Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Pharm Res ; 41(5): 921-935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684562

RESUMEN

PURPOSE: This study examined the effects of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) on folliculogenesis and mitochondrial dynamics (fission and fusion mechanisms) in ovaries of middle-aged female rats. METHODS: Experimental groups were young, middle-aged (control), middle-aged + NMN and middle-aged + NR. NMN was administered at a concentration of 500 mg/kg intraperitoneally but NR at a concentration of 200 mg/kg by gavage. Follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels were analyzed by ELISA. Hematoxylin-eosin staining sections were used for histopathological examination and follicles-counting. Expression levels of mitochondrial fission (Drp1, Mff and Fis1) and fusion (Mfn1, Mfn2, Opa1, Fam73a and Fam73b) genes as well as Sirt1 gene were analyzed by RT-PCR. Expression levels of fission-related proteins (DRP1, MFF, FIS1 and SIRT1) were analyzed by Western Blot. RESULTS: Higher ovarian index, more corpus luteum and antral follicles were detected in NMN and NR groups compared to the control. NMN or NR could rebalance LH/FSH ratio. The control group was determined to possess higher expression levels of fission genes and lower expression levels of fusion genes when compared the young group. In comparison with the control group, both NMN and NR group were found to exhibit less mitochondrial fission but more mitochondrial fussion. Higher gene and protein levels for Sirt1 were measured in NMN and NR groups compared to the control group. CONCLUSION: This study reveals that NMN alone or NR alone can rebalance mitochondrial dynamics by decreasing excessive fission in middle-aged rat ovaries, thus alleviating mitochondrial stress and correcting aging-induced folliculogenesis abnormalities.


Asunto(s)
Envejecimiento , Dinámicas Mitocondriales , Niacinamida , Mononucleótido de Nicotinamida , Ovario , Compuestos de Piridinio , Animales , Femenino , Dinámicas Mitocondriales/efectos de los fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacología , Ovario/efectos de los fármacos , Ovario/metabolismo , Mononucleótido de Nicotinamida/farmacología , Mononucleótido de Nicotinamida/metabolismo , Ratas , Compuestos de Piridinio/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/genética , Hormona Luteinizante/metabolismo , Hormona Luteinizante/sangre , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Folículo Ovárico/efectos de los fármacos , Folículo Ovárico/metabolismo , Ratas Sprague-Dawley , Hormona Folículo Estimulante/metabolismo , Dinaminas
3.
Crit Rev Food Sci Nutr ; : 1-24, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38156661

RESUMEN

In humans, exogenous antioxidants aid the endogenous antioxidant system to detoxify excess ROS generated during oxidative stress, thereby protecting the body against various diseases and stressful conditions. The majority of natural antioxidants available on the consumer market are plant-based; however, fungi are being recognized as alternative sources of various natural antioxidants such as polysaccharides, pigments, peptides, sterols, phenolics, alkaloids, and flavonoids. In addition, some exogenous antioxidants are exclusively found in fungi. Fungi-derived antioxidants exhibit scavenging activities against DPPH, ABTS, hydroxyl, superoxide, hydrogen peroxide, and nitric oxide radicals in vitro. Furthermore, in vivo models, application of fungal-derived antioxidants increase the level of various antioxidant enzymes, such as catalases, superoxide dismutases, and glutathione peroxidases, and reduce the level of malondialdehyde. Therefore, fungi-derived antioxidants have potential to be used in the food, cosmetic, and pharmaceutical industries. This review summarizes the antioxidant potential of different fungi (mushrooms, yeasts, and molds)-derived natural compounds such as polysaccharides, pigments, peptides, ergothioneine, ergosterol, phenolics, alkaloids, etc.

4.
3 Biotech ; 13(1): 31, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36606139

RESUMEN

Peptones are one of the most expensive components of microbial culture media. The present study was conducted to test the usability of low-cost sheep wool peptone (SWP) as an organic nitrogen source in the production of six industrially important enzymes (lipase, amylase, tannase, pectinase, cellulase and invertase). SWP was prepared by alkaline hydrolysis and acid neutralization. Bacillus licheniformis and Aspergillus niger were selected as test microorganisms for enzyme production. To evaluate the efficacy of SWP in enzyme production, it was compared with commercial tryptone peptone (TP) in the shaking flask cultures of the test microorganisms. The optimum concentration of both SWP and TP was determined to be 8 g/L for the production of B. licheniformis-derived enzymes, but 6 g/L for the production of A. niger-derived enzymes. It was determined that SWP was superior to TP in the production of four enzymes (lipase, amylase, tannase and pectinase) of both B. licheniformis and A. niger. This is the first study about the usage of sheep wool protein hydrolysate (SWP) as an organic nitrogen source or a peptone in fermentative production of microbial enzymes.

