Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroimage Clin ; 39: 103495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37651844

RESUMEN

BACKGROUND: This is an open-label, single-arm, single-center pilot study using 7-Tesla in vivo proton magnetic resonance spectroscopy (1H MRS) to measure brain cortical glutathione concentration at baseline before and during the use of oral fumarates as a disease-modifying therapy for multiple sclerosis. The primary endpoint of this research was the change in prefrontal cortex glutathione concentration relative to a therapy-naïve baseline after one year of oral fumarate therapy. METHODS: Brain glutathione concentrations were examined by 1H MRS in single prefrontal and occipital cortex cubic voxels (2.5 × 2.5 × 2.5 cm3) before and during initiation of oral fumarate therapy (120 mg b.i.d. for 7 days and 240 mg b.i.d. thereafter). Additional measurements of related metabolites glutamate, glutamine, myoinositol, total N-acetyl aspartate, and total choline were also acquired in voxels centered on the same regions. Seven relapsing-remitting multiple sclerosis patients (4 f / 3 m, age range 28-50 years, mean age 40 years) naïve to fumarate therapy were scanned at pre-therapy baseline and after 1, 3, 6 and 12 months of therapy. A group of 8 healthy volunteers (4 f / 4 m, age range 33-48 years, mean age 41 years) was also scanned at baseline and Month 6 to characterize 1H-MRS measurement reproducibility over a comparable time frame. RESULTS: In the multiple sclerosis cohort, general linear models demonstrated a significant positive linear relationship between prefrontal glutathione and time either linearly across all time points (+0.05 ± 0.02 mM/month, t(27) = 2.6, p = 0.02) or specifically for factor variable Month 12 (+0.6 ± 0.3 mM/12 months, t(24) = 2.2, p = 0.04) relative to baseline. No such effects of time on glutathione concentration were demonstrated in the occipital cortex or in the healthy volunteer group. Changes in occipital total choline were further observed in the multiple sclerosis cohort as well as prefrontal total choline and occipital glutamine and myoinositol in the control cohort throughout the study duration. CONCLUSIONS: While the open-label single-arm pilot study design and abbreviated control series cannot support firm conclusions about the influence of oral fumarate therapy independent of test-retest factors or normal biological variation in a state of either health or disease, these results do justify further investigation at a larger scale into the potential relationship between prefrontal cortex glutathione increases and oral fumarate therapy in relapsing-remitting multiple sclerosis.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Preescolar , Humanos , Colina , Fumaratos , Glutamina , Glutatión , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Proyectos Piloto , Espectroscopía de Protones por Resonancia Magnética , Reproducibilidad de los Resultados
2.
Chronic Stress (Thousand Oaks) ; 6: 24705470221128004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237981

RESUMEN

A stressor-related disorder wherein traumatic experience precipitates protracted disruptions to mood and cognition, post-traumatic stress disorder (PTSD) is associated with wide-ranging abnormalities across the body. While various methods have investigated these deviations, only proton magnetic resonance spectroscopy (1H MRS) enables noninvasive measurement of small-molecule metabolites in the living human. 1H MRS has correspondingly been employed to test hypotheses about the composition and function of multiple brain regions putatively involved in PTSD. Here we systematically review methodological considerations and reported findings, both positive and negative, of the current 1H-MRS literature in PTSD (N = 32 studies) to communicate the brain regional metabolite alterations heretofore observed, providing random-effects model meta-analyses for those most extensively studied. Our review suggests significant PTSD-associated decreases in N-acetyl aspartate in bilateral hippocampus and anterior cingulate cortex with less evident effect in other metabolites and regions. Model heterogeneities diverged widely by analysis (I2 < 0.01% to 90.1%) and suggested regional dependence on quantification reference (creatine or otherwise). While observed variabilities in methods and reported findings suggest that 1H-MRS explorations of PTSD could benefit from methodological standardization, informing this standardization by quantitative assessment of the existing literature is currently hampered by its small size and limited scope.

