Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Differentiation ; 134: 1-10, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37690144

RESUMEN

Barrett's oesophagus (BO) is a pathological condition in which the squamous epithelium of the distal oesophagus is replaced by an intestinal-like columnar epithelium originating from the gastric cardia. Several somatic mutations contribute to the intestinal-like metaplasia. Once these have occurred in a single cell, it will be unable to expand further unless the altered cell can colonise the surrounding squamous epithelium of the oesophagus. The mechanisms by which this happens are still unknown. Here we have established an in vitro system for examining the competitive behaviour of two epithelia. We find that when an oesophageal epithelium model (Het1A cells) is confronted by an intestinal epithelium model (Caco-2 cells), the intestinal cells expand into the oesophageal domain. In this case the boundary involves overgrowth by the Caco-2 cells and the formation of isolated colonies. Two key transcription factors, normally involved in intestinal development, HNF4α and CDX2, are both expressed in BO. We examined the competitive ability of Het1A cells stably expressing HNF4α or CDX2 and placed in confrontation with unmodified Het1A cells. The key result is that stable expression of HNF4α, but not CDX2, increased the ability of the cells to migrate and push into the unmodified Het1A domain. In this situation the boundary between the cell types is a sharp one, as is normally seen in BO. The experiments were conducted using a variety of extracellular substrates, which all tended to increase the cell migration compared to uncoated plastic. These data provide evidence that HNF4α expression could have a potential role in the competitive spread of BO into the oesophagus as HNF4α increases the ability of cells to invade into the adjacent stratified squamous epithelium, thus enabling a single mutant cell eventually to generate a macroscopic patch of metaplasia.


Asunto(s)
Esófago de Barrett , Carcinoma de Células Escamosas , Humanos , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Células CACO-2 , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Expresión Génica Ectópica , Metaplasia , Fenotipo
2.
Proc Biol Sci ; 289(1966): 20212338, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35016538

RESUMEN

Ongoing recovery of native predators has the potential to alter species interactions, with community and ecosystem wide implications. We estimated the co-occurrence of three species of conservation and management interest from a multi-species citizen science camera trap survey. We demonstrate fundamental differences in novel and coevolved predator-prey interactions that are mediated by habitat. Specifically, we demonstrate that anthropogenic habitat modification had no influence on the expansion of the recovering native pine marten in Ireland, nor does it affect the predator's suppressive influence on an invasive prey species, the grey squirrel. By contrast, the direction of the interaction between the pine marten and a native prey species, the red squirrel, is dependent on habitat. Pine martens had a positive influence on red squirrel occurrence at a landscape scale, especially in native broadleaf woodlands. However, in areas dominated by non-native conifer plantations, the pine marten reduced red squirrel occurrence. These findings suggest that following the recovery of a native predator, the benefits of competitive release are spatially structured and habitat-specific. The potential for past and future landscape modification to alter established interactions between predators and prey has global implications in the context of the ongoing recovery of predator populations in human-modified landscapes.


Asunto(s)
Ecosistema , Mustelidae , Animales , Bosques , Humanos , Especies Introducidas , Conducta Predatoria , Sciuridae
3.
Cell Mol Gastroenterol Hepatol ; 13(5): 1530-1553.e4, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35032693