5.
Int J Biol Macromol ; 183: 1191-1199, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33989684

RESUMEN

In this study, chitin extraction from shrimp shell powder (SSP) using locally isolated Paenibacillus jamilae BAT1 (GenBank: MN176658), the preparation of chitosan from the extracted chitin, and the characterization and biological activity (antimicrobial and antioxidant) of the prepared chitosan (PC) were investigated. It was determined that P. jamilae BAT1 did not have chitinase activity but showed high protease activity and protein removal potential. Optimum pH, shell concentration and incubation time for deproteinization were determined as 7.0, 60 g/L and 4 days, respectively. Addition of KH2PO4 or MgSO4 did not affect chitin extraction and deproteinization yield. The maximum yields of deproteinization, demineralization and chitin extraction yields were 87.67, 41.95 and 24.5%, respectively. The viscosity-average molecular weight of PC was determined as 1.41 × 105 g/mol. The deacetylation degree of PC (86%) was found to be higher that of commercial chitosan (CC) (78%). DPPH scavenging activity of PC (IC50 0.59 mg/mL) was higher than that of CC (IC50 3.72 mg/mL). PC was found to have higher antimicrobial activity against the bacteria E. coli and S. aureus and the yeast C. albicans when compared to CC. This is the first study on the use of the bacterium P. jamilae in biological chitin extraction.


Asunto(s)
Exoesqueleto/química , Antiinfecciosos/aislamiento & purificación , Quitosano/aislamiento & purificación , Paenibacillus/fisiología , Penaeidae/microbiología , Exoesqueleto/microbiología , Animales , Antiinfecciosos/farmacología , Proteínas Bacterianas/metabolismo , Candida albicans/efectos de los fármacos , Quitinasas/metabolismo , Quitosano/farmacología , Escherichia coli/efectos de los fármacos , Fermentación , Pruebas de Sensibilidad Microbiana , Peso Molecular , Paenibacillus/clasificación , Paenibacillus/aislamiento & purificación , Penaeidae/química , Péptido Hidrolasas/metabolismo , Staphylococcus aureus/efectos de los fármacos
6.
Arch Microbiol ; 203(5): 2101-2118, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33604750

RESUMEN

Exopolysaccharides (EPS/EPSs) possess several various applications in the food and pharmaceutical industries. This study was performed to investigate the biological (antibiofilm and antitumor), rheological (temperature, shear rate, and density) and chemical (solubility, carbohydrate and protein content, composition, molecular weight, functional group analysis, thermal analysis, X-ray diffraction pattern and scanning electron microscopy) properties of the EPS, which was purified from the locally isolated thermophilic bacterium Anoxybacillus pushchinoensis G11 (MN720646). EPS was found to have antibiofilm and antitumor [lung (A-549) and colon (Caco-2 and HT-29) cancer] activities. The viscosity of EPS showing Newtonian flow was temperature dependent. As chemical properties, the EPS was found to be a heteropolysaccharide containing arabinose (57%), fructose (26%), glucose (12%), and galactose (5%). EPS contained 93% carbohydrates and 1.08% protein. The molecular weight of EPS was determined as 75.5 kDa. The FTIR analysis confirmed the presence of sulfate ester (band at 1217 cm-1), an indication of the antitumor effect. The EPS was semi-crystalline. It could maintain 36% of its weight at 800 °C and crystallization and melting temperatures were 221 and 255.6 °C. This is the first report on the EPS production potential and the biological activity of A. pushchinoensis.


