Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 215, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734633

RESUMEN

BACKGROUND: Animal African trypanosomiasis, which is caused by different species of African trypanosomes, is a deadly disease in livestock. Although African trypanosomes are often described as blood-borne parasites, there have been recent reappraisals of the ability of these parasites to reside in a wide range of tissues. However, the majority of those studies were conducted on non-natural hosts infected with only one species of trypanosome, and it is unclear whether a similar phenomenon occurs during natural animal infections, where multiple species of these parasites may be present. METHODS: The infective trypanosome species in the blood and other tissues (adipose and skin) of a natural host (cows, goats and sheep) were determined using a polymerase chain reaction-based diagnostic. RESULTS: The animals were found to harbour multiple species of trypanosomes. Different patterns of distribution were observed within the host tissues; for instance, in some animals, the blood was positive for the DNA of one species of trypanosome and the skin and adipose were positive for the DNA of another species. Moreover, the rate of detection of trypanosome DNA was highest for skin adipose and lowest for the blood. CONCLUSIONS: The findings reported here emphasise the complexity of trypanosome infections in a natural setting, and may indicate different tissue tropisms between the different parasite species. The results also highlight the need to include adipose and skin tissues in future diagnostic and treatment strategies.


Asunto(s)
Tejido Adiposo , Enfermedades de las Cabras , Cabras , Piel , Trypanosoma , Tripanosomiasis Africana , Animales , Cabras/parasitología , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/parasitología , Tejido Adiposo/parasitología , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , Trypanosoma/clasificación , Piel/parasitología , Ovinos/parasitología , Enfermedades de las Cabras/parasitología , Bovinos , Reacción en Cadena de la Polimerasa , Enfermedades de las Ovejas/parasitología , ADN Protozoario/genética , Enfermedades de los Bovinos/parasitología
2.
J Cell Sci ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572631

RESUMEN

Transition fibres and distal appendages surround the distal end of mature basal bodies and are essential for ciliogenesis, but only a few proteins have been identified and functionally characterised. Here, through genome-wide analysis, we have identified 30 transition fibre proteins (TFPs) and mapped their arrangement in the flagellated eukaryote Trypanosoma brucei. We discovered TFPs are recruited to the mature basal body pre- and post-basal body duplication with differential expression of TFPs at the assembling new flagellum compared to the existing fixed-length old flagellum of 4 TFPs. RNAi depletion of 17 TFPs revealed 6 were necessary for ciliogenesis and a further 3 were necessary for normal flagellum length. We identified 9 TFPs that had a detectable orthologue in at least one basal body-forming eukaryotic organism outside of the kinetoplastid parasites. Our work has tripled the number of known transition fibre components, demonstrating that transition fibres are complex and dynamic in their composition throughout the cell cycle, which relates to their essential roles in ciliogenesis and length regulation.

3.
J Biol Chem ; 300(3): 105740, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340794

RESUMEN

Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.


Asunto(s)
Citoesqueleto de Actina , Actinas , Leishmania major , Parásitos , Profilinas , Animales , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Secuencia Conservada , Cristalización , Cristalografía por Rayos X , Leishmania major/citología , Leishmania major/metabolismo , Parásitos/citología , Parásitos/metabolismo , Profilinas/química , Profilinas/metabolismo , Unión Proteica , Dominios Proteicos
4.
PLoS Pathog ; 20(2): e1012054, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38416776

RESUMEN

The unicellular parasite Leishmania has a precisely defined cell architecture that is inherited by each subsequent generation, requiring a highly coordinated pattern of duplication and segregation of organelles and cytoskeletal structures. A framework of nuclear division and morphological changes is known from light microscopy, yet this has limited resolution and the intrinsic organisation of organelles within the cell body and their manner of duplication and inheritance is unknown. Using volume electron microscopy approaches, we have produced three-dimensional reconstructions of different promastigote cell cycle stages to give a spatial and quantitative overview of organelle positioning, division and inheritance. The first morphological indications seen in our dataset that a new cell cycle had begun were the assembly of a new flagellum, the duplication of the contractile vacuole and the increase in volume of the nucleus and kinetoplast. We showed that the progression of the cytokinesis furrow created a specific pattern of membrane indentations, while our analysis of sub-pellicular microtubule organisation indicated that there is likely a preferred site of new microtubule insertion. The daughter cells retained these indentations in their cell body for a period post-abscission. By comparing cultured and sand fly derived promastigotes, we found an increase in the number and overall volume of lipid droplets in the promastigotes from the sand fly, reflecting a change in their metabolism to ensure transmissibility to the mammalian host. Our insights into the cell cycle mechanics of Leishmania will support future molecular cell biology analyses of these parasites.


