Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(9): 305, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001968

RESUMEN

Dimethoate (DMT) is one of the most harmful and commonly used organophosphate pesticides in agricultural lands to control different groups of parasitic insects. However, this pesticide is considered a dangerous pollutant for aquatic organisms following its infiltration in coastal ecosystems through leaching. Yet, our investigation aimed to gain new insights into the toxicity mechanism of DMT in the muscles of the green crab Carcinus aestuarii, regarding oxidative stress, neurotransmission impairment, histological aspects, and changes in lipid composition, assessed for the first time on the green crab's muscle. Specimens of C. aestuarii were exposed to 50, 100, and 200 µg DMT L-1 for 24 h. Compared to the negative control group, the higher the DMT concentration, the lower the saturated fatty acids (SFA), and the higher the monounsaturated fatty acids (MUFA). The significant increase in polyunsaturated fatty acid n-6 (PUFA n-6) was related to the high release, mainly, of linoleic acid (LA, C18: 2n6) and arachidonic acid (ARA, C20: 4n6) levels. Biochemical biomarkers showed that DMT exposure promoted oxidative stress, highlighted by increased levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), advanced oxidation protein product levels (AOPP), and protein carbonyl (PCO). Furthermore, the antioxidant defense system was activated, as demonstrated by the significant changes in the enzymatic activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and reduced glutathione (GSH) levels associated with an adaptation process of C. aestuarii to cope with the DMT exposure. This pesticide significantly impairs the neurotransmission process, as evidenced by the inhibition of acetylcholinesterase (AChE) activity. Finally, several histopathological changes were revealed in DMT-treated crabs, including vacuolation, and muscle bundle loss.This research offered new insights into the toxic mechanism of DMT, pointing to the usefulness of fatty acid (FA) composition as a sensitive biomarker in littoral crabs.


Asunto(s)
Braquiuros , Dimetoato , Músculos , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Dimetoato/toxicidad , Estrés Oxidativo/efectos de los fármacos , Braquiuros/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Músculos/efectos de los fármacos , Músculos/metabolismo , Ácidos Grasos/metabolismo , Insecticidas/toxicidad , Biomarcadores/metabolismo , Malondialdehído/metabolismo
2.
Pestic Biochem Physiol ; 197: 105699, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072554

RESUMEN

Dimethoate is a broad-spectrum organophosphate insecticide and acaricide. Through various pathways, such as runoff and drift, dimethoate can reach marine environment, and easily impact common organisms in coastal areas, close to agriculture lands, namely crustaceans. The purpose of this study was to investigate the potential effects of dimethoate exposure (50, 100, and 200 µg/l), for 1 day, on a wide range of markers of oxidative stress and neurotransmission impairment, as well as fatty acids composition and histopathological aspect in the gills of the green crab Carcinus aestuarii. A significant increase in n-3 polyunsaturated fatty acids series, namely the eicosapentaenoic acid (C20: 5n3) and its precursor alpha-linolenic acid (C 18: 3n3) in dimethoate-treated crabs was recorded. Concerning n-6 polyunsaturated fatty acids, we noted a high reduction in arachidonic acid (C20:4n-6) levels. Dimethoate exposure increased the levels of hydrogen peroxide, malondialdehyde, lipid hydroperoxides, protein carbonyl, and caused the advanced oxidation of protein products along with enzymatic and non-enzymatic antioxidant-related markers. Acetylcholinesterase activity was highly inhibited following exposure to dimethoate in a concentration-dependent manner. Finally, deleterious histopathological changes with several abnormalities were noted in exposed animals confirming our biochemical findings. The present study offered unique insights to establish a relationship between redox status and alterations in fatty acid composition, allowing a better understanding of dimethoate-triggered toxicity.


