Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 41(7): 1582-1596, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33372061

RESUMEN

During rapid eye movement (REM) sleep, anti-gravity muscle tone and bodily movements are mostly absent, because somatic motoneurons are inhibited by descending inhibitory pathways. Recent studies showed that glycine/GABA neurons in the ventromedial medulla (VMM; GlyVMM neurons) play an important role in generating muscle atonia during REM sleep (REM-atonia). However, how these REM-atonia-inducing neurons interconnect with other neuronal populations has been unknown. In the present study, we first identified a specific subpopulation of GlyVMM neurons that play an important role in induction of REM-atonia by virus vector-mediated tracing in male mice in which glycinergic neurons expressed Cre recombinase. We found these neurons receive direct synaptic input from neurons in several brain stem regions, including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD; GluSLD neurons). Silencing this circuit by specifically expressing tetanus toxin light chain (TeTNLC) resulted in REM sleep without atonia. This manipulation also caused a marked decrease in time spent in cataplexy-like episodes (CLEs) when applied to narcoleptic orexin-ataxin-3 mice. We also showed that GlyVMM neurons play an important role in maintenance of sleep. This present study identified a population of glycinergic neurons in the VMM that are commonly involved in REM-atonia and cataplexy.SIGNIFICANCE STATEMENT We identified a population of glycinergic neurons in the ventral medulla that plays an important role in inducing muscle atonia during rapid eye movement (REM) sleep. It sends axonal projections almost exclusively to motoneurons in the spinal cord and brain stem except to those that innervate extraocular muscles, while other glycinergic neurons in the same region also send projections to other regions including monoaminergic nuclei. Furthermore, these neurons receive direct inputs from several brainstem regions including glutamatergic neurons in the sublaterodorsal tegmental nucleus (SLD). Genetic silencing of this pathway resulted in REM sleep without atonia and a decrease of cataplexy when applied to narcoleptic mice. This work identified a neural population involved in generating muscle atonia during REM sleep and cataplexy.


Asunto(s)
Cataplejía/fisiopatología , Glicina/fisiología , Bulbo Raquídeo/fisiología , Músculo Esquelético/fisiología , Neuronas/fisiología , Sueño REM/fisiología , Animales , Ataxina-3/genética , Axones/fisiología , Cataplejía/genética , Electroencefalografía , Masculino , Bulbo Raquídeo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Tono Muscular/fisiología , Músculo Esquelético/fisiopatología , Narcolepsia/genética , Narcolepsia/fisiopatología , Orexinas/genética , Toxina Tetánica/farmacología
2.
Proc Natl Acad Sci U S A ; 114(22): 5731-5736, 2017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28507129

RESUMEN

Narcolepsy-cataplexy is a debilitating disorder of sleep/wakefulness caused by a loss of orexin-producing neurons in the lateroposterior hypothalamus. Genetic or pharmacologic orexin replacement ameliorates symptoms in mouse models of narcolepsy-cataplexy. We have recently discovered a potent, nonpeptide OX2R-selective agonist, YNT-185. This study validates the pharmacological activity of this compound in OX2R-transfected cells and in OX2R-expressing neurons in brain slice preparations. Intraperitoneal, and intracerebroventricular, administration of YNT-185 suppressed cataplexy-like episodes in orexin knockout and orexin neuron-ablated mice, but not in orexin receptor-deficient mice. Peripherally administered YNT-185 also promotes wakefulness without affecting body temperature in wild-type mice. Further, there was no immediate rebound sleep after YNT-185 administration in active phase in wild-type and orexin-deficient mice. No desensitization was observed after repeated administration of YNT-185 with respect to the suppression of cataplexy-like episodes. These results provide a proof-of-concept for a mechanistic therapy of narcolepsy-cataplexy by OX2R agonists.


Asunto(s)
Compuestos de Anilina/farmacología , Benzamidas/farmacología , Cataplejía/tratamiento farmacológico , Narcolepsia/tratamiento farmacológico , Receptores de Orexina/agonistas , Orexinas/metabolismo , Trastornos del Sueño del Ritmo Circadiano/tratamiento farmacológico , Promotores de la Vigilia/uso terapéutico , Vigilia/efectos de los fármacos , Compuestos de Anilina/química , Animales , Benzamidas/química , Modelos Animales de Enfermedad , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Orexina/genética , Orexinas/genética , Técnicas de Placa-Clamp , Sueño/efectos de los fármacos
3.
Elife ; 52016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-28035899

RESUMEN

Sepsis is a systemic inflammatory response to infection, accounting for the most common cause of death in intensive care units. Here, we report that peripheral administration of the hypothalamic neuropeptide orexin improves the survival of mice with lipopolysaccharide (LPS) induced endotoxin shock, a well-studied septic shock model. The effect is accompanied by a suppression of excessive cytokine production and an increase of catecholamines and corticosterone. We found that peripherally administered orexin penetrates the blood-brain barrier under endotoxin shock, and that central administration of orexin also suppresses the cytokine production and improves the survival, indicating orexin's direct action in the central nervous system (CNS). Orexin helps restore body temperature and potentiates cardiovascular function in LPS-injected mice. Pleiotropic modulation of inflammatory response by orexin through the CNS may constitute a novel therapeutic approach for septic shock.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Regulación de la Temperatura Corporal/efectos de los fármacos , Bradicardia/tratamiento farmacológico , Orexinas/farmacología , Choque Séptico/tratamiento farmacológico , Animales , Barrera Hematoencefálica/inmunología , Barrera Hematoencefálica/metabolismo , Regulación de la Temperatura Corporal/inmunología , Bradicardia/inducido químicamente , Bradicardia/inmunología , Bradicardia/mortalidad , Quimiocina CCL3/antagonistas & inhibidores , Quimiocina CCL3/genética , Quimiocina CCL3/inmunología , Quimiocina CCL4/antagonistas & inhibidores , Quimiocina CCL4/genética , Quimiocina CCL4/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Inyecciones Subcutáneas , Interferón gamma/antagonistas & inhibidores , Interferón gamma/genética , Interferón gamma/inmunología , Interleucina-17/antagonistas & inhibidores , Interleucina-17/genética , Interleucina-17/inmunología , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Choque Séptico/inducido químicamente , Choque Séptico/inmunología , Choque Séptico/mortalidad , Análisis de Supervivencia , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...