Asunto(s)
Leishmania mexicana , Leishmania , Parásitos , Psychodidae , Animales , Leishmania mexicana/genética , Ciclo Celular , División Celular , Psychodidae/parasitología , Mamíferos
5.
Mol Microbiol ; 121(1): 53-68, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38010644

RESUMEN

Leishmania are flagellated eukaryotic parasites that cause leishmaniasis and are closely related to the other kinetoplastid parasites such as Trypanosoma brucei. In all these parasites there is a cell membrane invagination at the base of the flagellum called the flagellar pocket, which is tightly associated with and sculpted by cytoskeletal structures including the flagellum attachment zone (FAZ). The FAZ is a complex interconnected structure linking the flagellum to the cell body and has critical roles in cell morphogenesis, function and pathogenicity. However, this structure varies dramatically in size and organisation between these different parasites, suggesting changes in protein localisation and function. Here, we screened the localisation and function of the Leishmania orthologues of T. brucei FAZ proteins identified in the genome-wide protein tagging project TrypTag. We identified 27 FAZ proteins and our deletion analysis showed that deletion of two FAZ proteins in the flagellum, FAZ27 and FAZ34 resulted in a reduction in cell body size, and flagellum loss in some cells. Furthermore, after null mutant generation, we observed distinct and reproducible changes to cell shape, demonstrating the ability of the parasite to adapt to morphological perturbations resulting from gene deletion. This process of adaptation has important implications for the study of Leishmania mutants.


Asunto(s)
Leishmania , Leishmaniasis , Trypanosoma brucei brucei , Humanos , Leishmania/genética , Leishmania/metabolismo , Flagelos/metabolismo , Citoesqueleto/metabolismo , Leishmaniasis/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
6.
Cell Rep ; 42(9): 113083, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37669165

RESUMEN

We have generated a high-confidence mitochondrial proteome (MitoTag) of the Trypanosoma brucei procyclic stage containing 1,239 proteins. For 337 of these, a mitochondrial localization had not been described before. We use the TrypTag dataset as a foundation and take advantage of the properties of the fluorescent protein tag that causes aberrant but fortuitous accumulation of tagged matrix and inner membrane proteins near the kinetoplast (mitochondrial DNA). Combined with transmembrane domain predictions, this characteristic allowed categorization of 1,053 proteins into mitochondrial sub-compartments, the detection of unique matrix-localized fucose and methionine synthesis, and the identification of new kinetoplast proteins, which showed kinetoplast-linked pyrimidine synthesis. Moreover, disruption of targeting signals by tagging allowed mapping of the mode of protein targeting to these sub-compartments, identifying a set of C-tail anchored outer mitochondrial membrane proteins and mitochondrial carriers likely employing multiple target peptides. This dataset represents a comprehensive, updated mapping of the mitochondrion.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Mitocondrias/metabolismo , Parásitos/metabolismo , Biología
7.
Elife ; 122023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162189

RESUMEN

Attachment to a substrate to maintain position in a specific ecological niche is a common strategy across biology, especially for eukaryotic parasites. During development in the sand fly vector, the eukaryotic parasite Leishmania adheres to the stomodeal valve, as the specialised haptomonad form. Dissection of haptomonad adhesion is a critical step for understanding the complete life cycle of Leishmania. Nevertheless, haptomonad studies are limited, as this is a technically challenging life cycle form to investigate. Here, we have combined three-dimensional electron microscopy approaches, including serial block face scanning electron microscopy (SBFSEM) and serial tomography to dissect the organisation and architecture of haptomonads in the sand fly. We showed that the attachment plaque contains distinct structural elements. Using time-lapse light microscopy of in vitro haptomonad-like cells, we identified five stages of haptomonad-like cell differentiation, and showed that calcium is necessary for Leishmania adhesion to the surface in vitro. This study provides the structural and regulatory foundations of Leishmania adhesion, which are critical for a holistic understanding of the Leishmania life cycle.