RESUMEN

BACKGROUND & AIMS: Pancreatic islet ß-cells are factories for insulin production; however, ectopic expression of insulin also is well recognized. The gallbladder is a next-door neighbor to the developing pancreas. Here, we wanted to understand if gallbladders contain functional insulin-producing cells. METHODS: We compared developing and adult mouse as well as human gallbladder epithelial cells and islets using immunohistochemistry, flow cytometry, enzyme-linked immunosorbent assays, RNA sequencing, real-time polymerase chain reaction, chromatin immunoprecipitation, and functional studies. RESULTS: We show that the epithelial lining of developing, as well as adult, mouse and human gallbladders naturally contain interspersed cells that retain the capacity to actively transcribe, translate, package, and release insulin. We show that human gallbladders also contain functional insulin-secreting cells with the potential to naturally respond to glucose in vitro and in situ. Notably, in a non-obese diabetic (NOD) mouse model of type 1 diabetes, we observed that insulin-producing cells in the gallbladder are not targeted by autoimmune cells. Interestingly, in human gallbladders, insulin splice variants are absent, although insulin splice forms are observed in human islets. CONCLUSIONS: In summary, our biochemical, transcriptomic, and functional data in mouse and human gallbladder epithelial cells collectively show the evolutionary and developmental similarities between gallbladder and the pancreas that allow gallbladder epithelial cells to continue insulin production in adult life. Understanding the mechanisms regulating insulin transcription and translation in gallbladder epithelial cells would help guide future studies in type 1 diabetes therapy.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Animales , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Células Epiteliales/metabolismo , Vesícula Biliar/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos NOD
4.
Mol Ecol ; 31(3): 993-1006, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34775636

RESUMEN

Carnivores tend to exhibit a lack of (or less pronounced) genetic structure at continental scales in both a geographic and temporal sense and this can confound the identification of post-glacial colonization patterns in this group. In this study we used genome-wide data (using genotyping by sequencing [GBS]) to reconstruct the phylogeographic history of a widespread carnivore, the red fox (Vulpes vulpes), by investigating broad-scale patterns of genomic variation, differentiation and admixture amongst contemporary populations in Europe. Using 15,003 single nucleotide polymorphisms (SNPs) from 524 individuals allowed us to identify the importance of refugial regions for the red fox in terms of endemism (e.g., Iberia). In addition, we tested multiple post-glacial recolonization scenarios of previously glaciated regions during the Last Glacial Maximum using an Approximate Bayesian Computation (ABC) approach that were unresolved from previous studies. This allowed us to identify the role of admixture from multiple source population post-Younger Dryas in the case of Scandinavia and ancient land-bridges in the colonization of the British Isles. A natural colonization of Ireland was deemed more likely than an ancient human-mediated introduction as has previously been proposed and potentially points to a larger mammalian community on the island in the early post-glacial period. Using genome-wide data has allowed us to tease apart broad-scale patterns of structure and diversity in a widespread carnivore in Europe that was not evident from using more limited marker sets and provides a foundation for next-generation phylogeographic studies in other non-model species.


Asunto(s)
Zorros , Variación Genética , Animales , Teorema de Bayes , Europa (Continente) , Zorros/genética , Humanos , Filogenia , Filogeografía
5.
Adv Biol (Weinh) ; 5(6): e2100330, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33825335

RESUMEN

Here shows that electrical impedance spectroscopy can be used as a non-invasive and real time tool to probe cell adhesion and differentiation from midbrain floor plate progenitors into midbrain neurons on Au electrodes coated with human laminin. The electrical data and equivalent circuit modeling are consistent with standard microscopy analysis and reveal that within the first 6 hours progenitor cells sediment and attach to the electrode within 40 hours. Between 40 and 120 hours, midbrain progenitor cells differentiate into midbrain neurons, followed by an electrochemically stable maturation phase. The ability to sense and characterize non-invasively and in real time cell differentiation opens up unprecedented avenues for implantable therapies and differentiation strategies.


Asunto(s)
Espectroscopía Dieléctrica , Mesencéfalo , Diferenciación Celular , Electrodos , Humanos , Neuronas
6.
Biochem Soc Trans ; 49(2): 579-590, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33666218