Asunto(s)
Braquiuros , Dimetoato , Animales , Dimetoato/toxicidad , Braquiuros/metabolismo , Ácidos Grasos , Acetilcolinesterasa/metabolismo , Branquias , Oxidación-Reducción , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología
3.
Toxicol Res ; 39(3): 429-441, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37398571

RESUMEN

Lambda-cyhalothrin (λ-cyh) is a potential pyrethroid insecticide widely used in pest control. The presence of pyrethroids in the aquatic ecosystem may induce adverse effects on non-target organisms such as the sea urchin. This study was conducted to assess the toxic effects of λ-cyh on the fatty acid profiles, redox status, and histopathological aspects of Paracentrotus lividus gonads following exposure to three concentrations of λ-cyh (100, 250 and 500 µg/L) for 72 h. The results showed a significant decrease in saturated fatty acid (SFAs) with an increase in monounsaturated fatty acid (MUFAs) and polyunsaturated fatty acid (PUFAs) levels in λ-cyh treated sea urchins. The highest levels in PUFAs were recorded in the eicosapentaenoic acids (C20:5n-3), docosahexaenoic acids (C22:6n-3) and arachidonic acids (C20:4n-6) levels. The λ-cyh intoxication promoted oxidative stress with an increase in hydrogen peroxide (H2O2), malondialdehyde (MDA) and advanced oxidation protein products (AOPP) levels. Furthermore, the enzymatic activities and non-enzymatic antioxidants levels were enhanced in all exposed sea urchins, while the vitamin C levels were decreased in 100 and 500 µg/L treated groups. Our biochemical results have been confirmed by the histopathological observations. Collectively, our findings offered valuable insights into the importance of assessing fatty acids' profiles as a relevant tool in aquatic ecotoxicological studies.

4.
Environ Sci Pollut Res Int ; 30(26): 68821-68835, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37129804

RESUMEN

Lithium (Li) is a toxic monovalent alkaline metal used in household items common to industrial applications. The present work was aimed at investigating the potential toxic effects of LiCl on the redox status, fatty acid composition, and histological aspects of the marine ragworm Perinereis cultrifera. Sea worms were exposed to LiCl graded doses (20, 40, and 80 mg/L) for 48 h. Compared with the control group, the saturated fatty acids (SFA) decreased while monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) increased upon exposure to LiCl. The increase in PUFA n-3 and PUFA n-6 was concomitant to an increase in docosahexaenoic (DHA: C22:6n-3), eicosapentaenoic (EPA: C20:5n-3), and docosapentaenoic acid (C22:5n-6) fatty acids. Results showed that LiCl-treated specimens accumulate lithium with increasing exposure gradient. Indeed, the exposure to LiCl doses promoted oxidative stress with an increase of the ferric reducing antioxidant power (FRAP), malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein product (AOPP), and protein carbonyl (PCO) as well as the enzymatic and non-enzymatic antioxidants (non-protein thiols (NPSH), catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione S-transferase (GST), and metallothionein (MT)) levels in all treated groups. Our biochemical findings have been affirmed by the histopathological observations showing hyperplasia and loss of the intestine structure in treated specimens. Overall, our findings give new insights on the toxic effect of LiCl on the redox status of P. cultrifera body tissue and highlighted the usefulness of the FA composition as an early sensitive bioindicators to better understand LiCl mechanism of toxicity in marine polychaetes.


Asunto(s)
Peróxido de Hidrógeno , Litio , Litio/toxicidad , Peróxido de Hidrógeno/farmacología , Lipidómica , Oxidación-Reducción , Antioxidantes/metabolismo , Estrés Oxidativo , Biomarcadores/metabolismo , Ácidos Grasos/metabolismo
5.
Environ Toxicol ; 38(1): 159-171, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36178721

RESUMEN

Acrylamide (ACR), organic compound, has been widely used owing to its broad spectrum of chemical and industrial applications. This study aims at evaluating the response of the antioxidant defense system, fatty acid composition and histopathological aspect in the respiratory trees of Holothuria forskali against ACR exposure under laboratory conditions. Holothuries were exposed to 5, 10, and 20 mg L-1 ACR concentrations for 5 days. A significant increase in n-6 polyunsaturated fatty acids levels especially the arachidonic acid (ARA, C20:4n-6) and its precursor linoleic acid (LA, C18:2n-6) in ACR-treated organisms. Regarding the n-3 levels, eicosapentaenoic acid (EPA, C20:5n-3) levels were increased in treated groups despite an acute decrease in docosahexaenoic acid (DHA, C22:6n-3) levels was observed. Our results showed a significant increase in hydrogen peroxide, malondialdehyde, protein carbonyl, and metallothionein levels along with an alteration of the antioxidants status in all treated sea cucumbers. The exposure to ACR prompted the inhibition of Acetylcholinesterase activity in a concentration-dependent manner. The histopathological aspect was marked especially with the infiltration of coelomic cells which confirms our biochemical findings. Our study provided novel insights to create a link between redox status and fatty acid composition disruptions to better understand ACR-triggered toxicity.