Asunto(s)
Leishmania , Psychodidae , Animales , Microscopía Electrónica
8.
Wellcome Open Res ; 8: 46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251657

RESUMEN

Background: Genome-wide subcellular protein localisation in Trypanosoma brucei, through our TrypTag project, has comprehensively dissected the molecular organisation of this important pathogen. Powerful as this resource is , T. brucei has multiple developmental forms and we previously only analysed the procyclic form. This is an insect life cycle stage, leaving the mammalian bloodstream form unanalysed. The expectation is that between life stages protein localisation would not change dramatically (completely unchanged or shifting to analogous stage-specific structures). However, this has not been specifically tested. Similarly, which organelles tend to contain proteins with stage-specific expression can be predicted from known stage specific adaptations but has not been comprehensively tested. Methods: We used endogenous tagging with mNG to determine the sub-cellular localisation of the majority of proteins encoded by transcripts significantly upregulated in the bloodstream form, and performed comparison to the existing localisation data in procyclic forms. Results: We have confirmed the localisation of known stage-specific proteins and identified the localisation of novel stage-specific proteins. This gave a map of which organelles tend to contain stage specific proteins: the mitochondrion for the procyclic form, and the endoplasmic reticulum, endocytic system and cell surface in the bloodstream form. Conclusions: This represents the first genome-wide map of life cycle stage-specific adaptation of organelle molecular machinery in T. brucei.

9.
Trends Parasitol ; 39(5): 328-331, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36925446

RESUMEN

TrypTag was a 4-year project to tag the N- and C-termini of almost all Trypanosoma brucei proteins with a fluorescent protein and record the subcellular localisation through images and manual annotation. We highlight the new routes to cell biological discovery this transformative resource is enabling for parasitologists and cell biologists.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transporte de Proteínas
10.
Trends Parasitol ; 39(5): 332-344, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36933967

RESUMEN

A key morphological feature of kinetoplastid parasites is the position and length of flagellum attachment to the cell body. This lateral attachment is mediated by the flagellum attachment zone (FAZ), a large complex cytoskeletal structure, which is essential for parasite morphogenesis and pathogenicity. Despite the complexity of the FAZ only two transmembrane proteins, FLA1 and FLA1BP, are known to interact and connect the flagellum to the cell body. Across the different kinetoplastid species, each only has a single FLA/FLABP pair, except in Trypanosoma brucei and Trypanosoma congolense where there has been an expansion of these genes. Here, we focus on the selection pressure behind the evolution of the FLA/FLABP proteins and the likely impact this will have on host-parasite interactions.


Asunto(s)
Flagelos , Trypanosoma brucei brucei , Proteínas de la Membrana/metabolismo , Citoesqueleto , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
11.
Nat Microbiol ; 8(3): 533-547, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804636

RESUMEN

Trypanosoma brucei is a model trypanosomatid, an important group of human, animal and plant unicellular parasites. Understanding their complex cell architecture and life cycle is challenging because, as with most eukaryotic microbes, ~50% of genome-encoded proteins have completely unknown functions. Here, using fluorescence microscopy and cell lines expressing endogenously tagged proteins, we mapped the subcellular localization of 89% of the T. brucei proteome, a resource we call TrypTag. We provide clues to function and define lineage-specific organelle adaptations for parasitism, mapping the ultraconserved cellular architecture of eukaryotes, including the first comprehensive 'cartographic' analysis of the eukaryotic flagellum, which is vital for morphogenesis and pathology. To demonstrate the power of this resource, we identify novel organelle subdomains and changes in molecular composition through the cell cycle. TrypTag is a transformative resource, important for hypothesis generation for both eukaryotic evolutionary molecular cell biology and fundamental parasite cell biology.