Asunto(s)
Anoxybacillus/química , Biopelículas/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HT29 , Humanos , Peso Molecular , Polisacáridos Bacterianos/aislamiento & purificación , Temperatura , Viscosidad
7.
Arch Microbiol ; 204(1): 107, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34972980

RESUMEN

This study was performed to elucidate the effects of two fungal quorum sensing molecules (tyrosol and farnesol) on carotenoid synthesis in the yeast Rhodotorula glutinis and prodigioin synthesis in the bacterium Serratia marcencens. Farnesol or tyrosol was directly added to the flask cultures at the beginning (immediately after inoculation with the preculture) of day 1 or the beginning (49th h) of day 3. The results demonstrated that tyrosol supplementation increased the synthesis of carotenoids but farnesol supplementation increased the synthesis of prodigiosin. It was found that adding farnesol or tyrosol into the culture on day 3 compared to day 1 caused more increments in pigment synthesis. The maximum increase (fivefold) in the synthesis of prodigiosin was achieved with 200 µL/L farnesol supplementation, whereas the maximum increase (2.13 fold) in the synthesis of carotenoids was achieved with 4 mg/L tyrosol supplementation. This is the first report about the effects of fungal quorum sensing molecules (farnesol and tyrosol) on the synthesis of carotenoids and prodigiosin in microorganisms. Due to non-human toxicity and low price and of farnesol and tyrosol, these molecules can be used as novel inducers for large-scale production of microbial pigments.


Asunto(s)
Farnesol , Prodigiosina , Biopelículas , Carotenoides , Farnesol/farmacología , Alcohol Feniletílico/análogos & derivados
8.
Environ Technol ; 42(20): 3245-3253, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32192416

RESUMEN

Non-sterile culture technique is currently used in some microbial processes. However, there is no study on the use of this technique in the production of microbial lipases and hydrolysis of waste frying oils. This study was conducted to hydrolyse waste frying oils and produce lipase under non-sterile culture conditions using locally isolated cold-adapted bacteria. Of 75 bacterial isolates, the psychrotolerant Pseudomonas yamanorum LP2 (Genbank number: KU711080) was determined to have the highest lipase activity. It was found that a combination of restricted nutrient availability, low temperature and high inoculum volume prevented microbial contaminants under non-sterile conditions. The most favourable parameters for lipase production under both sterile and non-sterile conditions were 15°C temperature, pH 8, 30 mL/L inoculum volume, 40 mL/L waste frying oil concentration, 10 mL/L Tween-80 and 72 h incubation time. The maximum lipase activities in sterile and non-sterile media were determined as 93.3 and 96.8 U/L, respectively. The present process designed for enzyme production and waste oil hydrolysis can reduce the cost of cultivation medium as well as energy consumption and workload. The potential of cold-adapted bacteria to produce lipase and hydrolyse waste oils under non-sterile culture conditions was first tested in the current study.


Asunto(s)
Lipasa , Pseudomonas , Hidrólisis , Aceites
9.
J Proteomics ; 233: 104075, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33309927

RESUMEN

In the present study, 120 fungal isolates were locally isolated from soil and selected according to their ability to antimicrobial activity. Then, selected isolates were tested for their ability to prevent biofilm formation and only one isolate (A01) showed an antibiofilm effect. The isolate A01 identified as Aspergillus tubingensis by sequencing of the 18S ITS region and a segment of ß-tubulin gene. Then, 5 fractions were prepared from the culture filtrate of A. tubingensis A01 using the ultrafiltration technique to find active polypeptide fraction. The experiments revealed that one of them had an antibiofilm activity. The MALDI-TOF/MS analyses demonstrated that this polypeptide composed of 92 amino acids and had a molecular mass of 10,087 Da. The sequence alignment showed homology with hypothetical protein (OJI81679.1). The gene coding for this polypeptide consisting of 279 nucleotides, herein we called astucin, was cloned and sequenced from A. tubingensis A01 to confirm results. The MIC of the purified polypeptide was 32 m/L and 128 µg/mL and the MBIC was 2 and 8 µg/mL against Staphylococcus aureus and MRSA, respectively. The results demonstrated that the antimicrobial and antibiofilm activity of astucin, together with its lack of cytotoxicity, makes it an alternative for application in medicine. SIGNIFICANCE: Antibiotic resistance is a global problem and the emergence of antibiotic resistant bacteria reduce the effect the current treatment approaches. In this context, antimicrobial peptides stand out as potentional agents to combat bacterial infection especially, biofilm related infections. Importantly, this study have greatly considered our understanding for fungal derived antibiofilm polypeptides. In this study, traditional selection method combined with crystal violet assay is used to investigate antibiofilm polypeptides. We identified antibiofilm polypeptides purified from A. tubingensis A01. This protein shows antimicrobial and antibiofilm activity against S. aureus.


Asunto(s)
Biopelículas , Staphylococcus aureus , Antibacterianos/farmacología , Aspergillus , Hongos , Pruebas de Sensibilidad Microbiana , Péptidos/farmacología
10.
Int J Syst Evol Microbiol ; 70(6): 3865-3871, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32496183

RESUMEN

A Gram-reaction-positive, endospore-forming bacterium, designated strain P1T, was isolated from water samples collected from Pasinler Hot Spring and characterized using a polyphasic approach to clarify its taxonomic position. Strain P1T was found to have chemotaxonomic and morphological characteristics consistent with its classification in the genus Bacillus. The strain shared the highest 16S rRNA gene sequence identity values with Bacillus thermolactis R-6488T (97.6 %) and Bacillus kokeshiiformis MO-04T (97.2 %) and formed a distinct clade with both type strains in the phylogenetic trees based on 16S rRNA gene sequences. Strain P1T could grow optimally at 55 °C and in the presence of 2 % NaCl. The organism was found to contain meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The predominant menaquinone was determined to be MK-7. The major cellular fatty acids were identified as iso-C15 : 0, iso-C17 : 0 and anteiso-C17 : 0. Based upon the consensus of phenotypic and phylogenetic analyses, strain P1T represents a novel species of the genus Bacillus, for which the name Bacillus pasinlerensis sp. nov. is proposed. The type strain is P1T (=DSM 107529T=CECT 9885T=NCCB 100674T).


Asunto(s)
Bacillus/clasificación , Manantiales de Aguas Termales/microbiología , Filogenia , Bacillus/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Turquía , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
J Basic Microbiol ; 60(8): 669-678, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32449551

RESUMEN

This study focused on investigating the effect of exogenously applied two quorum sensing molecules (tyrosol and farnesol) on the synthesis of bioactive metabolites (pigments, lactic acid, ethanol, and citric acid) in Monascus purpureus ATCC16365. None of the tested concentrations (62.5, 125, 250, and 500 µl/L) of farnesol affected the synthesis of metabolites as well as cell growth. As with farnesol application, none of the tested concentrations (3.45, 6.9, 13.8, and 27.6 mg/L) of tyrosol caused a significant change in the synthesis of lactic acid and citric acid as well as cell growth. Conversely, all of the tested concentrations of tyrosol increased pigment synthesis but reduced ethanol synthesis, compared with the control. Maximum increases (3.16-, 2.68-, and 2.87-fold increase, respectively) in yellow, orange, and red pigment production were achieved, especially when 6.9-mg/L tyrosol was added to the culture on day 3. On the contrary, 6.9-mg/L tyrosol reduced the content of citrinin by approximately 51.5%. This is the first report on the effect of tyrosol and farnesol on the synthesis of Monascus metabolites. Due to potential properties, such as low price, nonhuman toxicity, promotion of pigment synthesis, and reduction in citrinin synthesis, tyrosol can be used as a novel inducer in the fermentative production of Monascus pigments.


Asunto(s)
Farnesol/farmacología , Monascus/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Pigmentos Biológicos/biosíntesis , Ácido Cítrico/metabolismo , Etanol/metabolismo , Fermentación , Ácido Láctico/biosíntesis , Monascus/crecimiento & desarrollo , Monascus/metabolismo , Alcohol Feniletílico/farmacología
12.
Curr Top Med Chem ; 18(24): 2102-2107, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30417789

RESUMEN

As the resistance to antimicrobial molecules increases among bacteria, the need for new antimicrobial molecules increases. Antimicrobial peptides (AMP), which may be a new generation of antibiotic candidates, are important in this respect. AMPs are small, cationic and amphipathic peptide sequences. In eukaryotes, they are synthesized as a part of the immune system. Substantially, AMPs are discovered in all kingdoms of life such as bacteria, fungi and protozoa. Approximately 3,000 AMPs have been reported in the literature. However, most of these AMPs have been synthesized through chemical synthesis. Nature has a huge source of microorganisms, and in the literature, there is a tendency to increase every year the number of bacteria and fungus-derived AMPs thanks to their biotechnological importance. The exploration of AMP and antibiofilm peptide (ABP) producer microorganisms brings with it a lot of challenges experimentally. In this review study, we want to highlight the importance and challenge of these natural peptides derived from microorganisms. We will also propose a new explanation for ABPs.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Productos Biológicos/farmacología , Hongos/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Productos Biológicos/síntesis química , Productos Biológicos/química , Humanos , Pruebas de Sensibilidad Microbiana
13.
Prep Biochem Biotechnol ; 48(6): 535-540, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29958061

RESUMEN

PinX1 encoded by a remarkable tumor suppressor gene and located in human chromosome 8p23 is known as telomerase inhibitor. In recent years, this protein has been of interest as clinically tumor suppressor. Pichia pastoris expression system is preferred to produce heterologous proteins and is suitable for industrial and research purposes. In the present study, human PinX1 gene (hPinX1) was cloned in E. coli One Shot TOP10 cells and overexpressed in P. pastoris strain X-33 intracellularly, using a strong AOX (alcohol oxidase) promoter. The recombinant cells were grown in shaking flask. Induction time, methanol concentration and initial pH were optimized for obtaining high levels of hPinX1 protein production. Recombinant protein production was confirmed by Western blot analysis and the relative expression levels of rhPinX1 were quantified. According to Western blot analysis, molecular mass of produced hPinX1 was determined as 47.5 kDa. At the end of optimization studies, the best fermentation conditions were determined as induction time 48 h, methanol concentration 3% and initial culture pH 5.0. This process would be an applicable way for obtaining recombinant hPinX1 using P. pastoris expression system. This is the first report on recombinant production of hPinX1 in P. pastoris.


Asunto(s)
Pichia/metabolismo , Telomerasa/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Western Blotting , Técnicas de Cultivo de Célula , Proteínas de Ciclo Celular , Escherichia coli/genética , Fermentación , Humanos , Concentración de Iones de Hidrógeno , Peso Molecular , Plásmidos , Regiones Promotoras Genéticas , Transformación Genética , Proteínas Supresoras de Tumor/biosíntesis , Proteínas Supresoras de Tumor/química
14.
J Biotechnol ; 271: 56-62, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29476806

RESUMEN

Peptones are accepted as one of the most favourable nitrogen sources supporting pigment synthesis in Monascus purpureus. The present study was performed to test the feasibility of chicken feather peptone (CFP) as nitrogen source for pigment production from M. purpureus ATCC16365. CFP was compared with fish peptone (FP) and protease peptone (PP) in order to elucidate its effectiveness on pigment production. CFP was prepared from waste feathers using hydrolysis (KOH) and neutralization (H2SO4) methods. The protein content of CFP was determined as 67.2 g/100 g. Optimal concentrations of CFP and glucose for pigment production were determined as 3 and 20 g/L, respectively. A medium pH of 5.5 and an incubation period of 7-days were found to be more favourable for pigment production. In CFP, PP and FP media, yellow pigment absorbances were 2.819, 2.870 and 2.831, red pigment absorbances were 2.709, 2.304 and 2.748, and orange pigment absorbances were 2.643, 2.132 and 2.743, respectively. Sugar consumption and mycelia growth showed the similar trends in CFP, FP and PP media. This study indicates that the peptone from chicken feathers may be a good nutritional substrate for pigment production from M. purpureus.


Asunto(s)
Plumas/química , Monascus/crecimiento & desarrollo , Nitrógeno/química , Peptonas/química , Pigmentos Biológicos/metabolismo , Animales , Pollos , Estudios de Factibilidad , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Monascus/metabolismo , Pigmentación
15.
Bioprocess Biosyst Eng ; 39(11): 1671-8, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27316859

