Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
2.
Brachytherapy ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38853064

RESUMEN

PURPOSE: To quantify changes in prostate size and seed movement over time after transperineal implantation of stranded 125I seeds, and to determine their impact on prostate dosimetry. METHODS: CT and MR (T2, balanced steady-state free precession) image triplets were acquired on days 0, 3, 10, and 30 for a cohort of 20 patients and registered automatically. Prostate contours were drawn on MR-T2 images; seeds were found and matched in successive CT images. Prostate volume and dimensions, seed movements, and prostate dose metrics V200, V150, V100 and D90 were calculated, and their dynamic behaviors quantified in an operationally defined prostate coordinate system. RESULTS: Cohort-averaged reductions in prostate A-P dimension (∼8%) and L-R dimension (∼5%) inferred from seed movements agreed with those obtained from contour measurements, whereas prostate volume and S-I dimension (implant direction) reductions inferred from seed movements were overestimated by about 30%. Average overall seed movement was 4.8 ± 3.0 mm, of which the only identifiable systematic component was resolution of prostate edema. Cohort-averaged ratios of prostate V200, V150, V100, and D90 on day 30 relative to day 0 were 1.67, 1.33, 1.02, and 1.08, respectively. CONCLUSIONS: Postimplant prostate size reduction in the SI (implant) direction cannot reliably be inferred from stranded seed movements. Apart from large-scale migration, residual seed movements relative to the prostate after accounting for edema resolution appear to be random. Prostate V100 and D90 changes 30 days post implant are modest, whereas those for V150 and V200 are substantial.

3.
Med Phys ; 51(1): 694-706, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37665982

RESUMEN

PURPOSE: A joint Working Group of the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) was created to aid in the transition from the AAPM TG-43 dose calculation formalism, the current standard, to model-based dose calculations. This work establishes the first test cases for low-energy photon-emitting brachytherapy using model-based dose calculation algorithms (MBDCAs). ACQUISITION AND VALIDATION METHODS: Five test cases are developed: (1) a single model 6711 125 I brachytherapy seed in water, 13 seeds (2) individually and (3) in combination in water, (4) the full Collaborative Ocular Melanoma Study (COMS) 16 mm eye plaque in water, and (5) the full plaque in a realistic eye phantom. Calculations are done with four Monte Carlo (MC) codes and a research version of a commercial treatment planning system (TPS). For all test cases, local agreement of MC codes was within ∼2.5% and global agreement was ∼2% (4% for test case 5). MC agreement was within expected uncertainties. Local agreement of TPS with MC was within 5% for test case 1 and ∼20% for test cases 4 and 5, and global agreement was within 0.4% for test case 1 and 10% for test cases 4 and 5. DATA FORMAT AND USAGE NOTES: Dose distributions for each set of MC and TPS calculations are available online (https://doi.org/10.52519/00005) along with input files and all other information necessary to repeat the calculations. POTENTIAL APPLICATIONS: These data can be used to support commissioning of MBDCAs for low-energy brachytherapy as recommended by TGs 186 and 221 and AAPM Report 372. This work additionally lays out a sample framework for the development of test cases that can be extended to other applications beyond eye plaque brachytherapy.


Asunto(s)
Braquiterapia , Neoplasias del Ojo , Melanoma , Humanos , Dosificación Radioterapéutica , Melanoma/radioterapia , Radiometría , Neoplasias del Ojo/radioterapia , Método de Montecarlo , Agua , Planificación de la Radioterapia Asistida por Computador
4.
Med Phys ; 50(8): e946-e960, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37427750