Asunto(s)
Parásitos , Trypanosoma brucei brucei , Animales , Humanos , Trypanosoma brucei brucei/fisiología , Parásitos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteoma/análisis , Genoma
12.
Acta Trop ; 237: 106721, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257455

RESUMEN

African Trypanosomiasis is a debilitating disease in both humans and animals that occurs in sub-Saharan Africa and has a severe negative impact on the livelihood of people in the affected areas. The disease is caused by protozoan parasites of the genus Trypanosoma, which is often described simply as blood-borne; however, a number of studies have shown the parasite inhabits many different environments within the host. Control of the disease involves measures that include the use of trypanocidal drugs to which there are growing number of reported cases of resistance. Here, the patterns of trypanosome DNA presence during a diminazene aceturate treatment round on a cohort of cattle in Adidome, Ghana were assessed. A group of 24 cows were selected irrespective of age and sex and the infecting trypanosome species followed for 18 days before and after treatment with diminazene aceturate in the blood and skin of the animals using a diagnostic nested PCR that targeted the alpha-beta tubulin gene array. Persistence of trypanosome DNA was observed over the period and parasite DNA was readily detected in both the skin and blood, with parasite DNA disappearing and reappearing in both across the study. Moreover, there was limited correlation between the parasite DNA detected in the skin and blood. Overall, the data show the patterns of a natural trypanosome infection during drug treatment. In addition, the diagnostic potential of sampling the skin for African trypanosomiasis is highlighted.


Asunto(s)
Tripanocidas , Trypanosoma , Tripanosomiasis Africana , Humanos , Femenino , Bovinos , Animales , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/veterinaria , Granjas , Ghana/epidemiología , Trypanosoma/genética , Diminazeno/farmacología , Diminazeno/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Resistencia a Medicamentos
13.
J Cell Sci ; 135(19)2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36052646

RESUMEN

The compartmentalised eukaryotic cell demands accurate targeting of proteins to the organelles in which they function, whether membrane-bound (like the nucleus) or non-membrane-bound (like the nucleolus). Nucleolar targeting relies on positively charged localisation signals and has received rejuvenated interest since the widespread recognition of liquid-liquid phase separation (LLPS) as a mechanism contributing to nucleolus formation. Here, we exploit a new genome-wide analysis of protein localisation in the early-branching eukaryote Trypanosoma brucei to analyse general nucleolar protein properties. T. brucei nucleolar proteins have similar properties to those in common model eukaryotes, specifically basic amino acids. Using protein truncations and addition of candidate targeting sequences to proteins, we show both homopolymer runs and distributed basic amino acids give nucleolar partition, further aided by a nuclear localisation signal (NLS). These findings are consistent with phase separation models of nucleolar formation and physical protein properties being a major contributing mechanism for eukaryotic nucleolar targeting, conserved from the last eukaryotic common ancestor. Importantly, cytoplasmic ribosome proteins, unlike mitochondrial ribosome proteins, have more basic residues - pointing to adaptation of physicochemical properties to assist segregation.


Asunto(s)
Células Eucariotas , Señales de Localización Nuclear , Secuencia de Aminoácidos , Aminoácidos Básicos/metabolismo , Nucléolo Celular/metabolismo , Eucariontes/metabolismo , Células Eucariotas/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte de Proteínas , Ribosomas/genética , Ribosomas/metabolismo
14.
Mol Microbiol ; 118(5): 510-525, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36056717

RESUMEN

The closely related parasites Trypanosoma brucei, T. congolense, and T. vivax cause neglected tropical diseases collectively known as African Trypanosomiasis. A characteristic feature of bloodstream form T. brucei is the flagellum that is laterally attached to the side of the cell body. During the cell cycle, the new flagellum is formed alongside the old flagellum, with the new flagellum tip embedded within a mobile transmembrane junction called the groove. The molecular composition of the groove is currently unknown, which limits the analysis of this junction and assessment of its conservation in related trypanosomatids. Here, we identified 13 proteins that localize to the flagellar groove through a small-scale tagging screen. Functional analysis of a subset of these proteins by RNAi and gene deletion revealed three proteins, FCP4/TbKin15, FCP7, and FAZ45, that are involved in new flagellum tip attachment to the groove. Despite possessing orthologues of all 13 groove proteins, T. congolense and T. vivax did not assemble a canonical groove around the new flagellum tip according to 3D electron microscopy. This diversity in new flagellum tip attachment points to the rapid evolution of membrane-cytoskeleton structures that can occur without large changes in gene complement and likely reflects the niche specialization of each species.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Trypanosoma/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Flagelos/genética , Flagelos/metabolismo , Citoesqueleto/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
15.
Nat Microbiol ; 7(8): 1280-1290, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879525