Asunto(s)
Ácidos Grasos , Holothuria , Animales , Ácidos Grasos/metabolismo , Árboles/metabolismo , Acrilamida/toxicidad , Acetilcolinesterasa/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Antioxidantes/metabolismo
6.
Drug Chem Toxicol ; 45(1): 311-323, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31752645

RESUMEN

The aim of this study is to elucidate the toxicity induced by PbCl2, administered in graded doses (1; 2.5; 5 mg/L), in the redox state, in the fatty acid composition and in the histological structure of Mactra corallina digestive glands. Our findings showed a progressive accumulation of Pb in the M. corallina digestive glands in all treated groups. After 5 days of treatment with PbCl2, an increase in H2O2, MDA, PCO, GSH, NPSH and MT levels was observed in the digestive glands of treated groups. Moreover, activities of antioxidant enzymes, such as GPx and CAT, increased while SOD activity decreased in all treated groups, indicating a failure of the antioxidant defense system. Furthermore, the cholinergic function was evaluated by assessing the acetylcholinesterase activity, which was inhibited in all the treated digestive glands compared to the control group. In our experiment, the levels of n-3 (Omega-3) and n-6 (Omega-6) polyunsaturated fatty acids were greatly altered in the groups treated with 5 mg/L of PbCl2 (p < 0.001). Indeed, DHA and EPA decreased significantly in the digestive glands treated with 2.5 and 5 mg/L of PbCl2, respectively. On the other hand, under exposure to the medium and high doses (2.5 and 5 mg/L), arachidonic acid (ARA) and linoleic acid (LA) significantly increased (p < 0.001). These changes in PUFA were confirmed by significant modifications in the polyene and peroxidation indices. The histological findings confirmed the biochemical results.HighlightsIntegrated parameters were used to explore the toxic effect of PbCl2 graded doses in Mactra corallina digestive gland.Metals accumulation in digestive glands of M. corallina was greatly dependent to dose of PbCl2.Metabolic and macromolecules damaging of clams digestive glands were more sensitive at higher PbCl2 doses.Fatty acids composition especially polyunsaturated fatty acids (PUFA) and essentials fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in clams digestive glands were intensively altered at higher PbCl2 doses.Inflammation responses revealed in studied tissue.


Asunto(s)
Bivalvos , Ácidos Grasos Omega-3 , Acetilcolinesterasa , Animales , Ácidos Grasos , Peróxido de Hidrógeno , Plomo/toxicidad , Oxidación-Reducción
7.
J Food Sci Technol ; 58(9): 3493-3503, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34366466

RESUMEN

The effect of storage time (5, 10 and 15 days) and temperature (- 20 °C and + 4 °C) on the biochemical composition of the Tunisian mussel (Mytilus galloprovincialis) was evaluated by investigating changes in proximate composition, fatty acids, minerals and nutritional quality indices. Lipid and protein degradations were also evaluated through several markers of oxidative damage. Results showed a significant decrease in the biochemical compounds in mussel tissues after both refrigeration and freezing processes (p < 0.01). As regards the fatty acid composition, saturated fatty acids increased significantly after both storage processes. However, polyunsaturated and monounsaturated decreased, especially after 10 and 15 days of storage. The reduction of nutritional quality and mineral contents were detected after both storage processes. Markers of oxidative damage varied remarkably between fresh and stored tissues, revealing that both processes greatly influenced the nutritional quality of mussels. Overall, it is well recommended to consume fresh and stored mussels for no more than 5 days in the refrigerator (+ 4 °C) in order to preserve the better quality of this product and provide more benefits for human health.

8.
Environ Sci Pollut Res Int ; 28(46): 66193-66205, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34331222

RESUMEN

Narcissus tazetta (Amaryllidaceae) is a medicinal plant widely used for cut flowers and potted ornamental plant in Tunisia flora. The current study evaluated the phenolic composition and antioxidant properties of its flower extracts and investigated its potential protective activity against cadmium chloride (CdCl2)-induced hepatotoxicity in mice. Mice were divided into six groups of six each: group 1, serving as negative controls, received by intraperitoneal way only distilled water; group 2 received by intraperitoneal way CdCl2 (0.16 mg/kg bw); groups 3 and 4 received CdCl2 at the same dose of group 2 and 100 or 200 mg/kg bw of Narcissus tazetta flower extracts via oral route; groups 5 and 6, serving as positive controls, received only Narcissus tazetta flower extracts. Polyphenolic compounds of the extract were analyzed by colorimetric and high-performance liquid chromatography-mass spectrometry (HPLC-MS) methods. Total antioxidant activity and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging potential of the extract were estimated using colorimetric method. Results indicated that ethanolic flower extract contained high levels of total phenolic and flavonoid along with a strong total antioxidant and DPPH free radical scavenging activities. HPLC-MS analysis identified eight phenolic compounds, including rutin, kaempferol glycosides, and chlorogenic acids. The extract also exhibited marked hepatoprotective effects against CdCl2 toxicity by reducing hepatic levels of malondialdehyde, advanced oxidation protein products, hydrogen peroxide, metallothioneins, and DNA degradation. Additionally, co-administration of Narcissus tazetta flower extracts lowered the plasma activities of transaminases, gamma glutamyl transpeptidase, and lactate dehydrogenase and increased hepatic levels of reduced glutathione, nonprotein thiols, vitamin C, and catalase activity. The hepatoprotective effects of the extract were demonstrated by histopathological improvement of liver disorders. The current study provided ethnopharmacological application of Narcissus tazetta flower extracts against CdCl2-induced oxidative stress, suggesting its chemoprevention role of its phenolic compounds as a natural antioxidant.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Narcissus , Animales , Antioxidantes , Cloruro de Cadmio , Ratones , Extractos Vegetales
9.
Chemosphere ; 269: 129376, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33385670

RESUMEN

In this study, the potential hazardous impacts of the technical grade glyphosate acid (GLY) and its commercial formulation roundup (RD®) were evaluated for the first time on holothurians. To do this, redox status, fatty acid (FA) profile, and histopathology aspects were assessed in the respiratory tree tissue of the sea cucumber Holothuria forskali following short-term exposure (96 h) to a series of concentrations (10, 100 and 1000 µg L-1) of GLY and RD® (glyphosate acid equivalent). Our results showed that both GLY and RD® promoted oxidative stress highlighted with an increase of hydrogen peroxide (H2O2), malondialdehyde (MDA), lipid peroxides (LOOH) and advanced oxidation protein product (AOPP) levels in all treated groups. In addition, both glyphosate forms were found to perturb the FA composition. However, changes in saturated (SFA) and polyunsaturated (PUFA) including some essential FA (LA, ARA, EPA and DHA) revealed differential compensatory/adaptive processes in H. forskali depending on the treatment. GLY and RD® were also found to modulate the enzymatic (glutathione S-transferases, glutathione peroxidase and catalase) and non-enzymatic (reduced glutathione and ascorbic acid) antioxidant defense status. Taken together, our results revealed that the commercial formulation produced more pronounced effects on H. forskali respiratory tree than the pure form. This finding was further confirmed by the histological observations.


Asunto(s)
Herbicidas , Holothuria , Pepinos de Mar , Animales , Biomarcadores , Glicina/análogos & derivados , Herbicidas/toxicidad , Peróxido de Hidrógeno , Árboles , Glifosato
10.
Toxicol Ind Health ; 36(11): 898-907, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32996380

RESUMEN

The aim of this study was to analyze the biochemical alterations in the gills of Venus verrucosa under exposure for 6 days to three doses of lambda-cyhalothrin (λ-cyh) (100, 250, and 500 µg L-1). Malondialdehyde, lipid hydroperoxide, and hydrogen peroxide levels in the gills of treated groups increased. λ-Cyh exposure significantly increased the protein carbonyl and reduced glutathione levels in the gills of all treated groups. Moreover, the activities of superoxide dismutase and glutathione peroxidase were increased. In our study, the polyunsaturated fatty acid (FA), omega-6, eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3) were increased in the treated groups. A significant decrease in the saturated FAs, omega-3, and arachidonic acid (C20:4n-6) levels was observed. The content of monounsaturated FA was changed in the groups treated with 100 and 250 µg L-1 of λ-cyh. As a corollary, desaturase and elongase activities were significantly increased. Our study provides evidence of the underlying toxic mechanism of λ-cyh and its capacity to create oxidative stress and revealed that FA profiling is a new approach for elucidating the λ-cyh toxicity.