RESUMEN

The introduction of model-based dose calculation algorithms (MBDCAs) in brachytherapy provides an opportunity for a more accurate dose calculation and opens the possibility for novel, innovative treatment modalities. The joint AAPM, ESTRO, and ABG Task Group 186 (TG-186) report provided guidance to early adopters. However, the commissioning aspect of these algorithms was described only in general terms with no quantitative goals. This report, from the Working Group on Model-Based Dose Calculation Algorithms in Brachytherapy, introduced a field-tested approach to MBDCA commissioning. It is based on a set of well-characterized test cases for which reference Monte Carlo (MC) and vendor-specific MBDCA dose distributions are available in a Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format to the clinical users. The key elements of the TG-186 commissioning workflow are now described in detail, and quantitative goals are provided. This approach leverages the well-known Brachytherapy Source Registry jointly managed by the AAPM and the Imaging and Radiation Oncology Core (IROC) Houston Quality Assurance Center (with associated links at ESTRO) to provide open access to test cases as well as step-by-step user guides. While the current report is limited to the two most widely commercially available MBDCAs and only for 192 Ir-based afterloading brachytherapy at this time, this report establishes a general framework that can easily be extended to other brachytherapy MBDCAs and brachytherapy sources. The AAPM, ESTRO, ABG, and ABS recommend that clinical medical physicists implement the workflow presented in this report to validate both the basic and the advanced dose calculation features of their commercial MBDCAs. Recommendations are also given to vendors to integrate advanced analysis tools into their brachytherapy treatment planning system to facilitate extensive dose comparisons. The use of the test cases for research and educational purposes is further encouraged.


Asunto(s)
Braquiterapia , Braquiterapia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Informe de Investigación , Método de Montecarlo , Radiometría
5.
Front Robot AI ; 8: 645424, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829043

RESUMEN

During an ultrasound (US) scan, the sonographer is in close contact with the patient, which puts them at risk of COVID-19 transmission. In this paper, we propose a robot-assisted system that automatically scans tissue, increasing sonographer/patient distance and decreasing contact duration between them. This method is developed as a quick response to the COVID-19 pandemic. It considers the preferences of the sonographers in terms of how US scanning is done and can be trained quickly for different applications. Our proposed system automatically scans the tissue using a dexterous robot arm that holds US probe. The system assesses the quality of the acquired US images in real-time. This US image feedback will be used to automatically adjust the US probe contact force based on the quality of the image frame. The quality assessment algorithm is based on three US image features: correlation, compression and noise characteristics. These US image features are input to the SVM classifier, and the robot arm will adjust the US scanning force based on the SVM output. The proposed system enables the sonographer to maintain a distance from the patient because the sonographer does not have to be holding the probe and pressing against the patient's body for any prolonged time. The SVM was trained using bovine and porcine biological tissue, the system was then tested experimentally on plastisol phantom tissue. The result of the experiments shows us that our proposed quality assessment algorithm successfully maintains US image quality and is fast enough for use in a robotic control loop.

6.
Int J Comput Assist Radiol Surg ; 16(6): 1027-1035, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33779936

RESUMEN

PURPOSE: Low-dose-rate permanent-seed (LDR-PS) brachytherapy has shown a great potential for treating breast cancer. An implantation scheme indicating the template pose and needle trajectories is determined before the operation. However, when performing the pre-planned scheme intraoperatively, a change of the patient's posture will cause seed placements away from the desired locations. Hence, the implantation scheme should update based on the current patient's posture. METHODS: A numerical method of optimizing the implantation scheme for the LDR-PS breast brachytherapy is presented here. The proposed algorithm determines the fewest needle trajectories and template poses for delivering the seeds to the intraoperative desired locations. The clinical demand, such as the minimum distance between the chest wall and the needle, is considered in the optimization process. RESULTS: The method was simulated for a given LDR-PS brachytherapy procedure to evaluate the optimal scheme as the number of the template poses changing. The optimization parameters of the needles' number and the implantation errors are used to adjust the algorithm outcome. The results show that the implantation schemes obtained by our method have a satisfactory accuracy in the cases of 2 or 3 template poses. The computation time is about 76s to 150s according to the number of the template poses from 1 to 3. CONCLUSION: The proposed method can find the optimal implantation scheme corresponding to the current desired seed locations immediately once there is a change of patient's posture. This work can be applied to the robot-assisted LDR-PS breast brachytherapy for improving the operation accuracy and efficiency.