3.
Sci Rep ; 12(1): 13888, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974117

RESUMEN

Multiple sclerosis (MS) is a heterogeneous autoimmune disease for which diagnosis continues to rely on subjective clinical judgment over a battery of tests. Proton magnetic resonance spectroscopy (1H MRS) enables the noninvasive in vivo detection of multiple small-molecule metabolites and is therefore in principle a promising means of gathering information sufficient for multiple sclerosis diagnosis and subtype classification. Here we show that supervised classification using 1H-MRS-visible normal-appearing frontal cortex small-molecule metabolites alone can indeed differentiate individuals with progressive MS from control (held-out validation sensitivity 79% and specificity 68%), as well as between relapsing and progressive MS phenotypes (held-out validation sensitivity 84% and specificity 74%). Post hoc assessment demonstrated the disproportionate contributions of glutamate and glutamine to identifying MS status and phenotype, respectively. Our finding establishes 1H MRS as a viable means of characterizing progressive multiple sclerosis disease status and paves the way for continued refinement of this method as an auxiliary or mainstay of multiple sclerosis diagnostics.


Asunto(s)
Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Lóbulo Frontal/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple Crónica Progresiva/metabolismo , Fenotipo
4.
NMR Biomed ; 34(11): e4590, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34318959

RESUMEN

The pathophysiology of progressive multiple sclerosis remains elusive, significantly limiting available disease-modifying therapies. Proton MRS (1 H-MRS) enables in vivo measurement of small molecules implicated in multiple sclerosis, but its application to key metabolites glutamate, γ-aminobutyric acid (GABA), and glutathione has been sparse. We employed, at 7 T, a previously validated 1 H-MRS protocol to measure glutamate, GABA, and glutathione, as well as glutamine, N-acetyl aspartate, choline, and myoinositol, in the frontal cortex of individuals with relapsing-remitting (N = 26) or progressive (N = 21) multiple sclerosis or healthy control adults (N = 25) in a cross-sectional analysis. Only individuals with progressive multiple sclerosis demonstrated reduced glutamate (F2,65 = 3.424, p = 0.04; 12.40 ± 0.62 mM versus control 13.17 ± 0.95 mM, p = 0.03) but not glutamine (F2,65 = 0.352, p = 0.7; 4.71 ± 0.35 mM versus control 4.84 ± 0.42 mM), reduced GABA (F2,65 = 3.89, p = 0.03; 1.29 ± 0.23 mM versus control 1.47 ± 0.25 mM, p = 0.05), and possibly reduced glutathione (F2,65 = 0.352, p = 0.056; 2.23 ± 0.46 mM versus control 2.51 ± 0.48 mM, p < 0.1). As a group, multiple sclerosis patients demonstrated significant negative correlations between disease duration and glutamate or GABA (ρ = -0.4, p = 0.02) but not glutamine or glutathione. Alone, only relapsing-remitting multiple sclerosis patients exhibited a significant negative correlation between disease duration and GABA (ρ = -0.5, p = 0.03). Taken together, these results indicate that frontal cortex metabolism is differentially disturbed in progressive and relapsing-remitting multiple sclerosis.


Asunto(s)
Lóbulo Frontal/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , Adulto , Anciano , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Femenino , Glutamina/metabolismo , Glutatión/metabolismo , Sustancia Gris/metabolismo , Humanos , Inositol/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Metaboloma , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/diagnóstico , Neurotransmisores/metabolismo , Adulto Joven , Ácido gamma-Aminobutírico/metabolismo
5.
NMR Biomed ; 34(8): e4538, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33956374

RESUMEN

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Asunto(s)
Algoritmos , Hipocampo/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Adulto , Simulación por Computador , Femenino , Humanos , Masculino , Metaboloma , Factores de Tiempo
6.
Sci Rep ; 11(1): 2094, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483543