Asunto(s)
Antioxidantes/metabolismo , Ácidos Grasos/metabolismo , Branquias/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Nitrilos/farmacología , Plaguicidas/farmacología , Piretrinas/farmacología , Animales , Relación Dosis-Respuesta a Droga
11.
Mar Environ Res ; 159: 105000, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32662434

RESUMEN

Coastal transitional waters are exposed to many anthropogenic threats. This study aims to assess the trace metals' pollution status of transitional waters by evaluating its biological effects in the clam Venerupis decussata. Among the studied sites along the Tunisian littoral, South Tunis and Boughrara were the most impacted, since clams from these two lagoons presented significant differences in: (i) trace metal contents, (ii) in-cell hydrogen peroxide, (iii) enzymatic and non-enzymatic defenses, (iv) damage to lipids and proteins, and (v) protein post-translational modifications. These changes related to evident histopathological traits. PCA showed a clear separation between the digestive gland and gills tissues and illustrated an impact gradient in Tunisian coastal lagoons. Water temperature was revealed as an added natural stressor that, when concurring with high pollution, may jeopardize an ecosystem's health and contribute to the accumulation of hazardous metals in organisms.


Asunto(s)
Bivalvos , Metales , Contaminantes Químicos del Agua , Animales , Carga Corporal (Radioterapia) , Ecosistema , Monitoreo del Ambiente , Estrés Oxidativo
12.
Ecotoxicol Environ Saf ; 196: 110562, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276164

RESUMEN

Hexavalent chromium (chromium (VI)), a highly toxic heavy metal, is a common pollutant of aquatic ecosystems. The present study aimed to elucidate the potential toxic effects of chromium (VI) on oxidative stress biomarkers and fatty acids profile in the gills and digestive gland of Venus verrucosa, an ecologically and economically important bivalve species. Three doses of chromium (VI) (1, 10 and 100 µg.L-1) were chosen for V. verrucosa exposure during 7 days under controlled conditions. A significant increase in the levels of malondialdehyde, lipid hydroperoxides and hydrogen peroxide was observed in the gills and digestive gland of chromium (VI)-exposed V. verrucosa as compared to the control group. Furthermore, an induction of enzymatic antioxidant activities (superoxide dismutase, glutathione peroxidase and glutathione S-transferase) and an enhancement of non-enzymatic antioxidant levels (non-protein thiols, glutathione and vitamin C) were marked. An alteration of fatty acids composition was also noted following chromium (VI) exposure. The obtained results highlighted the importance of assessing oxidative damage biomarkers and fatty acids profile in the study of chromium (VI)-induced toxicity in V. verrucosa.


Asunto(s)
Antioxidantes/metabolismo , Bivalvos/efectos de los fármacos , Cromo/toxicidad , Ácidos Grasos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Bivalvos/metabolismo , Ecosistema , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismo
13.
Environ Sci Pollut Res Int ; 27(8): 8091-8102, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31897980

RESUMEN

Zinc is one of the important essential trace minerals to human health due to its antioxidant properties. The present study was conducted to elucidate its potential protective role against maneb-induced nephrotoxicity. For this purpose, animals were randomly divided into four groups of six each. Mice of group I (negative controls) have received daily 0.5 ml of distilled water, a solvent of maneb. Mice of group II (MB) have received 30 mg/kg bw of maneb daily by intraperitoneal way. Mice of group III (MB + Zn) have received the same dose of maneb as group II, along with ZnSO4 (30 mg/kg bw) daily. Mice of group IV (Zn), considered as positive controls, have received the same dose of ZnSO4 as group III daily. Our results revealed that ZnSO4 co-administration to maneb-treated mice decreased kidney levels of malondialdehyde, hydrogen peroxide, protein carbonyls, and advanced oxidation protein products; the levels of non-enzymatic antioxidants like vitamin C, glutathione, and metallothionein. It recovered the alteration of antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) and attenuated DNA fragmentation. Furthermore, this essential trace element was also able to alleviate kidney biomarkers' alterations by lowering plasma levels of creatinine, urea, uric acid, and lactate dehydrogenase. In addition, the histopathological changes induced by maneb were improved following zinc administration. Our results indicated that zinc might be beneficial against maneb-induced renal oxidative damage in mice.


