Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 9(33): e2203371, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36251923

RESUMEN

The lateral eyes of the horseshoe crab, Limulus polyphemus, are the largest compound eyes within recent Arthropoda. The cornea of these eyes contains hundreds of inward projecting elongated cuticular cones and concentrate light onto proximal photoreceptor cells. Although this visual system has been extensively studied before, the precise mechanism allowing vision has remained controversial. Correlating high-resolution quantitative refractive index (RI) mapping and structural analysis, it is demonstrated how gradients of RI in the cornea stem from structural and compositional gradients in the cornea. In particular, these RI variations result from the chitin-protein fibers architecture, heterogeneity in protein composition, and bromine doping, as well as spatial variation in water content resulting from matrix cross-linking on the one hand and cuticle porosity on the other hand. Combining the realistic cornea structure and measured RI gradients with full-wave optical modeling and ray tracing, it is revealed that the light collection mechanism switches from refraction-based graded index (GRIN) optics at normal light incidence to combined GRIN and total internal reflection mechanism at high incident angles. The optical properties of the cornea are governed by different mechanisms at different hierarchical levels, demonstrating the remarkable versatility of arthropod cuticle.


Asunto(s)
Cangrejos Herradura , Proteínas , Animales , Cangrejos Herradura/química , Cangrejos Herradura/metabolismo , Proteínas/metabolismo , Células Fotorreceptoras , Visión Ocular , Córnea
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042817

RESUMEN

Biofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial, for example, in agricultural as well as in food technology contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity, the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level; however, the molecular structures and elemental distribution across whole biofilms, as well as possible linkages between them, remain unexplored. Mapping X-ray diffraction across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores, and water. By simultaneously following the X-ray fluorescence signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese, and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and may possibly lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution, and sporulation across whole, intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Amiloidogénicas/metabolismo , Proteínas Bacterianas/metabolismo , Matriz Extracelular/fisiología , Iones/metabolismo , Dispersión de Radiación , Dispersión del Ángulo Pequeño , Rayos X
3.
J Am Chem Soc ; 143(29): 10963-10969, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264055

RESUMEN

Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.


Asunto(s)
Compuestos Férricos/química , Nanopartículas de Magnetita/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Humectabilidad
4.
ACS Appl Mater Interfaces ; 12(23): 25581-25590, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32343541

RESUMEN

The geometrical similarity of helicoidal fiber arrangement in many biological fibrous extracellular matrices, such as bone, plant cell wall, or arthropod cuticle, to that of cholesteric liquid mesophases has led to the hypothesis that they may form passively through a mesophase precursor rather than by direct cellular control. In search of direct evidence to support or refute this hypothesis, here, we studied the process of cuticle formation in the tibia of the migratory locust, Locusta migratoria, where daily growth layers arise by the deposition of fiber arrangements alternating between unidirectional and helicoidal structures. Using focused ion beam/scanning electron microscopy (FIB/SEM) volume imaging and scanning X-ray scattering, we show that the epidermal cells determine an initial fiber orientation, from which the final architecture emerges by the self-organized co-assembly of chitin and proteins. Fiber orientation in the locust cuticle is therefore determined by both active and passive processes.


Asunto(s)
Exoesqueleto/metabolismo , Quitina/metabolismo , Células Epidérmicas/metabolismo , Proteínas de Insectos/metabolismo , Locusta migratoria/crecimiento & desarrollo , Exoesqueleto/ultraestructura , Animales , Células Epidérmicas/ultraestructura , Locusta migratoria/metabolismo , Aprendizaje Automático , Microscopía Electrónica de Rastreo , Microvellosidades/metabolismo , Dispersión de Radiación , Rayos X
5.
Acta Biomater ; 96: 631-645, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31302296

RESUMEN

In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.


Asunto(s)
Antozoos , Calcificación Fisiológica/fisiología , Carbonato de Calcio/metabolismo , Animales , Antozoos/anatomía & histología , Antozoos/crecimiento & desarrollo
6.
J R Soc Interface ; 15(143)2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29925581

RESUMEN

Many plants in fire-prone regions retain their seeds in woody fruits in the plant canopy until the passage of a fire causes the fruit to open and release the seeds. To enable this function, suitable tissues are required that effectively store and protect seeds until they are released. Here, we show that three different species of the Australian genus Banksia incorporate waxes at the interface of the two valves of the follicle enclosing the seeds, which melt between 45°C and 55°C. Since the melting temperature of the waxes is lower than the opening temperatures of the follicles in all investigated species (B. candolleana, B. serrata, B. attenuata), we propose that melting of these waxes allows the sealing of micro-fissures at the interface of the two valves while they are still closed. Such a self-sealing mechanism likely contributes to the structural integrity of the seed pods, and benefits seed viability and persistence during storage on the plants. Furthermore, we show in a simplified, bioinspired model system that temperature treatments seal artificially applied surface cuts and restore the barrier properties.


Asunto(s)
Calor , Modelos Biológicos , Proteaceae/metabolismo , Semillas/metabolismo , Ceras/metabolismo
7.
Adv Sci (Weinh) ; 5(1): 1700572, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29375977

RESUMEN

Heat-triggered fruit opening and delayed release of mature seeds are widespread among plants in fire-prone ecosystems. Here, the material characteristics of the seed-containing follicles of Banksia attenuata (Proteaceae), which open in response to heat frequently caused by fire, are investigated. Material analysis reveals that long-term dimensional stability and opening temperatures of follicles collected across an environmental gradient increase as habitats become drier, hotter, and more fire prone. A gradual increase in the biaxial curvature of the hygroscopic valves provides the follicles in the driest region with the highest flexural rigidity. The irreversible deformation of the valves for opening is enabled via a temperature-dependent reduction of the elastic modulus of the innermost tissue layer, which then allows releasing the stresses previously generated by shrinkage of the fiber bundles in the adjacent layer during follicle drying. These findings illustrate the level of sophistication by which this species optimizes its fruit opening mechanism over a large distribution range with varying environmental conditions, and may not only have great relevance for developing biomimetic actuators, but also for elucidating the species' capacity to cope with climatic changes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...