RESUMEN

In vivo magnetic resonance spectroscopy (MRS) is a powerful tool for biomedical research and clinical diagnostics, allowing for non-invasive measurement and analysis of small molecules from living tissues. However, currently available MRS processing and analytical software tools are limited in their potential for in-depth quality management, access to details of the processing stream, and user friendliness. Moreover, available MRS software focuses on selected aspects of MRS such as simulation, signal processing or analysis, necessitating the use of multiple packages and interfacing among them for biomedical applications. The freeware INSPECTOR comprises enhanced MRS data processing, simulation and analytical capabilities in a one-stop-shop solution for a wide range of biomedical research and diagnostic applications. Extensive data handling, quality management and visualization options are built in, enabling the assessment of every step of the processing chain with maximum transparency. The parameters of the processing can be flexibly chosen and tailored for the specific research problem, and extended confidence information is provided with the analysis. The INSPECTOR software stands out in its user-friendly workflow and potential for automation. In addition to convenience, the functionalities of INSPECTOR ensure rigorous and consistent data processing throughout multi-experiment and multi-center studies.

7.
NMR Biomed ; 34(5): e4129, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-31313877

RESUMEN

The aim of this study was to develop a novel software platform for the simulation of magnetic resonance spin systems, capable of simulating a large number of spatial points (1283 ) for large in vivo spin systems (up to seven coupled spins) in a time frame of the order of a few minutes. The quantum mechanical density-matrix formalism is applied, a coherence pathway filter is utilized for handling unwanted coherence pathways, and the 1D projection method, which provides a substantial reduction in computation time for a large number of spatial points, is extended to include sequences of an arbitrary number of RF pulses. The novel software package, written in MATLAB, computes a basis set of 23 different metabolites (including the two anomers of glucose, seven coupled spins) with 1283 spatial points in 26 min for a three-pulse experiment on a personal desktop computer. The simulated spectra are experimentally verified with data from both phantom and in vivo MEGA-sLASER experiments. Recommendations are provided regarding the various assumptions made when computing a basis set for in vivo MRS with respect to the number of spatial points simulated and the consideration of relaxation.


Asunto(s)
Simulación por Computador , Espectroscopía de Resonancia Magnética , Programas Informáticos , Adulto , Algoritmos , Creatinina/análisis , Humanos , Ácido Láctico/análisis , Reproducibilidad de los Resultados , Factores de Tiempo , Ácido gamma-Aminobutírico/análisis
8.
J Magn Reson Imaging ; 51(4): 1008-1029, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273880

RESUMEN

This article reviews the most commonly used modern sequences designed to confront the two major challenges of in vivo magnetic resonance spectroscopy (MRS): spatial localization and metabolic specificity. The purpose of this review article is to provide a deeper and clearer understanding of the underlying mechanisms by which all modern MRS sequences operate. A descriptive explanation, consistent pulse sequence diagram, and theoretical concepts of the measured signal are given for five spatial localization sequences and three modules designed to increase metabolic specificity. Cross-sequence comparisons, including potential modifications for estimating quantitative measures like spin-lattice relaxation time T1 , spin-spin relaxation time T2 , and diffusion coefficients are briefly discussed. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:1008-1029.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética
9.
Front Neurol ; 10: 1173, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803127

RESUMEN

Proton magnetic resonance spectroscopy (1H-MRS) offers a growing variety of methods for querying potential diagnostic biomarkers of multiple sclerosis in living central nervous system tissue. For the past three decades, 1H-MRS has enabled the acquisition of a rich dataset suggestive of numerous metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord of individuals with multiple sclerosis, but this body of information is not free of seeming internal contradiction. The use of 1H-MRS signals as diagnostic biomarkers depends on reproducible and generalizable sensitivity and specificity to disease state that can be confounded by a multitude of influences, including experiment group classification and demographics; acquisition sequence; spectral quality and quantifiability; the contribution of macromolecules and lipids to the spectroscopic baseline; spectral quantification pipeline; voxel tissue and lesion composition; T 1 and T 2 relaxation; B1 field characteristics; and other features of study design, spectral acquisition and processing, and metabolite quantification about which the experimenter may possess imperfect or incomplete information. The direct comparison of 1H-MRS data from individuals with and without multiple sclerosis poses a special challenge in this regard, as several lines of evidence suggest that experimental cohorts may differ significantly in some of these parameters. We review the existing findings of in vivo 1H-MRS on central nervous system metabolic abnormalities in multiple sclerosis and its subtypes within the context of study design, spectral acquisition and processing, and metabolite quantification and offer an outlook on technical considerations, including the growing use of machine learning, by future investigations into diagnostic biomarkers of multiple sclerosis measurable by 1H-MRS.