RESUMEN

Variant surface glycoprotein (VSG) coats bloodstream form Trypanosoma brucei parasites, and monoallelic VSG expression underpins the antigenic variation necessary for pathogenicity. One of thousands of VSG genes is transcribed by RNA polymerase I in a singular nuclear structure called the expression site body (ESB), but how monoallelic VSG transcription is achieved remains unclear. Using a localization screen of 153 proteins we found one, ESB-specific protein 1 (ESB1), that localized only to the ESB and is expressed only in VSG-expressing life cycle stages. ESB1 associates with DNA near the active VSG promoter and is necessary for VSG expression, with overexpression activating inactive VSG promoters. Mechanistically, ESB1 is necessary for recruitment of a subset of ESB components, including RNA polymerase I, revealing that the ESB has separately assembled subdomains. Because many trypanosomatid parasites have divergent ESB1 orthologues yet do not undergo antigenic variation, ESB1 probably represents an important class of transcription regulators.


Asunto(s)
Trypanosoma brucei brucei , Variación Antigénica/genética , Glicoproteínas de Membrana/metabolismo , ARN Polimerasa I/genética , ARN Polimerasa I/metabolismo , Factores de Transcripción/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
16.
J Cell Biol ; 220(1)2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33165561

RESUMEN

Cilia and flagella are required for cell motility and sensing the external environment and can vary in both length and stability. Stable flagella maintain their length without shortening and lengthening and are proposed to "lock" at the end of growth, but molecular mechanisms for this lock are unknown. We show that CEP164C contributes to the locking mechanism at the base of the flagellum in Trypanosoma brucei. CEP164C localizes to mature basal bodies of fully assembled old flagella, but not to growing new flagella, and basal bodies only acquire CEP164C in the third cell cycle after initial assembly. Depletion of CEP164C leads to dysregulation of flagellum growth, with continued growth of the old flagellum, consistent with defects in a flagellum locking mechanism. Inhibiting cytokinesis results in CEP164C acquisition on the new flagellum once it reaches the old flagellum length. These results provide the first insight into the molecular mechanisms regulating flagella growth in cells that must maintain existing flagella while growing new flagella.


Asunto(s)
Flagelos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Cuerpos Basales/metabolismo , Ciclo Celular , Línea Celular , Flagelos/ultraestructura , Técnicas de Silenciamiento del Gen , Interferencia de ARN , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/ultraestructura
17.
Trends Parasitol ; 37(4): 317-329, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33308952

RESUMEN

The trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are flagellate eukaryotic parasites that cause serious diseases in humans and animals. These parasites have cell shapes defined by a subpellicular microtubule array and all share a number of important cellular features. One of these is the flagellar pocket, an invagination of the cell membrane around the proximal end of the flagellum, which is an important organelle for endo/exocytosis. The flagellar pocket plays a crucial role in parasite pathogenicity and persistence in the host and has a great influence on cell morphogenesis and cell division. Here, we compare the morphology and function of the flagellar pockets between different trypanosomatids, with their life cycles and ecological niches likely influencing these differences.


Asunto(s)
Trypanosomatina , Flagelos/ultraestructura , Interacciones Huésped-Parásitos , Relación Estructura-Actividad , Trypanosomatina/patogenicidad , Trypanosomatina/fisiología , Trypanosomatina/ultraestructura
18.
PLoS Pathog ; 16(10): e1008494, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33091070