RESUMEN

Transdifferentiation is a type of cellular reprogramming involving the conversion of one differentiated cell type to another. This remarkable phenomenon holds enormous promise for the field of regenerative medicine. Over the last 20 years techniques used to reprogram cells to alternative identities have advanced dramatically. Cellular identity is determined by the transcriptional profile which comprises the subset of mRNAs, and therefore proteins, being expressed by a cell at a given point in time. A better understanding of the levers governing transcription factor activity benefits our ability to generate therapeutic cell types at will. One well-established example of transdifferentiation is the conversion of hepatocytes to pancreatic ß-cells. This cell type conversion potentially represents a novel therapy in T1D treatment. The identification of key master regulator transcription factors (which distinguish one body part from another) during embryonic development has been central in developing transdifferentiation protocols. Pdx1 is one such example of a master regulator. Ectopic expression of vector-delivered transcription factors (particularly the triumvirate of Pdx1, Ngn3 and MafA) induces reprogramming through broad transcriptional remodelling. Increasingly, complimentary cell culture techniques, which recapitulate the developmental microenvironment, are employed to coax cells to adopt new identities by indirectly regulating transcription factor activity via intracellular signalling pathways. Both transcription factor-based reprogramming and directed differentiation approaches ultimately exploit transcription factors to influence cellular identity. Here, we explore the evolution of reprogramming and directed differentiation approaches within the context of hepatocyte to ß-cell transdifferentiation focussing on how the introduction of new techniques has improved our ability to generate ß-cells.


Asunto(s)
Reprogramación Celular/genética , Hepatocitos/metabolismo , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Páncreas/metabolismo , Factores de Transcripción/genética , Animales , Transdiferenciación Celular/genética , Regulación de la Expresión Génica , Humanos , Hígado/citología , Páncreas/citología , Factores de Transcripción/metabolismo
7.
Genes (Basel) ; 11(10)2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008122

RESUMEN

The canonical Wnt (Wnt/ß-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/ß-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/ß-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/ß-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.


Asunto(s)
Hígado/fisiología , Vía de Señalización Wnt , Animales , Tipificación del Cuerpo , Diferenciación Celular , Gastrulación , Proteínas Hedgehog/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Regeneración Hepática , Células Madre Pluripotentes/citología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
8.
Sci Rep ; 10(1): 11169, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32612166

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Front Neurosci ; 14: 404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32425751

RESUMEN

Breast cancer is one of the most prevalent types of cancers worldwide and yet, its pathophysiology is poorly understood. Single-cell electrophysiological studies have provided evidence that membrane depolarization is implicated in the proliferation and metastasis of breast cancer. However, metastatic breast cancer cells are highly dynamic microscopic systems with complexities beyond a single-cell level. There is an urgent need for electrophysiological studies and technologies capable of decoding the intercellular signaling pathways and networks that control proliferation and metastasis, particularly at a population level. Hence, we present for the first time non-invasive in vitro electrical recordings of strongly metastatic MDA-MB-231 and weakly/non-metastatic MCF-7 breast cancer cell lines. To accomplish this, we fabricated an ultra-low noise sensor that exploits large-area electrodes, of 2 mm2, which maximizes the double-layer capacitance and concomitant detection sensitivity. We show that the current recorded after adherence of the cells is dominated by the opening of voltage-gated sodium channels (VGSCs), confirmed by application of the highly specific inhibitor, tetrodotoxin (TTX). The electrical activity of MDA-MB-231 cells surpasses that of the MCF-7 cells, suggesting a link between the cells' bioelectricity and invasiveness. We also recorded an activity pattern with characteristics similar to that of Random Telegraph Signal (RTS) noise. RTS patterns were less frequent than the asynchronous VGSC signals. The RTS noise power spectral density showed a Lorentzian shape, which revealed the presence of a low-frequency signal across MDA-MB-231 cell populations with propagation speeds of the same order as those reported for intercellular Ca2+ waves. Our recording platform paves the way for real-time investigations of the bioelectricity of cancer cells, their ionic/pharmacological properties and relationship to metastatic potential.

10.
R Soc Open Sci ; 7(2): 191841, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32257340

RESUMEN

Invasive species pose a serious threat to native species. In Europe, invasive grey squirrels (Sciurus carolinensis) have replaced native red squirrels (Sciurus vulgaris) in locations across Britain, Ireland and Italy. The European pine marten (Martes martes) can reverse the replacement of red squirrels by grey squirrels, but the underlying mechanism of how pine martens suppress grey squirrels is little understood. Research suggests the reversal process is driven by direct predation, but why the native red squirrel may be less susceptible than the invasive grey squirrel to predation by a commonly shared native predator, is unknown. A behavioural difference may exist with the native sciurid being more effective at avoiding predation by the pine marten with which they have a shared evolutionary history. In mammals, olfactory cues are used by prey species to avoid predators. To test whether anti-predator responses differ between the native red squirrel and the invasive grey squirrel, we exposed both species to scent cues of a shared native predator and quantified the responses of the two squirrel species. Red squirrels responded to pine marten scent by avoiding the feeder, increasing their vigilance and decreasing their feeding activity. By contrast, grey squirrels did not show any anti-predator behaviours in response to the scent of pine marten. Thus, differences in behavioural responses to a shared native predator may assist in explaining differing outcomes of species interactions between native and invasive prey species depending on the presence, abundance and exposure to native predators.

12.
Bioelectricity ; 1(3): 131-138, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471815

RESUMEN

Bioelectricity is the electrical activity produced by living organisms. Understanding the role of bioelectricity in a disease context is important as it contributes to both disease diagnosis and therapeutic intervention. Electrophysiology tools work well for neuronal cultures; however, they are limited in their ability to detect the electrical activity of non-neuronal cells, wherein the majority of cancers arise. Electronic structures capable of detecting and modulating signaling, in real-time, in electrically quiescent cells are urgently required. One of the limitations to understanding the role of bioelectricity in cancer is the inability to detect low-level signals. In this study, we review our latest advances in devising bidirectional transducers with large electrode areas and concomitant low impedances. The resulting high sensitivity is demonstrated by the extracellular detection of electrical activity in Rat-C6 glioma and prostate cancer (PC-3) cell populations. By using specific inhibitors, we further demonstrated that the large electrical activity in Rat-C6 glioma populations is acidosis driven. For PC-3 cells, the use of a calcium inhibitor together with the slowly varying nature of the signal suggests that Ca2+ channels are involved in the cohort electrogenicity.

13.
PeerJ ; 6: e5827, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498626

RESUMEN

Endogenous circadian and seasonal activity patterns are adapted to facilitate effective utilisation of environmental resources. Activity patterns are shaped by physiological constraints, evolutionary history, circadian and seasonal changes and may be influenced by other factors, including ecological competition and interspecific interactions. Remote-sensing camera traps allow the collection of species presence data throughout the 24 h period and for almost indefinite lengths of time. Here, we collate data from 10 separate camera trap surveys in order to describe circadian and seasonal activity patterns of 10 mammal species, and, in particular, to evaluate interspecific (dis)associations of five predator-prey pairs. We recorded 8,761 independent detections throughout Northern Ireland. Badgers, foxes, pine martens and wood mice were nocturnal; European and Irish hares and European rabbits were crepuscular; fallow deer and grey and red squirrels were diurnal. All species exhibited significant seasonal variation in activity relative to the timing of sunrise/sunset. Foxes in particular were more crepuscular from spring to autumn and hares more diurnal. Lagged regression analyses of predator-prey activity patterns between foxes and prey (hares, rabbits and wood mice), and pine marten and prey (squirrel and wood mice) revealed significant annual and seasonal cross-correlations. We found synchronised activity patterns between foxes and hares, rabbits and wood mice and pine marten and wood mice, and asynchrony between squirrels and pine martens. Here, we provide fundamental ecological data on endemic, invasive, pest and commercially valuable species in Ireland, as well as those of conservation importance and those that could harbour diseases of economic and/or zoonotic relevance. Our data will be valuable in informing the development of appropriate species-specific methodologies and processes and associated policies.

14.
J Memb Sci ; 565: 425-438, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30393423

RESUMEN

Herein we describe the manufacture and characterisation of biocompatible, porous polystyrene membranes, suitable for cell culture. Though widely used in traditional cell culture, polystyrene has not been used as a hollow fibre membrane due to its hydrophobicity and non-porous structure. Here, we use microcrystalline sodium chloride (4.7 ±â€¯1.3 µm) to control the porosity of polystyrene membranes and oxygen plasma surface treatment to reduce hydrophobicity. Increased porogen concentration correlates to increased surface pore density, macrovoid formation, gas permeability and mean pore size, but a decrease in mechanical strength. For tissue engineering applications, membranes spun from casting solutions containing 40% (w/w) sodium chloride represent a compromise between strength and permeability, having surface pore density of 208.2 ±â€¯29.7 pores/mm2, mean surface pore size of 2.3 ±â€¯0.7 µm, and Young's modulus of 115.0 ±â€¯8.2 MPa. We demonstrate the biocompatibility of the material with an exciting cell line-media combination: transdifferentiation of the AR42J-B13 pancreatic cell line to hepatocyte-like cells. Treatment of AR42J-B13 with dexamethasone/oncostatin-M over 14 days induces transdifferentiation towards a hepatic phenotype. There was a distinct loss of the pancreatic phenotype, shown through loss of expression of the pancreatic marker amylase, and gain of the hepatic phenotype, shown through induction of expression of the hepatic markers transferrin, carbamoylphosphate synthetase and glutamine synthetase. The combination of this membrane fabrication method and demonstration of biocompatibility of the transdifferentiated hepatocytes provides a novel, superior, alternative design for in vitro liver models and bioartificial liver devices.

15.
Biochem Biophys Res Commun ; 503(3): 1633-1640, 2018 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-30057318

RESUMEN

The pancreas and liver are closely related developmentally and trans-differentiation of cells from one tissue into the cells of the other has been documented to occur after injury or exposure to selected growth factors or glucocorticoid hormones. To generate a readily-expandable source of human hepatocyte-like (H-13) cells, the human pancreatic adenocarcinoma cell (HPAC) line was stably transfected with a construct encoding the variant 2 hepatocyte nuclear factor 4 α (HNF4α) using a piggyBac vector and transient expression of a transposase. Through induction of transgene HNF4α regulated via an upstream glucocorticoid response element in combination with existing modulating effects of glucocorticoid, H-13 cells were converted into quantitatively similar hepatocyte-like (H-13/H) cells based on expression of a variety of hepatocyte proteins. H-13/H cells also demonstrated the ability to store glycogen and lipids. These data provide proof of concept that regulated expression of genes associated with hepatocyte phenotype could be used to generate quantitatively functional human hepatocyte-like cells using a readily expandable cell source and simple culture protocol. This approach would have utility in Toxicology and Hepatology research.


Asunto(s)
Glucocorticoides/farmacología , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Páncreas/citología , Páncreas/efectos de los fármacos , Perfilación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Humanos , Páncreas/metabolismo , Células Tumorales Cultivadas
16.
Sci Rep ; 8(1): 4385, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29531353

RESUMEN

The rising prevalence of chronic liver disease, coupled with a permanent shortage of organs for liver transplantation, has sparked enormous interest in alternative treatment strategies. Previous protocols to generate hepatocyte-like cells (HLCs) via pancreas-to-liver transdifferentiation have utilised fetal bovine serum, introducing unknown variables and severely limiting study reproducibility. Therefore, the main goal of this study was to develop a protocol for transdifferentiation of pancreatic progenitor cells to HLCs in a chemically defined, serum-free culture medium. The clonal pancreatic progenitor cell line AR42J-B13 was cultured in basal growth medium on uncoated plastic culture dishes in the absence or presence of Dexamethasone on uncoated, laminin- or fibronectin-coated culture substrata, with or without serum supplementation. The hepatocytic differentiation potential was evaluated: (i) morphologically through bright-field and scanning electron microscopy, (ii) by assessing pancreatic and hepatic marker expression and (iii) by determining the function of HLCs through their ability to synthesise glycogen or take up and release indocyanine green. Here we demonstrate for the first time that transdifferentiation of pancreatic cells to HLCs is not dependent on serum. These results will assist in converting current differentiation protocols into procedures that are compliant with clinical use in future cell-based therapies to treat liver-related metabolic disorders.


Asunto(s)
Transdiferenciación Celular , Proteínas de la Matriz Extracelular/farmacología , Hepatocitos/citología , Páncreas/citología , Biomarcadores/análisis , Técnicas de Cultivo de Célula/métodos , Línea Celular , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Hepatopatías/terapia , Microscopía Electrónica , Suero , Células Madre/citología
17.
Sci Rep ; 8(1): 2735, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426940

RESUMEN

While the Wnt/ß-catenin pathway plays a critical role in the maintenance of the zonation of ammonia metabolizing enzymes in the adult liver, the mechanisms responsible for inducing zonation in the embryo are not well understood. Herein we address the spatiotemporal role of the Wnt/ß-catenin pathway in the development of zonation in embryonic mouse liver by conditional deletion of Apc and ß-catenin at different stages of mouse liver development. In normal development, the ammonia metabolising enzymes carbamoylphosphate synthetase I (CPSI) and Glutamine synthetase (GS) begin to be expressed in separate hepatoblasts from E13.5 and E15.5 respectively and gradually increase in number thereafter. Restriction of GS expression occurs at E18 and becomes increasingly limited to the terminal perivenous hepatocytes postnatally. Expression of nuclear ß-catenin coincides with the restriction of GS expression to the terminal perivenous hepatocytes. Conditional loss of Apc resulted in the expression of nuclear ß-catenin throughout the developing liver and increased number of cells expressing GS. Conversely, conditional loss of ß-catenin resulted in loss of GS expression. These data suggest that the Wnt pathway is critical to the development of zonation as well as maintaining the zonation in the adult liver.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/fisiología , Carbamoil-Fosfato Sintasa (Amoniaco)/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Hepatocitos/metabolismo , Hígado/embriología , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Proteína de la Poliposis Adenomatosa del Colon/genética , Amoníaco/metabolismo , Animales , Hepatocitos/citología , Hígado/metabolismo , Mutación con Pérdida de Función , Ratones , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética
18.
J Med Chem ; 60(2): 814-820, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-27983846

RESUMEN

Compounds 13 and 14 were evaluated against 11 PARP isoforms to reveal that both 13 and 14 were more potent and isoform selective toward inhibiting tankyrases (TNKSs) than the "standard" inhibitor 1 (XAV939)5, i.e., IC50 = 100 pM vs TNKS2 and IC50 = 6.5 µM vs PARP1 for 14. In cellular assays, 13 and 14 inhibited Wnt-signaling, enhanced insulin-stimulated glucose uptake, and inhibited the proliferation of DLD-1 colorectal adenocarcinoma cells to a greater extent than 1.


Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Glucosa/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Quinazolinonas/farmacología , Tanquirasas/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Aminoquinolinas/síntesis química , Antineoplásicos/síntesis química , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/síntesis química , Isoformas de Proteínas/antagonistas & inhibidores , Quinazolinonas/síntesis química
19.
Differentiation ; 93: 39-49, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27875772

RESUMEN

Barrett's metaplasia is the only known morphological precursor to oesophageal adenocarcinoma and is characterized by replacement of stratified squamous epithelium by columnar epithelium. The cell of origin is uncertain and the molecular mechanisms responsible for the change in cellular phenotype are poorly understood. We therefore explored the role of two transcription factors, Cdx2 and HNF4α in the conversion using primary organ cultures. Biopsy samples from cases of human Barrett's metaplasia were analysed for the presence of CDX2 and HNF4α. A new organ culture system for adult murine oesophagus is described. Using this, Cdx2 and HNF4α were ectopically expressed by adenoviral infection. The phenotype following infection was determined by a combination of PCR, immunohistochemical and morphological analyses. We demonstrate the expression of CDX2 and HNF4α in human biopsy samples. Our oesophageal organ culture system expressed markers characteristic of the normal SSQE: p63, K14, K4 and loricrin. Ectopic expression of HNF4α, but not of Cdx2 induced expression of Tff3, villin, K8 and E-cadherin. HNF4α is sufficient to induce a columnar-like phenotype in adult mouse oesophageal epithelium and is present in the human condition. These data suggest that induction of HNF4α is a key early step in the formation of Barrett's metaplasia and are consistent with an origin of Barrett's metaplasia from the oesophageal epithelium.


Asunto(s)
Adenocarcinoma/genética , Esófago de Barrett/genética , Factor de Transcripción CDX2/genética , Neoplasias Esofágicas/genética , Factor Nuclear 4 del Hepatocito/genética , Adenocarcinoma/patología , Adulto , Animales , Esófago de Barrett/patología , Biopsia , Epitelio/patología , Neoplasias Esofágicas/patología , Esófago/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Proteínas de Neoplasias/biosíntesis , Técnicas de Cultivo de Órganos
20.
J Nutr Biochem ; 36: 51-59, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27573099

RESUMEN

Vitamin A deficiency is known to affect 20 million pregnant women worldwide. However, the prenatal effects of maternal vitamin A deficiency on pancreas development have not been clearly determined. The present study examined how maternal vitamin A deficiency affects fetal islet development. Vitamin A-deficient mice were generated by feeding female mice with a chemically defined diet lacking vitamin A prior to mating as well as during pregnancy. We found that maternal vitamin A deficiency during pregnancy affected fetal pancreas development. Although the exocrine differentiation appeared normal, development of islet tissue was impaired. In the pancreas of neonatal mice, only a few endocrine cell clusters were formed, and these cell clusters lacked capillary endothelial cells. To further determine how vitamin A metabolites, such as retinoic acid, regulate vascularized islet development, ex vivo culture of embryonic pancreas either in the presence of 4-diethylaminobenzaldehyde (DEAB; an inhibitor of retinaldehyde dehydrogenase), all-trans retinoic acid (atRA) or retinoic acid receptor agonist (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthylenyl)-1-propenyl] benzoic acid (TTNPB) was carried out. We found that the addition of DEAB blocked vascularization and suppressed ß-cell differentiation. Conversely, atRA or TTNPB promoted ß-cell differentiation accompanied by enhanced expression of vascular basement component, laminin. We further demonstrated that atRA regulated vascularization via upregulating vascular endothelial growth factor-A (VEGF-A) secretion in embryonic pancreas and treatment with VEGF-A was able to partially rescue vascularization and ß-cell differentiation in DEAB-treated embryonic pancreas cultures. The findings explain why maternal vitamin A deficiency affects fetal islet development and support an essential role of retinoid signaling in regulating vascularized islet development.


Asunto(s)
Desarrollo Fetal , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología , Fenómenos Fisiologicos Nutricionales Maternos , Neovascularización Fisiológica , Deficiencia de Vitamina A/patología , Animales , Animales Recién Nacidos , Benzaldehídos/farmacología , Benzoatos/farmacología , Diferenciación Celular/efectos de los fármacos , Embrión de Mamíferos/citología , Embrión de Mamíferos/patología , Inhibidores Enzimáticos/farmacología , Femenino , Desarrollo Fetal/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/irrigación sanguínea , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Neovascularización Fisiológica/efectos de los fármacos , Embarazo , Distribución Aleatoria , Receptores de Ácido Retinoico/agonistas , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptores de Ácido Retinoico/metabolismo , Retinal-Deshidrogenasa/antagonistas & inhibidores , Retinal-Deshidrogenasa/metabolismo , Retinoides/farmacología , Técnicas de Cultivo de Tejidos , Tretinoina/metabolismo , Deficiencia de Vitamina A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...