10.
Exp Neurobiol ; 27(3): 200-209, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30022871

RESUMEN

Radix Polygalae (RP) has been used to relieve psychological stress in traditional oriental medicine. Recently, cell protective, antiamnestic and antidepressant-like effects were disclosed but the possible application of RP to post-traumatic stress disorder, in which exaggerated fear memory persists, has not yet been explored. For this purpose, the effects of RP on fear behavior was examined in a mouse model of single prolonged stress and conditioned fear (SPS-CF), previously shown to mimic key symptoms of post-traumatic stress disorder. Male mice received daily oral dose of RP extract or vehicle during the SPS-CF procedure. Then fear-related memory (cohort 1, n=25), non-fear-related memory (cohort 2, n=38) and concentration-dependent effects of RP on fear memory (cohort 3, n=41) were measured in 3 separate cohort of animals. Also working memory and anxiety-like behaviors were measured in cohort 1. RP-treated SPS-CF mice exhibited attenuated contextual but not cued freezing and no impairments in the working memory and spatial reference memory performances relative to vehicle-treated SPS-CF controls. RP-treated SPS-CF and naive mice also demonstrated no difference in anxiety-like behavior levels relative to vehicle-treated SPS-CF and naive controls, respectively. In the hippocampus of SPS-CF mice, expression of BAG1, which regulates the activity of GR, was decreased, whereas RP increased expression of BAG1 in naïve and SPS-CF mice. These results suggest that RP exerts some symptomatic relief in a mouse with exaggerated fear response. RP and its molecular components may thus constitute valuable research targets in the development of novel therapeutics for stress-related psychological disorders.

11.
J Magn Reson ; 290: 1-11, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29524756

RESUMEN

Glutathione (GSH) is an endogenous antioxidant implicated in numerous biological processes, including those associated with multiple sclerosis, aging, and cancer. Spectral editing techniques have greatly facilitated the acquisition of glutathione signal in living humans via proton magnetic resonance spectroscopy, but signal quantification at 7 Tesla is still hampered by uncertainty about the glutathione transverse decay rate T2 relative to those of commonly employed quantitative references like N-acetyl aspartate (NAA), total creatine, or water. While the T2 of uncoupled singlets can be derived in a straightforward manner from exponential signal decay as a function of echo time, similar estimation of signal decay in GSH is complicated by a spin system that involves both weak and strong J-couplings as well as resonances that overlap those of several other metabolites and macromolecules. Here, we extend a previously published method for quantifying the T2 of GABA, a weakly coupled system, to quantify T2 of the strongly coupled spin system glutathione in the human brain at 7 Tesla. Using full density matrix simulation of glutathione signal behavior, we selected an array of eight optimized echo times between 72 and 322 ms for glutathione signal acquisition by J-difference editing (JDE). We varied the selectivity and symmetry parameters of the inversion pulses used for echo time extension to further optimize the intensity, simplicity, and distinctiveness of glutathione signals at chosen echo times. Pairs of selective adiabatic inversion pulses replaced nonselective pulses at three extended echo times, and symmetry of the time intervals between the two extension pulses was adjusted at one extended echo time to compensate for J-modulation, thereby resulting in appreciable signal-to-noise ratio and quantifiable signal shapes at all measured points. Glutathione signal across all echo times fit smooth monoexponential curves over ten scans of occipital cortex voxels in nine subjects. The T2 of glutathione was calculated to be 145.0 ±â€¯20.1 ms (mean ±â€¯standard deviation); this result was robust within one standard deviation to changes in metabolite fitting baseline corrections and removal of individual data points on the signal decay curve. The measured T2 of NAA (222.1 ±â€¯24.7 ms) and total creatine (153.0 ±â€¯19.9 ms) were both higher than that calculated for GSH. Apparent glutathione concentration quantified relative to both reference metabolites increased by up to 32% and 6%, respectively, upon correction with calculated T2 values, emphasizing the importance of considering T2 relaxation differences in the spectroscopic measurement of these metabolites, especially at longer echo times.


Asunto(s)
Química Encefálica , Glutatión/química , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Creatina/metabolismo , Campos Electromagnéticos , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Occipital/química , Lóbulo Occipital/metabolismo , Fantasmas de Imagen , Relación Señal-Ruido , Agua/metabolismo
12.
J Nat Med ; 71(1): 181-189, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27830412

RESUMEN

How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.


Asunto(s)
Flavonas/uso terapéutico , Trastornos de la Memoria/tratamiento farmacológico , Memoria a Corto Plazo/efectos de los fármacos , Animales , Emociones , Flavonas/administración & dosificación , Masculino , Ratones
13.
J Neurosci Res ; 95(3): 885-896, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27465511

RESUMEN

Ultrasound is a promising neural stimulation modality, but an incomplete understanding of its range and mechanism of effect limits its therapeutic application. We investigated the modulation of spontaneous hippocampal spike activity by ultrasound at a lower acoustic intensity and longer time scale than has been previously attempted, hypothesizing that spiking would change conditionally upon the availability of glutamate receptors. Using a 60-channel multielectrode array (MEA), we measured spontaneous spiking across organotypic rat hippocampal slice cultures (N = 28) for 3 min each before, during, and after stimulation with low-intensity unfocused pulsed or sham ultrasound (spatial-peak pulse average intensity 780 µW/cm2 ) preperfused with artificial cerebrospinal fluid, 300 µM kynurenic acid (KA), or 0.5 µM tetrodotoxin (TTX) at 3 ml/min. Spike rates were normalized and compared across stimulation type and period, subregion, threshold level, and/or perfusion condition using repeated-measures ANOVA and generalized linear mixed models. Normalized 3-min spike counts for large but not midsized, small, or total spikes increased after but not during ultrasound relative to sham stimulation. This result was recapitulated in subregions CA1 and dentate gyrus and replicated in a separate experiment for all spike size groups in slices pretreated with aCSF but not KA or TTX. Increases in normalized 18-sec total, midsized, and large spike counts peaked predominantly 1.5 min following ultrasound stimulation. Our low-intensity ultrasound setup exerted delayed glutamate receptor-dependent, amplitude- and possibly region-specific influences on spontaneous spike rates across the hippocampus, expanding the range of known parameters at which ultrasound may be used for neural activity modulation. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/citología , Neuronas/fisiología , Ultrasonido/métodos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Relación Dosis-Respuesta en la Radiación , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Microelectrodos , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Receptores de Glutamato/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Temperatura , Tetrodotoxina/farmacología , Factores de Tiempo
14.
J Neurosci Methods ; 264: 1-10, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26880160