Asunto(s)
Algoritmos , Braquiterapia/métodos , Neoplasias de la Mama/radioterapia , Mama/diagnóstico por imagen , Mastectomía/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/cirugía , Femenino , Humanos , Periodo Intraoperatorio , Dosificación Radioterapéutica
7.
Brachytherapy ; 18(5): 668-674, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31272841

RESUMEN

PURPOSE: The purpose of the study was to determine dosimetric effects of performing concurrent I-125 Collaborative Ocular Melanoma Study plaque brachytherapy and vitrectomy with replacement using silicone oil, previously shown to be a means of shielding uninvolved parts of the eye. METHODS AND MATERIALS: Monte Carlo simulations using MCNP6 were performed to compare the dosimetry with all eye materials assigned as water, and for the vitreous (excluding the tumor), composed of polydimethylsiloxane oil for three generic, one large tumor, and two patient geometry scenarios. Dose was scored at the tumor apex, along the sclera, and within a 3D grid encompassing the eye. The assessed patient cases included vitrectomies to treat intraocular pathologies; not to enhance attenuation/shielding. RESULTS: The doses along the sclera and for the entire eye were decreased when the silicone oil replaced the vitreal fluid, with a maximum decrease at the opposite sclera of 63%. Yet, absolute changes in dose to critical structures were often small and likely not clinically significant. The dose at the tumor apex was decreased by 3.1-9.4%. Dose was also decreased at the edges of the tumor because of decreased backscatter at the tumor-oil interface. CONCLUSIONS: Concurrent silicone vitrectomy was found to reduce total radiation dose to the eye. Based on current radiation retinopathy predictive models, the evaluation of the absolute doses revealed only a subset of patients in which a clinically significant difference in outcomes is expected. Furthermore, the presence of the silicone oil decreased dose to the tumor edges, indicating that the tumor could be underdosed if the oil is unaccounted for.


Asunto(s)
Braquiterapia/métodos , Neoplasias del Ojo/radioterapia , Melanoma/radioterapia , Traumatismos por Radiación/prevención & control , Vitrectomía/métodos , Braquiterapia/efectos adversos , Lesiones Oculares/etiología , Lesiones Oculares/prevención & control , Humanos , Radioisótopos de Yodo/uso terapéutico , Método de Montecarlo , Traumatismos por Radiación/etiología , Protectores contra Radiación/uso terapéutico , Radiometría/métodos , Dosificación Radioterapéutica , Aceites de Silicona
8.
Phys Med Biol ; 64(7): 075007, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30769333

RESUMEN

Low dose rate (LDR) brachytherapy is a minimally invasive form of radiation therapy, used to treat prostate cancer, and it involves permanent implantation of radioactive sources (seeds) inside of the prostate gland. Treatment planning in brachytherapy involves a decision making process for the placement of the sources in order to deliver an effective dose of radiation to cancerous tissue in the prostate while sparing the surrounding healthy tissue. Such a decision making process can be modeled as a mixed-integer linear programming (MILP) problem. In this paper, we introduce a novel MILP optimization model framework for interstitial LDR prostate brachytherapy designed to explicitly mimic the qualities of treatment plans produced manually by expert planners. Our approach involves incorporating a unique set of clinically important constraints, called spatial constraints, into the optimization model. Computational results for an initial model reflecting clinical practice at our cancer center show that the treatment plans produced largely capture the spatial and dosimetric characteristics of manual plans created by expert planners.


Asunto(s)
Braquiterapia/instrumentación , Braquiterapia/métodos , Órganos en Riesgo/efectos de la radiación , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/normas , Humanos , Masculino , Programación Lineal , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos
9.
IEEE J Biomed Health Inform ; 22(6): 1917-1928, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29990280

RESUMEN

Robotic-assisted needle steering can enhance the accuracy of needle-based interventions. Application of current needle steering techniques are restricted by the limited deflection curvature of needles. Here, a novel steerable needle with improved curvature is developed and used with an online motion planner to steer the needle along curved paths inside tissue. The needle is developed by carving series of small notches on the shaft of a standard needle. The notches decrease the needle flexural stiffness, allowing the needle to follow tightly curved paths with small radius of curvature. In this paper, first, a finite element model of the notched needle deflection in tissue is presented. Next, the model is used to estimate the optimal location for the notches on needle's shaft for achieving a desired curvature. Finally, an ultrasound-guided motion planner for needle steering inside tissue is developed and used to demonstrate the capability of the notched needle in achieving high curvature and maneuvering around obstacles in tissue. We simulated a clinical scenario in brachytherapy, where the target is obstructed by the pubic bone and cannot be reached using regular needles. Experimental results show that the target can be reached using the notched needle with a mean accuracy of 1.2 mm. Thus, the proposed needle enables future research on needle steering toward deeper or more difficult-to-reach targets.


Asunto(s)
Agujas , Procedimientos Quirúrgicos Robotizados , Braquiterapia , Análisis de Elementos Finitos , Humanos , Masculino , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Ultrasonografía
10.
Med Phys ; 45(7): 3349-3360, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29729009

RESUMEN

PURPOSE: To investigate the dose calculation accuracy of the Advanced Collapsed cone Engine (ACE) algorithm for ocular brachytherapy using a COMS plaque loaded with I-125 seeds for two heterogeneous patient tissue scenarios. METHODS: The Oncura model 6711 I-125 seed and 16 mm COMS plaque were added to a research version (v4.6) of the Oncentra® Brachy (OcB) treatment planning system (TPS) for dose calculations using ACE. Treatment plans were created for two heterogeneous cases: (a) a voxelized eye phantom comprising realistic eye materials and densities and (b) a patient CT dataset with variable densities throughout the dataset. ACE dose calculations were performed using a high accuracy mode, high-resolution calculation grid matching the imported CT datasets (0.5 × 0.5 × 0.5 mm3 ), and a user-defined CT calibration curve. The accuracy of ACE was evaluated by replicating the plan geometries and comparing to Monte Carlo (MC) calculated doses obtained using MCNP6. The effects of the heterogeneous patient tissues on the dose distributions were also evaluated by performing the ACE and MCNP6 calculations for the same scenarios but setting all tissues and air to water. RESULTS: Average local percent dose differences between ACE and MC within contoured structures and at points of interest for both scenarios ranged from 1.2% to 20.9%, and along the plaque central axis (CAX) from 0.7% to 7.8%. The largest differences occurred in the plaque penumbra (up to 17%), and at contoured structure interfaces (up to 20%). Other regions in the eye agreed more closely, within the uncertainties of ACE dose calculations (~5%). Compared to that, dose differences between water-based and fully heterogeneous tissue simulations were up to 27%. CONCLUSIONS: Overall, ACE dosimetry agreed well with MC in the tumor volume and along the plaque CAX for the two heterogeneous tissue scenarios, indicating that ACE could potentially be used for clinical ocular brachytherapy dosimetry. In general, ACE data matched the fully heterogeneous MC data more closely than water-based data, even in regions where the ACE accuracy was relatively low. However, depending on the plaque position, doses to critical structures near the plaque penumbra or at tissue interfaces were less accurate, indicating that improvements may be necessary. More extensive knowledge of eye tissue compositions is still required.


Asunto(s)
Braquiterapia , Neoplasias del Ojo/radioterapia , Ojo , Radioisótopos de Yodo/uso terapéutico , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Algoritmos , Braquiterapia/instrumentación , Braquiterapia/métodos , Simulación por Computador , Ojo/diagnóstico por imagen , Ojo/efectos de la radiación , Neoplasias del Ojo/diagnóstico por imagen , Femenino , Humanos , Masculino , Modelos Anatómicos , Método de Montecarlo , Fantasmas de Imagen , Radiometría , Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Agua
11.
Med Phys ; 45(3): 1276-1286, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29383721

RESUMEN

PURPOSE: To investigate the dose calculation accuracy in water medium of the Advanced Collapsed cone Engine (ACE) for three sizes of COMS eye plaques loaded with low-energy I-125 seeds. METHODS: A model of the Oncura 6711 I-125 seed was created for use with ACE in Oncentra® Brachy (OcB) using primary-scatter separated (PSS) point dose kernel and Task Group (TG) 43 datasets. COMS eye plaque models of diameters 12, 16, and 20 mm were introduced into the OcB applicator library based on 3D CAD drawings of the plaques and Silastic inserts. To perform TG-186 level 1 commissioning, treatment plans were created in OcB for a single source in water and for each COMS plaque in water for two scenarios: with only one centrally loaded seed, or with all seed positions loaded. ACE dose calculations were performed in high accuracy mode with a 0.5 × 0.5 × 0.5 mm3 calculation grid. The resulting dose data were evaluated against Monte Carlo (MC) calculated doses obtained with MCNP6, using both local and global percent differences. RESULTS: ACE doses around the source for the single seed in water agreed with MC doses on average within < 5% inside a 6 × 6 × 6 cm3 region, and within < 1.5% inside a 2 × 2 × 2 cm3 region. The PSS data were generated at a higher resolution within 2 cm from the source, resulting in this improved agreement closer to the source due to fewer approximations in the ACE dose calculation. Average differences in both investigated plaque loading patterns in front of the plaques and on the plaque central axes were ≤ 2.5%, though larger differences (up to 12%) were found near the plaque lip. CONCLUSIONS: Overall, good agreement was found between ACE and MC dose calculations for a single I-125 seed and in front of the COMS plaques in water. More complex scenarios need to be investigated to determine how well ACE handles heterogeneous patient materials.


Asunto(s)
Neoplasias del Ojo/radioterapia , Radioisótopos de Yodo/uso terapéutico , Melanoma/radioterapia , Dosis de Radiación , Agua , Método de Montecarlo , Dosificación Radioterapéutica , Programas Informáticos
12.
Brachytherapy ; 17(2): 476-488, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29191492

RESUMEN

PURPOSE: To report results of an initial pilot study assessing iodine-125 prostate implant treatment plans created automatically by a new seed-placement method. METHODS AND MATERIALS: A novel mixed-integer linear programming method incorporating spatial constraints on seed locations in addition to standard dose-volume constraints was used to place seeds. The approach, described in detail elsewhere, was used to create treatment plans fully automatically on a retrospective basis for 20 patients having a wide range of prostate sizes and shapes. Corresponding manual plans used for patient treatment at a single institution were combined with the automated plans, and all 40 plans were anonymized, randomized, and independently evaluated by five clinicians using a common scoring tool. Numerical and clinical features of the plans were extracted for comparison purposes. RESULTS: A full 51% of the automated plans were deemed clinically acceptable without any modification by the five practitioners collectively versus 90% of the manual plans. Automated plan seed distributions were for the most part not substantially different from those for the manual plans. Two observed shortcomings of the automated plans were seed strands not intersecting the prostate and strands extending into the bladder. Both are amenable to remediation by adjusting existing spatial constraints. CONCLUSIONS: After spatial and dose-volume constraints are set, the mixed-integer linear programming method is capable of creating prostate implant treatment plans fully automatically, with clinical acceptability sufficient to warrant further investigation. These plans, intended to be reviewed and refined as necessary by an expert planner, have the potential to both save planner time and enhance treatment plan consistency.


Asunto(s)
Braquiterapia/métodos , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Humanos , Radioisótopos de Yodo , Masculino , Órganos en Riesgo , Proyectos Piloto , Dosificación Radioterapéutica , Estudios Retrospectivos , Vejiga Urinaria
13.
Brachytherapy ; 17(2): 489-499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29239813

RESUMEN

PURPOSE: To experimentally assess the performance of the Advanced Collapsed-cone Engine (ACE) for 192Ir high-dose-rate brachytherapy treatment planning of nonmelanoma skin cancers of the scalp. METHODS AND MATERIALS: A layered slab phantom was designed to model the head (skin, skull, and brain) and surface treatment mold using tissue equivalent materials. Six variations of the phantom were created by varying skin thickness, skull thickness, and size of air gap between the mold and skin. Treatment planning was initially performed using the Task Group 43 (TG-43) formalism with CT images of each phantom variation. Doses were recalculated using standard and high accuracy modes of ACE. The plans were delivered to Gafchromic EBT3 film placed between different layers of the phantom. RESULTS: Doses calculated by TG-43 and ACE and those measured by film agreed with each other at most locations within the phantoms. For a given phantom variation, average TG-43- and ACE-calculated doses were similar, with a maximum difference of (3 ± 12)% (k = 2). Compared to the film measurements, TG-43 and ACE overestimated the film-measured dose by (13 ± 12)% (k = 2) for one phantom variation below the skull layer. CONCLUSIONS: TG-43- and ACE-calculated and film-measured doses were found to agree above the skull layer of the phantom, which is where the tumor would be located in a clinical case. ACE appears to underestimate the attenuation through bone relative to that measured by film; however, the dose to bone is below tolerance levels for this treatment.


Asunto(s)
Braquiterapia/métodos , Neoplasias de Cabeza y Cuello/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Cuero Cabelludo , Neoplasias Cutáneas/radioterapia , Algoritmos , Humanos , Radioisótopos de Iridio , Método de Montecarlo , Fantasmas de Imagen , Dosificación Radioterapéutica
14.
Med Phys ; 44(11): 5961-5976, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28722180

RESUMEN

PURPOSE: A joint working group was created by the American Association of Physicists in Medicine (AAPM), the European Society for Radiotherapy and Oncology (ESTRO), and the Australasian Brachytherapy Group (ABG) with the charge, among others, to develop a set of well-defined test case plans and perform calculations and comparisons with model-based dose calculation algorithms (MBDCAs). Its main goal is to facilitate a smooth transition from the AAPM Task Group No. 43 (TG-43) dose calculation formalism, widely being used in clinical practice for brachytherapy, to the one proposed by Task Group No. 186 (TG-186) for MBDCAs. To do so, in this work a hypothetical, generic high-dose rate (HDR) 192 Ir shielded applicator has been designed and benchmarked. METHODS: A generic HDR 192 Ir shielded applicator was designed based on three commercially available gynecological applicators as well as a virtual cubic water phantom that can be imported into any DICOM-RT compatible treatment planning system (TPS). The absorbed dose distribution around the applicator with the TG-186 192 Ir source located at one dwell position at its center was computed using two commercial TPSs incorporating MBDCAs (Oncentra® Brachy with Advanced Collapsed-cone Engine, ACE™, and BrachyVision ACUROS™) and state-of-the-art Monte Carlo (MC) codes, including ALGEBRA, BrachyDose, egs_brachy, Geant4, MCNP6, and Penelope2008. TPS-based volumetric dose distributions for the previously reported "source centered in water" and "source displaced" test cases, and the new "source centered in applicator" test case, were analyzed here using the MCNP6 dose distribution as a reference. Volumetric dose comparisons of TPS results against results for the other MC codes were also performed. Distributions of local and global dose difference ratios are reported. RESULTS: The local dose differences among MC codes are comparable to the statistical uncertainties of the reference datasets for the "source centered in water" and "source displaced" test cases and for the clinically relevant part of the unshielded volume in the "source centered in applicator" case. Larger local differences appear in the shielded volume or at large distances. Considering clinically relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. CONCLUSIONS: The combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR 192 Ir brachytherapy.


Asunto(s)
Algoritmos , Braquiterapia/métodos , Radioisótopos de Iridio/uso terapéutico , Método de Montecarlo , Dosis de Radiación , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
15.
Cureus ; 9(5): e1243, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28620572

RESUMEN

PURPOSE: This study was undertaken to determine if significant seed migration occurred when our institution changed seed products by comparing patterns of seed migration in implants containing different stranding material. METHODS AND MATERIALS: Day 0 and Day 30 CT scans were registered by the contoured prostate center of mass. An implant reconstruction program identified seeds on CT according to the pre-plan, enabling one-to-one correspondence between Day 0 and Day 30 seeds. Significant seed migration was defined by review of seeds that migrated > 2 cm outside the prostate or appearance in unexpected locations.   Results: Twenty-five (149, 16.8%) new strands displayed movement > 2 cm between Day 0 and Day 30 compared with just 2/118 (1.7%) of the standard strands. Six out of 26 (23%) patients with new strands displayed significant migration compared with 2/13 (14%) of patients with standard strands. In the six patients with new strands and significant migration, a mean of four strands (17%, range: 2-8 per patient) migrated significantly with 65% due to whole strand migration, 25% due to strand breakage, and 10% strand clumping. In the control group, only two strands (2%) migrated significantly, both due to strand breakage. Despite the greater seed movement with the new strands, Day 0 and Day 30 dosimetry was acceptable. CONCLUSION: In this short report, we identified that a change to a new strand type was associated with unexpected significant seed movement compared to our typical strands. Since seed movement can arise from unexpected causes, it is important to maintain quality assurance practices when a change in technique or infrastructure is instituted.

16.
J Contemp Brachytherapy ; 9(1): 79-88, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28344608

RESUMEN

Model-based dose calculation algorithms (MBDCAs) have recently emerged as potential successors to the highly practical, but sometimes inaccurate TG-43 formalism for brachytherapy treatment planning. So named for their capacity to more accurately calculate dose deposition in a patient using information from medical images, these approaches to solve the linear Boltzmann radiation transport equation include point kernel superposition, the discrete ordinates method, and Monte Carlo simulation. In this overview, we describe three MBDCAs that are commercially available at the present time, and identify guidance from professional societies and the broader peer-reviewed literature intended to facilitate their safe and appropriate use. We also highlight several important considerations to keep in mind when introducing an MBDCA into clinical practice, and look briefly at early applications reported in the literature and selected from our own ongoing work. The enhanced dose calculation accuracy offered by a MBDCA comes at the additional cost of modelling the geometry and material composition of the patient in treatment position (as determined from imaging), and the treatment applicator (as characterized by the vendor). The adequacy of these inputs and of the radiation source model, which needs to be assessed for each treatment site, treatment technique, and radiation source type, determines the accuracy of the resultant dose calculations. Although new challenges associated with their familiarization, commissioning, clinical implementation, and quality assurance exist, MBDCAs clearly afford an opportunity to improve brachytherapy practice, particularly for low-energy sources.

17.
J Appl Clin Med Phys ; 18(3): 16-27, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28317325

RESUMEN

Model-based dose calculation algorithms have recently been incorporated into brachytherapy treatment planning systems, and their introduction requires critical evaluation before clinical implementation. Here, we present an experimental evaluation of Oncentra® Brachy Advanced Collapsed-cone Engine (ACE) for a multichannel vaginal cylinder (MCVC) applicator using radiochromic film. A uniform dose of 500 cGy was specified to the surface of the MCVC using the TG-43 dose formalism under two conditions: (a) with only the central channel loaded or (b) only the peripheral channels loaded. Film measurements were made at the applicator surface and compared to the doses calculated using TG-43, standard accuracy ACE (sACE), and high accuracy ACE (hACE). When the central channel of the applicator was used, the film measurements showed a dose increase of (11 ± 8)% (k = 2) above the two outer grooves on the applicator surface. This increase in dose was confirmed with the hACE calculations, but was not confirmed with the sACE calculations at the applicator surface. When the peripheral channels were used, a periodic azimuthal variation in measured dose was observed around the applicator. The sACE and hACE calculations confirmed this variation and agreed within 1% of each other at the applicator surface. Additionally for the film measurements with the central channel used, a baseline dose variation of (10 ± 4)% (k = 2) of the mean dose was observed azimuthally around the applicator surface, which can be explained by offset source positioning in the central channel.


Asunto(s)
Braquiterapia/instrumentación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Neoplasias Vaginales/radioterapia , Algoritmos , Femenino , Humanos , Fantasmas de Imagen
18.
Ann Biomed Eng ; 45(4): 924-938, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27646146

RESUMEN

The performance of needle-based interventions depends on the accuracy of needle tip positioning. Here, a novel needle steering strategy is proposed that enhances accuracy of needle steering. In our approach the surgeon is in charge of needle insertion to ensure the safety of operation, while the needle tip bevel location is robotically controlled to minimize the targeting error. The system has two main components: (1) a real-time predictor for estimating future needle deflection as it is steered inside soft tissue, and (2) an online motion planner that calculates control decisions and steers the needle toward the target by iterative optimization of the needle deflection predictions. The predictor uses the ultrasound-based curvature information to estimate the needle deflection. Given the specification of anatomical obstacles and a target from preoperative images, the motion planner uses the deflection predictions to estimate control actions, i.e., the depth(s) at which the needle should be rotated to reach the target. Ex-vivo needle insertions are performed with and without obstacle to validate our approach. The results demonstrate the needle steering strategy guides the needle to the targets with a maximum error of 1.22 mm.


Asunto(s)
Agujas , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/métodos , Cirugía Asistida por Computador/instrumentación , Cirugía Asistida por Computador/métodos , Ultrasonografía , Humanos
19.
Med Phys ; 43(8): 4891, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27487906

RESUMEN

PURPOSE: To estimate the total dosimetric uncertainty at the tumor apex for ocular brachytherapy treatments delivered using 16 mm Collaborative Ocular Melanoma Study (COMS) and Super9 plaques loaded with (125)I seeds in order to determine the size of the apex margin that would be required to ensure adequate dosimetric coverage of the tumor. METHODS: The total dosimetric uncertainty was assessed for three reference tumor heights: 3, 5, and 10 mm, using the Guide to the expression of Uncertainty in Measurement/National Institute of Standards and Technology approach. Uncertainties pertaining to seed construction, source strength, plaque assembly, treatment planning calculations, tumor height measurement, plaque placement, and plaque tilt for a simple dome-shaped tumor were investigated and quantified to estimate the total dosimetric uncertainty at the tumor apex. Uncertainties in seed construction were determined using EBT3 Gafchromic film measurements around single seeds, plaque assembly uncertainties were determined using high resolution microCT scanning of loaded plaques to measure seed positions in the plaques, and all other uncertainties were determined from the previously published studies and recommended values. All dose calculations were performed using plaque simulator v5.7.6 ophthalmic treatment planning system with the inclusion of plaque heterogeneity corrections. RESULTS: The total dosimetric uncertainties at 3, 5, and 10 mm tumor heights for the 16 mm COMS plaque were 17.3%, 16.1%, and 14.2%, respectively, and for the Super9 plaque were 18.2%, 14.4%, and 13.1%, respectively (all values with coverage factor k = 2). The apex margins at 3, 5, and 10 mm tumor heights required to adequately account for these uncertainties were 1.3, 1.3, and 1.4 mm, respectively, for the 16 mm COMS plaque, and 1.8, 1.4, and 1.2 mm, respectively, for the Super9 plaque. These uncertainties and associated margins are dependent on the dose gradient at the given prescription depth, thus resulting in the changing uncertainties and margins with depth. CONCLUSIONS: The margins determined in this work can be used as a guide for determining an appropriate apex margin for a given treatment, which can be chosen based on the tumor height. The required margin may need to be increased for more complex scenarios (mushroom shaped tumors, tumors close to the optic nerve, oblique muscle related tilt, etc.) than the simple dome-shaped tumor examined and should be chosen on a case-by-case basis. The sources of uncertainty contributing most significantly to the total dosimetric uncertainty are seed placement within the plaques, treatment planning calculations, tumor height measurement, and plaque tilt. This work presents an uncertainty-based, rational approach to estimating an appropriate apex margin.


Asunto(s)
Braquiterapia/métodos , Neoplasias del Ojo/radioterapia , Melanoma/radioterapia , Dosis de Radiación , Incertidumbre , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
20.
Int J Comput Assist Radiol Surg ; 11(7): 1347-59, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26615430

RESUMEN

PURPOSE: This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. METHODS: We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. RESULTS: Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. CONCLUSION: The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.


Asunto(s)
Braquiterapia/métodos , Agujas , Neoplasias de la Próstata/radioterapia , Ultrasonografía , Algoritmos , Humanos , Masculino , Modelos Teóricos , Movimiento (Física) , Fantasmas de Imagen , Radioterapia Guiada por Imagen , Cirugía Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...