors targeted two of these phosphopeptides. In another cohort of CRC patients, the same HLA-I phosphopeptides induced higher peripheral T cell responses than they did in healthy donors, suggesting that these immune responses are specifically activated in CRC patients. Collectively, these results establish HLA-I phosphopeptides as targets of the tumor-resident immunity in CRC, and highlight their potential as candidates for future immunotherapeutic strategies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Neoplasias Colorrectales/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Fosfopéptidos/inmunología , Línea Celular Tumoral , Humanos , Linfocitos T Citotóxicos/inmunología
17.
iScience ; 24(9): 102971, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34505004

RESUMEN

Protein arginine methyltransferases (PRMTs) catalyze the post-translational monomethylation (Rme1), asymmetric (Rme2a), or symmetric (Rme2s) dimethylation of arginine. To determine the cellular consequences of type I (Rme2a) and II (Rme2s) PRMTs, we developed and integrated multiple approaches. First, we determined total cellular dimethylarginine levels, revealing that Rme2s was ∼3% of total Rme2 and that this percentage was dependent upon cell type and PRMT inhibition status. Second, we quantitatively characterized in vitro substrates of the major enzymes and expanded upon PRMT substrate recognition motifs. We also compiled our data with publicly available methylarginine-modified residues into a comprehensive database. Third, we inhibited type I and II PRMTs and performed proteomic and transcriptomic analyses to reveal their phenotypic consequences. These experiments revealed both overlapping and independent PRMT substrates and cellular functions. Overall, this study expands upon PRMT substrate diversity, the arginine methylome, and the complex interplay of type I and II PRMTs.

18.
Anal Chem ; 93(35): 11946-11955, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34431655

RESUMEN

Chemical proteomics is widely used for the global investigation of protein activity and binding of small molecule ligands. Covalent probe binding and inhibition are assessed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to gain molecular information on targeted proteins and probe-modified sites. The identification of amino acid sites modified by large complex probes, however, is particularly challenging because of the increased size, hydrophobicity, and charge state of peptides derived from modified proteins. These studies are important for direct evaluation of proteome-wide selectivity of inhibitor scaffolds used to develop targeted covalent inhibitors. Here, we disclose reverse-phase chromatography and MS dissociation conditions tailored for binding site identification using a clickable covalent kinase inhibitor containing a sulfonyl-triazole reactive group (KY-26). We applied this LC-MS/MS strategy to identify tyrosine and lysine sites modified by KY-26 in functional sites of kinases and other ATP-/NAD-binding proteins (>65 in total) in live cells. Our studies revealed key bioanalytical conditions to guide future chemical proteomic workflows for direct target site identification of complex irreversible probes and inhibitors.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Proteoma , Triazoles
19.
Mol Cell Proteomics ; 20: 100112, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34129940

RESUMEN

Major histocompatibility complex-associated peptides have been considered as potential immunotherapeutic targets for many years. MHC class I phosphopeptides result from dysregulated cell signaling pathways that are common across cancers and both viral and bacterial infections. These antigens are recognized by central memory T cells from healthy donors, indicating that they are considered antigenic by the immune system and that they are presented across different individuals and diseases. Based on these responses and the similar dysregulation, phosphorylated antigens are promising candidates for prevention or treatment of different cancers as well as a number of other chronic diseases.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoterapia/métodos , Enfermedades Neurodegenerativas/metabolismo , Fosfopéptidos/metabolismo , Virosis/metabolismo , Antígenos de Histocompatibilidad Clase I/farmacología , Humanos , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Fosfopéptidos/farmacología , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Virosis/virología
20.
Anal Chem ; 93(26): 9119-9128, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34165955

RESUMEN

Proton-transfer reactions (PTRs) have emerged as a powerful tool for the study of intact proteins. When coupled with m/z-selective kinetic excitation, such as parallel ion parking (PIP), one can exert exquisite control over rates of reaction with a high degree of specificity. This allows one to "concentrate", in the gas phase, nearly all the signals from an intact protein charge state envelope into a single charge state, improving the signal-to-noise ratio (S/N) by 10× or more. While this approach has been previously reported, here we show that implementing these technologies on a 21 T FT-ICR MS provides a tremendous advantage for intact protein analysis. Advanced strategies for performing PTR with PIP were developed to complement this unique instrument, including subjecting all analyte ions entering the mass spectrometer to PTR and PIP. This experiment, which we call "PTR-MS1-PIP", generates a pseudo-MS1 spectrum derived from ions that are exposed to the PTR reagent and PIP waveforms but have not undergone any prior true mass filtering or ion isolation. The result is an extremely rapid and significant improvement in the spectral S/N of intact proteins. This permits the observation of many more proteoforms and reduces ion injection periods for subsequent tandem mass spectrometry characterization. Additionally, the product ion parking waveform has been optimized to enhance the PTR rate without compromise to the parking efficiency. We demonstrate that this process, called "rapid park", can improve reaction rates by 5-10× and explore critical factors discovered to influence this process. Finally, we demonstrate how coupling PTR-MS1 and rapid park provides a 10-fold reduction in ion injection time, improving the rate of tandem MS sequencing.


Asunto(s)
Proteínas , Protones , Indicadores y Reactivos , Iones , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...