Asunto(s)
Glutatión Peroxidasa , Glutatión , Riñón , Maneb , Superóxido Dismutasa , Zinc , Animales , Ratones , Antioxidantes , Daño del ADN , Glutatión/química , Glutatión Peroxidasa/química , Glutatión Peroxidasa/metabolismo , Riñón/fisiopatología , Estrés Oxidativo , Distribución Aleatoria , Superóxido Dismutasa/química , Zinc/química
14.
Drug Chem Toxicol ; 43(3): 287-297, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30554537

RESUMEN

Mercury (Hg) is among the most deleterious contaminant in the aquatic environment and presents a serious risk to humans and ecosystems. This study evaluated the effects of Hg on oxidative stress biomarkers, DNA integrity and histological structure of the respiratory tree of Holothuria forskali exposed to different concentrations of mercury chloride HgCl2 (0.04, 0.08 and 0.16 mg L-1) for 96 h. Exposure of H. forskali to Hg led to oxidative stress with an increase in Malondialdehyde (MDA), hydrogen peroxide (H2O2), advanced oxidation protein product (AOPP) and protein carbonyls (PCO) levels in the treated groups. Alteration of the antioxidant system was also confirmed by the significant increase in glutathione (GSH), nonprotein thiol (NPSH) and vitamin C contents. Moreover, the enzymatic activity of superoxide dismutase (SOD), Glutathione peroxidase (GPX) and Catalase (CAT) increased significantly. Our research revealed that total Metallothionein (MTs) content enhanced in a dose-dependent manner. Interestingly, the exposure to this metal provoked a decrease in Acetylcholinesterase (AChE) activity. Hg genotoxicity was further evidenced by a random DNA degradation that was observed in the treated groups. The histopathological findings confirmed the biochemical results. Overall, our results indicated that mercury-induced genotoxicity, oxidative damage and histopathological injuries in the respiratory tree of H. forskali.


Asunto(s)
Cloruro de Mercurio/toxicidad , Metalotioneína/genética , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Relación Dosis-Respuesta a Droga , Holothuria/efectos de los fármacos , Cloruro de Mercurio/administración & dosificación , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sistema Respiratorio/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Contaminantes Químicos del Agua/administración & dosificación
15.
Environ Sci Pollut Res Int ; 26(22): 22197-22208, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31148000

RESUMEN

Acrylamide (ACR), a ubiquitous agent, has various chemical and industrial applications, and it is found in backed or fried carbohydrate-rich food. It has been related to multiple toxicological effects, and it causes high cytotoxicity through oxidative stress. The present study aimed to investigate the potential effect of ACR toxicity administered at different concentrations (5, 10, and 20 mg/L), during 5 days, in order to evaluate the fatty acid (FA) composition and redox state in the digestive gland of Mactra corallina. The results showed, in ACR-treated clams, a significant increase in malondialdehyde, hydrogen peroxide, protein carbonyl, and metallothionein levels, as well as an alteration of the enzymatic (superoxide dismutase, glutathione peroxidase, and catalase) and non-enzymatic (reduced glutathione and ascorbic acid) antioxidant status. However, acetylcholinesterase activity was inhibited in a concentration-dependent manner. In our experiment, the n-3 (Omega-3) and n-6 (Omega-6) polyunsaturated fatty acid levels were significantly changed in all ACR-treated groups. A decrease in eicosapentaenoic acid (C20:5n-3, EPA) and docosahexaenoic acid (C22:6n-3, DHA) was observed in 10-mg/L and 20-mg/L ACR-treated groups. Nevertheless, arachidonic acid (C20:4n-6, ARA) and its precursor linoleic acid (C18:2n-6, LA) were increased. Besides oxidative stress parameters, FA composition may be an additional tool for assessing ACR contamination.