RESUMEN

The purpose of this study was to elucidate whether exogenous nitric oxide (NO) has a potential beneficial effect on lipase production capacity of some microorganisms. Sodium nitroprusside (SNP) was used as an exogenous NO donor in production medium. In comparison with the control (0 nM SNP), SNP concentrations from 10 to 100 nM induced lipase production in mesophilic bacterium Bacillus subtilis and cold-adapted yeast Yarrowia lipolytica. Especially, the maximum lipase activities for Y. lipolytica (81.2 U/L) and B. subtilis (74.5 U/L) were attained at 30 and 50 nM SNP concentrations, respectively. When compared to the control, the optimal SNP concentrations resulted in about 5.14 and 2.27-fold increases in lipase activities of B. subtilis and Y. lipolytica, respectively. Besides, it was found that the optimal SNP concentrations provided shorter incubation periods for lipase production. Conversely, no significant positive effect of exogenous NO on lipase production was determined for thermophilic bacterium Geobacillus stearothermophilus. This study showed for the first time that exogenous NO could be used as an inducer in the production of microbial lipases.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/biosíntesis , Lipasa/biosíntesis , Óxido Nítrico/metabolismo , Nitroprusiato/farmacología , Yarrowia/enzimología , Relación Dosis-Respuesta a Droga , Inducción Enzimática/efectos de los fármacos
16.
J Biotechnol ; 231: 32-39, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27234881

RESUMEN

The present study was performed to produce citric acid (CA) from partly deproteinized cheese whey (DPCW) under non-sterile culture conditions using immobilized cells of the cold-adapted and lactose-positive yeast Yarrowia lipolytica B9. DPCW was prepared using the temperature treatment of 90°C for 15min. Sodium alginate was used as entrapping agent for cell immobilization. Optimum conditions for the maximum CA production (33.3g/L) in non-sterile DPCW medium were the temperature of 20°C, pH 5.5, additional lactose concentration of 20g/L, sodium alginate concentration of 2%, number of 150 beads/100mL and incubation time of 120h. Similarly, maximum citric acid/isocitric acid (CA/ICA) ratio (6.79) could be reached under these optimal conditions. Additional nitrogen and phosphorus sources decreased CA concentration and CA/ICA ratio. Immobilized cells were reused in three continuous reaction cycles without any loss in the maximum CA concentration. The unique combination of low pH and temperature values as well as cell immobilization procedure could prevent undesired microbial contaminants during CA production. This is the first work on CA production by cold-adapted microorganisms under non-sterile culture conditions. Besides, CA production using a lactose-positive strain of the yeast Y. lipolytica was investigated for the first time in the present study.


Asunto(s)
Reactores Biológicos/microbiología , Células Inmovilizadas/metabolismo , Ácido Cítrico/metabolismo , Lactosa/metabolismo , Suero Lácteo , Yarrowia/metabolismo , Ácido Cítrico/análisis , Frío , Suero Lácteo/química , Suero Lácteo/metabolismo
17.
Int J Biol Macromol ; 89: 428-33, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27154516

RESUMEN

A new chitosan producing fungus was locally isolated from soil samples collected around Erzurum, Turkey and identified as Rhizopus oryzae PAS 17 (GenBank accession number KU318422.1). Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH, thus, undesired microbial contamination could be eliminated when appropriate culture conditions (incubation temperature as 15°C and initial pH of the medium as 4.5) were selected. Medium composition and culture conditions were optimized using Taguchi orthogonal array (OA) design of experiment (DOE). An OA layout of L16 (4(5)) was constructed with five most influensive factors at four levels on chitosan production like, carbon source (molasses), metal ion (Mg(2+)), inoculum amount, agitation speed and incubation time. The optimal combinations of factors (molasses, 70ml/l; MgSO4·7H2O, 0.5g/l; inoculum, 6.7×10(6) spores/disc; agitation speed, 150rpm and incubation time, 8days) obtained from the proposed DOE methodology was further validated by analysis of variance (ANOVA) test and the results revealed the increment of chitosan and biomass yields of 14.45 and 8.58 folds from its unoptimized condition, respectively.


Asunto(s)
Quitosano/química , Fermentación , Rhizopus/química , Biomasa , Quitosano/metabolismo , Rhizopus/crecimiento & desarrollo , Microbiología del Suelo , Temperatura
18.
Folia Microbiol (Praha) ; 59(1): 9-16, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23722276

RESUMEN

The aims of the present study were to isolate new yeasts with high extracellular (exo) invertase activity and to investigate the usability of buffer systems as invertase production media by immobilized yeast cells. Among 70 yeast isolates, Cryptococcus laurentii MT-61 had the highest exo-invertase activity. Immobilization of yeast cells was performed using sodium alginate. Higher exo-invertase activity for immobilized cells was achieved in tris-sucrose buffer system (TSBS) compared to sodium acetate buffer system and potassium phosphate buffer system. TSBS was prepared by dissolving 30 g of sucrose in 1 L of tris buffer solution. The optimum pH, temperature, and incubation time for invertase production with immobilized cells were determined as 8.0, 35 °C and 36 h in TSBS, respectively. Under optimized conditions, maximum exo-invertase activity was found to be 28.4 U/mL in sterile and nonsterile TSBS. Immobilized cells could be reused in 14 and 12 successive cycles in sterile and nonsterile TSBS without any loss in the maximum invertase activity, respectively. This is the first report which showed that immobilized microbial cells could be used as a biocatalyst for exo-invertase production in buffer system. As an additional contribution, a new yeast strain with high invertase activity was isolated.


Asunto(s)
Células Inmovilizadas/enzimología , Células Inmovilizadas/metabolismo , Cryptococcus/enzimología , Cryptococcus/metabolismo , Medios de Cultivo/química , beta-Fructofuranosidasa/aislamiento & purificación , Biotecnología/métodos , Tampones (Química) , Concentración de Iones de Hidrógeno , Sacarosa , Temperatura , Factores de Tiempo
19.
Prep Biochem Biotechnol ; 43(2): 177-88, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23302105

RESUMEN

The aim of this study is to investigate the effect of low-intensity static magnetic fields (SMFs) on invertase activity and growth on different newly identified molds. The most positive effect of SMFs on invertase activity and growth was observed for Aspergillus niger OZ-3. The submerged production of invertase was performed with the spores obtained at the different exposure times (120, 144, 168, and 196 hr) and magnetic field intensities (0.45, 3, 5, 7, and 9 mT). The normal magnetic field of the laboratory was assayed as 0.45 mT (control). Optimization of magnetic field intensity and exposure time significantly increased biomass production and invertase activity compared to 0.45 mT. The maximum invertase activity (51.14 U/mL) and biomass concentration (4.36 g/L) were achieved with the spores obtained at the 144 hr exposure time and 5 mT magnetic field intensity. The effect of low-intensity static magnetic fields (SMFs) on invertase activities of molds was investigated for the first time in the present study. As an additional contribution, a new hyper-invertase-producing mold strain was isolated.


Asunto(s)
Aspergillus niger/enzimología , Proteínas Fúngicas/aislamiento & purificación , Campos Magnéticos , Microbiología del Suelo , beta-Fructofuranosidasa/biosíntesis , Aspergillus niger/crecimiento & desarrollo , Activación Enzimática , Pruebas de Enzimas , Proteínas Fúngicas/biosíntesis , Magnetismo/métodos , Esporas/enzimología , Electricidad Estática , Sacarosa/metabolismo , Factores de Tiempo , beta-Fructofuranosidasa/aislamiento & purificación
20.
Toxicol Ind Health ; 29(5): 426-34, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22323475

RESUMEN

Citric acid (CA) is the most important organic acid used in the food and other industries. Locusta migratoria is an insect species, which has rich nutritional composition (especially protein) and cultivated in some countries. Therefore, the present study investigated the usability of hydrolysate extract of L. migratoria biomass as substrate for the production of CA from Aspergillus niger MT-4. The insect extract (IE) was found to be rich in ash (34.9 g/100 g), protein (35.6 g/100 g) and mineral contents. Yeast extract was found to be the most favorable substrate for biomass production, whereas the maximum production of CA (41.8 g/L) was achieved in the medium containing IE. Besides, uniform pellets with the smallest size (4 mm) were observed in IE medium. It was thought that rich magnesium (6.78 g/100 g) and manganese (1.14 g/100 g) contents of IE increased the production of CA, resulting in the formation of small uniform pellets. This is the first report on the effect of protein-rich insect biomasses on the production of CA. In this regard, L. migratoria biomass was tested for the first time as a CA-production substrate.


Asunto(s)
Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Locusta migratoria/química , Locusta migratoria/metabolismo , Extractos de Tejidos/metabolismo , Análisis de Varianza , Animales , Aspergillus niger/efectos de los fármacos , Biomasa , Medios de Cultivo , Fermentación , Hidrólisis , Cinética , Extractos de Tejidos/química , Extractos de Tejidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...