RESUMEN

BACKGROUND: Multielectrode arrays (MEAs) have been used to understand electrophysiological network dynamics by recording real-time activity in groups of cells. The extent to which the collection of such data enables hypothesis testing on the level of circuits and networks depends largely on the sophistication of the analyses applied. NEW METHOD: We studied the systemic temporal variations of endogenous signaling within an organotypic hippocampal network following theta-burst stimulation (TBS) to the Schaffer collateral-commissural pathways. The recovered current source density (CSD) information from the raw grid of extracellular potentials by using a Gaussian interpolation method increases spatial resolution and avoids border artifacts by numerical differentials. RESULTS: We compared total sink and source currents in DG, CA3, and CA1; calculated accumulated correlation coefficients to compare pre- with post-stimulation CSD dynamics in each region; and reconstructed functional connectivity maps for regional cross-correlations with respect to temporal CSD variations. The functional connectivity maps for potential correlations pre- and post-TBS were compared to investigate the neural network as a whole, revealing differences post-TBS. COMPARISON WITH EXISTING METHOD(S): Previous MEA work on plasticity in hippocampal evoked potentials has focused on synchronicity across the hippocampus within isolated subregions. Such analyses ignore the complex relationships among diverse components of the hippocampal circuitry, thus failing to capture network-level behaviors integral to understanding hippocampal function. CONCLUSIONS: The proposed method of recovering current source density to examine whole-hippocampal function is sensitive to experimental manipulation and is worth further examination in the context of network-level analyses of neural signaling.


Asunto(s)
Interpretación Estadística de Datos , Fenómenos Electrofisiológicos , Potenciales Evocados/fisiología , Hipocampo/fisiología , Red Nerviosa/fisiología , Estimulación Magnética Transcraneal/métodos , Animales , Microelectrodos , Ratas , Ratas Sprague-Dawley
15.
Neurorehabil Neural Repair ; 25(7): 680-4, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21478497

RESUMEN

BACKGROUND: After amputation, the sensorimotor cortex reorganizes, and these alterations might influence motor functions of the remaining extremities. OBJECTIVE: The authors examined how amputation of the dominant or nondominant upper or lower extremity alters deftness in the intact limbs. METHODS: The participants were 32 unilateral upper- or lower-extremity amputees and 6 controls. Upper-extremity deftness was tested by coin rotation (finger deftness) and pegboard (arm, hand, and finger deftness) tasks. RESULTS: Following right-upper- or right-lower-extremity amputation, the left hand's finger movements were defter than the left-hand fingers of controls. In contrast, with left-upper- or left-lower-extremity amputation, the right hand's finger performance was the same as that of the controls. CONCLUSIONS: Although this improvement might be related to increased use (practice), the finding that right-lower-extremity amputation also improved the left hand's finger deftness suggests an alternative mechanism. Perhaps in right-handed persons the left motor cortex inhibits the right side of the body more than the right motor cortex inhibits the left side, and the physiological changes induced by right-sided amputation reduced this inhibition.


Asunto(s)
Amputación Quirúrgica , Dedos/fisiología , Extremidad Inferior/fisiología , Destreza Motora/fisiología , Adulto , Análisis de Varianza , Lateralidad Funcional/fisiología , Mano/fisiología , Humanos , Masculino , Corteza Somatosensorial/fisiología , Extremidad Superior/fisiología
16.
Med Hypotheses ; 73(4): 555-8, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19556069

RESUMEN

Despite the amount of research that has been conducted on phantom limb pain (PLP), the etiology of the condition remains unknown, and treatment options are limited. After an individual loses a limb, the brain continues to detect the presence of the missing limb even though it is no longer attached to the body, likely through proprioceptive signals. The majority of patients with amputations either report the feeling of volitional control over their phantom or a phantom limb that is frozen in a specific position. Many patients also experience PLP. Here we propose a new theory, termed "proprioceptive memory," which may explain some of the unique experiences amputees encounter. We also suggest that memories of the limb's position prior to amputation remain embedded within an individual's subconscious, and pain memories that may be associated with each limb position contribute not only to PLP, but to the experience of a fixed or frozen limb. We suspect that there are memory networks for pain--and other sensations, either positive or negative--that are associated with each limb position, and propose that these memories evolved to protect our bodies from repeated injury. A discussion of mirror therapy as a treatment option for PLP is also provided, as well as an explanation for the efficacy of mirror therapy. The paper offers a unique insight into how and why amputees experience these unusual phenomena.


Asunto(s)
Memoria , Modelos Neurológicos , Dolor/fisiopatología , Miembro Fantasma/fisiopatología , Propiocepción , Inconsciente en Psicología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...