Asunto(s)
Acrilamida/farmacología , Bivalvos/metabolismo , Digestión/efectos de los fármacos , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Antioxidantes/química , Antioxidantes/farmacología , Ácido Araquidónico/química , Bivalvos/química , Catalasa/metabolismo , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/química , Glutatión/metabolismo , Ácido Linoleico/química , Ácido Linoleico/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos
16.
Gen Physiol Biophys ; 38(2): 123-134, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30821249

RESUMEN

The present work evaluated the possible protective effects of quercetin against glyphosate-induced hepatotoxicity in adult rats. Rats were randomly divided into three groups: a control group (C), a glyphosate-treated group (Gly) and a group treated with both glyphosate and quercetin (Gly+QE). During the experimental period (15 days), glyphosate (50 mg/kg b.w.) was administered every two days by intraperitoneal way while quercetin (20 mg/kg b.w./day) was administered daily by gavage. Glyphosate-induced hepatic oxidative stress was evidenced by the increased levels of malondialdehyde, hydrogen peroxide, advanced oxidation protein products and protein carbonyls with a significant decrease in enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (non-protein thiols, glutathione, vitamin C) antioxidants. Plasma biomarkers of hepatotoxicity (AST, ALT, ALP, γ-GT, albumin) were also altered. Moreover, glyphosate induced DNA damage, up-regulated metallothionein (MT I and MT II) genes expression and provoked histopathological changes in rats' liver. Quercetin supplementation to glyphosate-treated rats markedly ameliorated all the parameters indicated above as well as the liver histoarchitecture. Therefore, quercetin might have beneficial effects against glyphosate-induced hepatotoxicity in rats.


Asunto(s)
Glicina/análogos & derivados , Metalotioneína , Quercetina , Animales , Antioxidantes , Glicina/fisiología , Hígado , Metalotioneína/efectos de los fármacos , Metalotioneína/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Quercetina/farmacología , Distribución Aleatoria , Ratas , Ratas Wistar , Superóxido Dismutasa , Glifosato
17.
Ecotoxicol Environ Saf ; 169: 516-522, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30472476

RESUMEN

Mercury is one of the most harmful pollutant that threat marine biota. This study assessed the Hg impact on the fatty acid (FA) composition and the antioxidant statues in Holothuria forskali body wall tissue. Specimens were exposed to HgCl2 graded doses (40, 80 and 160 µg L-1) for 96 h. A decrease in linoleic, arachidonic and eicosapentaenoic acid levels and an increase of docosahexaenoic acid were mainly observed at the nominal tested dose. The exposure to the upper dose promoted oxidative stress with an increase of malondialdehyde, hydrogen peroxide, advanced oxidation protein product, glutathione and non-protein thiols levels. Moreover, a decrease in catalase and an increase in superoxide dismutase and glutathione peroxidase activities were observed. Yet, an increase of the metallothionein level was registered in all treated groups. This study confirmed the Hg toxicity on the redox statue of H. forskali and highlighted the usefulness of the FA composition as an early sensitive bioindicators.


Asunto(s)
Antioxidantes/metabolismo , Ácidos Grasos/metabolismo , Holothuria/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Biomarcadores/metabolismo , Holothuria/metabolismo , Mar Mediterráneo , Cloruro de Mercurio/análisis , Oxidación-Reducción , Agua de Mar/química , Túnez , Contaminantes Químicos del Agua/análisis
18.
Biomed Pharmacother ; 102: 645-652, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29602133

RESUMEN

The present study pertains to the possible adverse effects of penconazole exposure on the lung of adult rats, and to the potential ability of vitamin E (Vit E) in mitigating the toxicity induced by this fungicide. Male Wistar rats were divided into four groups of six animals each: Group I (Controls): rats drank distilled water; Group II (PEN): rats received, by gavage, 50 mg/kg body weight (1/40 LD50) of penconazole every 2 days during 10 days; Group III (Vit E): rats received daily 100 mg α-tocopherol acetate/kg body weight during 10 days by gavage; and Group IV (Vit E + PEN): rats received both vitamin E (100 mg α-tocopherol acetate/kg body weight) and penconazole (50 mg/kg body weight), being vitamin E given as a daily dosage and penconazole every 2 days, by gavage during 10 days. Results showed that penconazole induced oxidative stress in the lung demonstrated by an increase in malondialdehyde (+77%), hydrogen peroxide (+58%) and advanced oxidation protein product (+22%) levels, as compared to the controls. Furthermore, a decrease in the activities of catalase (-41%), superoxide dismutase (-45%), glutathione peroxidase (-23%) and acetylcholinesterase (-67%), and an increase in the levels of non-protein thiols (+17%), glutathione (+7%) and vitamin C (+44%) were registered. Abnormalities in lung histological sections such as alveolar edema, infiltration of inflammatory cells (leukocytes) and emphysema, were also observed following penconazole exposure. Vitamin E ameliorated the biochemical parameters, as well as the histological impairments induced by this fungicide. In conclusion, our study demonstrated that vitamin E, a natural antioxidant, was effective in alleviating penconazole-induced lung damage in Wistar rats.


Asunto(s)
Colinérgicos/efectos adversos , Pulmón/patología , Triazoles/efectos adversos , Vitamina E/farmacología , Acetilcolinesterasa/metabolismo , Animales , Antioxidantes/metabolismo , Peso Corporal/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Pulmón/efectos de los fármacos , Lesión Pulmonar/patología , Masculino , Malondialdehído/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Ratas Wistar , Vitamina E/uso terapéutico
19.
Arch Physiol Biochem ; 124(3): 237-246, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29072102

RESUMEN

CONTEXT: Barium (Ba) may induce oxidative stress leading to tissues injury. OBJECTIVE: Our study investigated the therapeutic efficiency of zinc (Zn) and selenium (Se) against neurotoxicity induced by Ba in adult rats and their progeny. MATERIAL AND METHODS: Pregnant rats are exposed either to Ba (67 ppm), Ba + Zn, Ba + S or to only Zn and Se. RESULTS: In Ba-treated rats, there was an increase of MDA, H2O2, AOPP levels and SOD activity in the cerebellum of dams and their pups, a decrease in GPx, CAT, AChE, Na+K+-ATPase and Mg2+-ATPase activities, GSH and NPSH levels. These changes were confirmed by histological damages. Co-administration of Zn or Se to Ba-treated rats ameliorated the biochemical and histological aspects. CONCLUSION: Our results revealed that Zn and Se have shown promising effects against Ba toxicity in the cerebellum of adult rats and their suckling pups.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Bario/efectos adversos , Membrana Celular/metabolismo , Cerebelo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Zinc/farmacología , Acetilcolinesterasa/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Cerebelo/citología , Cerebelo/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar
20.
Pharm Biol ; 55(1): 1061-1073, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28198206

RESUMEN

CONTEXT: Nitraria retusa (Forssk.) Asch. (Nitrariaceae) is a medicinal plant which produces edible fruits whose antioxidant activity has been demonstrated. OBJECTIVE: The current study elucidates the potential protective effect of N. retusa fruit aqueous extract against nephrotoxicity induced by penconazole, a triazole fungicide, in the kidney of adult rats. MATERIALS AND METHODS: Adult Wistar rats were exposed either to penconazole (67 mg/kg body weight), or to N. retusa extract (300 mg/kg body weight) or to their combination. Penconazole was administered by intra-peritoneal injection every 2 days from day 7 until day 15, the sacrifice day, while N. retusa extract was administered daily by gavage during 15 days. Oxidative stress parameters, kidney biomarkers and histopathological examination were determined. RESULTS: Nitraria retusa extract administration to penconazole treated rats decreased kidney levels of malondialdehyde (-10%), hydrogen peroxide (-12%), protein carbonyls (PCOs, -11%) and advanced oxidation protein products (AOPP, -16%); antioxidant enzyme activities: catalase (-13%), superoxide dismutase (-8%) and glutathione peroxidase (GPx, -14%), and the levels of non-enzymatic antioxidants: non-protein thiols (-9%), glutathione (-7%) and metallothionein (-12%). Furthermore, this plant extract prevented kidney biomarker changes by reducing plasma levels of creatinine, urea, uric acid and LDH and increasing those of ALP and GGT. Histopathological alterations induced by penconazole (glomeruli fragmentation, Bowman's space enlargement, tubular epithelial cells necrosis and infiltration of inflammatory leucocytes) were attenuated following N. retusa administration. DISCUSSION AND CONCLUSION: Our results indicated that N. retusa fruit extract had protective effects against penconazole-induced kidney injury, which could be attributed to its phenolic compounds.


Asunto(s)
Riñón/efectos de los fármacos , Magnoliopsida , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Triazoles/toxicidad , Animales , Frutas/química , Riñón/metabolismo , Riñón/patología , Peroxidación de Lípido/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , FN-kappa B/fisiología , Polifenoles/análisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...