RESUMEN

The shape and form of the flagellated eukaryotic parasite Leishmania is sculpted to its ecological niches and needs to be transmitted to each generation with great fidelity. The shape of the Leishmania cell is defined by the sub-pellicular microtubule array and the positioning of the nucleus, kinetoplast and the flagellum within this array. The flagellum emerges from the anterior end of the cell body through an invagination of the cell body membrane called the flagellar pocket. Within the flagellar pocket the flagellum is laterally attached to the side of the flagellar pocket by a cytoskeletal structure called the flagellum attachment zone (FAZ). During the cell cycle single copy organelles duplicate with a new flagellum assembling alongside the old flagellum. These are then segregated between the two daughter cells by cytokinesis, which initiates at the anterior cell tip. Here, we have investigated the role of the FAZ in the morphogenesis of the anterior cell tip. We have deleted the FAZ filament protein, FAZ2 and investigated its function using light and electron microscopy and infection studies. The loss of FAZ2 caused a disruption to the membrane organisation at the anterior cell tip, resulting in cells that were connected to each other by a membranous bridge structure between their flagella. Moreover, the FAZ2 null mutant was unable to develop and proliferate in sand flies and had a reduced parasite burden in mice. Our study provides a deeper understanding of membrane-cytoskeletal interactions that define the shape and form of an individual cell and the remodelling of that form during cell division.


Asunto(s)
Citoesqueleto/metabolismo , Flagelos/fisiología , Interacciones Huésped-Parásitos , Leishmania/crecimiento & desarrollo , Leishmaniasis/parasitología , Morfogénesis , Psychodidae/parasitología , Animales , Membrana Celular , Citocinesis , Femenino , Flagelos/ultraestructura , Leishmania/ultraestructura , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
19.
Eur J Protistol ; 76: 125722, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32679518

RESUMEN

Cilia and flagella play an important role in motility, sensory perception, and the life cycles of eukaryotes, from protists to humans. However, much critical information concerning cilia structure and function remains elusive. The vast majority of ciliary and flagellar proteins analyzed so far are evolutionarily conserved and play a similar role in protozoa and vertebrates. This makes protozoa attractive biological models for studying cilia biology. Research conducted on ciliated or flagellated protists may improve our general understanding of cilia protein composition, of cilia beating, and can shed light on the molecular basis of the human disorders caused by motile cilia dysfunction. The Symposium "From genomics to flagellar and ciliary structures and cytoskeleton dynamics" at ECOP2019 in Rome presented the latest discoveries about cilia biogenesis and the molecular mechanisms of ciliary and flagellum motility based on studies in Paramecium, Tetrahymena, and Trypanosoma. Here, we review the most relevant aspects presented and discussed during the symposium and add our perspectives for future research.


Asunto(s)
Citoesqueleto/ultraestructura , Genoma de Protozoos/genética , Paramecium , Tetrahymena , Trypanosoma , Cilios/genética , Congresos como Asunto , Flagelos/genética , Paramecium/genética , Paramecium/ultraestructura , Tetrahymena/genética , Tetrahymena/ultraestructura , Trypanosoma/genética , Trypanosoma/ultraestructura
20.
J Cell Sci ; 133(10)2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32295845

RESUMEN

Eukaryotic flagella are complex microtubule-based organelles that, in many organisms, contain extra-axonemal structures, such as the outer dense fibres of mammalian sperm and the paraflagellar rod (PFR) of trypanosomes. Flagellum assembly is a complex process occurring across three main compartments, the cytoplasm, the transition zone and the flagellum itself. The process begins with the translation of protein components followed by their sorting and trafficking into the flagellum, transport to the assembly site and incorporation. Flagella are formed from over 500 proteins and the principles governing assembly of the axonemal components are relatively clear. However, the coordination and location of assembly of extra-axonemal structures are less clear. We have discovered two cytoplasmic proteins in Trypanosoma brucei that are required for PFR formation, PFR assembly factors 1 and 2 (PFR-AF1 and PFR-AF2, respectively). Deletion of either PFR-AF1 or PFR-AF2 dramatically disrupted PFR formation and caused a reduction in the amount of major PFR proteins. The existence of cytoplasmic factors required for PFR formation aligns with the concept that processes facilitating axoneme assembly occur across multiple compartments, and this is likely a common theme for extra-axonemal structure assembly.


Asunto(s)
Axonema , Trypanosoma brucei brucei , Animales , Cilios , Flagelos , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA