Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 16(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38668619

RESUMEN

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Asunto(s)
Toxina del Cólera , Cisteína Endopeptidasas , Aparato de Golgi , Humanos , Toxina del Cólera/metabolismo , Cisteína Endopeptidasas/metabolismo , Aparato de Golgi/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/genética , Endocitosis
2.
Nanoscale ; 16(5): 2466-2477, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205681

RESUMEN

Iron oxide nanoparticles (IONPs) surface functionalised with thermo-responsive polymers can encapsulate therapeutic proteins and release them upon heating with an alternating magnetic field above the lower critical solution temperature (LCST). In order to make this delivery system clinically-relevant, we prepared IONPs coated with poly-N-isopropylmethacrylamide (PNIPMAM), a polymer with LCST above human body temperature. The optimal polymer chain length and nanoparticle size to achieve LCST of ca. 45 °C were 19 kDa PNIPMAM and 16 nm IONPs. The PNIPMAM-coated IONPs could encapsulate a range of proteins which were released upon heating above LCST in the presence of a competitor protein or serum. A small amount of encapsulated protein leakage was observed below LCST. The efficiency of protein encapsulation and release was correlated with molecular weight and glycosylation state of the proteins. Magnetic heating resulted in a faster protein release as compared to conventional heating without significant temperature increase of the bulk solution.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Humanos , Polímeros , Temperatura , Magnetismo
3.
Biotechnol J ; 19(1): e2300257, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038229

RESUMEN

Chinese hamster ovary (CHO) cells are widely used for production of biologics including therapeutic monoclonal antibodies. Cell death in CHO cells is a significant factor in biopharmaceutical production, impacting both product yield and quality. Apoptosis has previously been described as the major form of cell death occurring in CHO cells in bioreactors. However, these studies were undertaken when less was known about non-apoptotic cell death pathways. Here, we report the occurrence of non-apoptotic cell death in an industrial antibody-producing CHO cell line during fed-batch culture. Under standard conditions, crucial markers of apoptosis were not observed despite a decrease in viability towards the end of the culture; only by increasing stress within the system did we observe caspase activation indicative of apoptosis. In contrast, markers of parthanatos and ferroptosis were observed during standard fed-batch culture, indicating that these non-apoptotic cell death pathways contribute to viability loss under these conditions. These findings pave the way for targeting non-conventional cell death pathways to improve viability and biologic production in CHO cells.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Reactores Biológicos , Cricetinae , Animales , Cricetulus , Células CHO , Apoptosis
4.
Methods Mol Biol ; 2557: 663-690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36512244

RESUMEN

The organization of Golgi-resident proteins is crucial for sorting molecules within the secretory pathway and regulating posttranslational modifications. However, evaluating changes to Golgi organization can be challenging, often requiring extensive experimental investigations. Here, we propose a systems biology approach in which changes to Golgi-resident protein sorting and localization can be deduced using cellular N-glycan profiles as the only experimental input.The approach detailed here utilizes the influence of Golgi organization on N-glycan biosynthesis to investigate the mechanisms involved in establishing and maintaining Golgi organization. While N-glycosylation is carried out in a non-template-driven manner, the distribution of N-glycan biosynthetic enzymes within the Golgi ensures this process is not completely random. Therefore, changes to N-glycan profiles provide clues into how altered cell phenotypes affect the sorting and localization of Golgi-resident proteins. Here, we generate a stochastic simulation of N-glycan biosynthesis to produce a simulated glycan profile similar to that obtained experimentally and then combine this with Bayesian fitting to enable inference of changes in enzyme amounts and localizations. Alterations to Golgi organization are evaluated by calculating how the fitted enzyme parameters shift when moving from simulating the glycan profile of one cellular state (e.g., a wild type) to an altered cellular state (e.g., a mutant). Our approach illustrates how an iterative combination of mathematical systems biology and minimal experimental cell biology can be utilized to maximally integrate biological knowledge to gain insightful knowledge of the underlying mechanisms in a manner inaccessible to either alone.


Asunto(s)
Aparato de Golgi , Biología de Sistemas , Glicosilación , Teorema de Bayes , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo
6.
Methods Mol Biol ; 2370: 209-222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34611871

RESUMEN

Modeling glycan biosynthesis is becoming increasingly important due to the far-reaching implications that glycosylation can exhibit, from pathologies to biopharmaceutical manufacturing. Here we describe a stochastic simulation approach, to overcome the deterministic nature of previous models, that aims to simulate the action of glycan modifying enzymes to produce a glycan profile. This is then coupled with an approximate Bayesian computation methodology to systematically fit to empirical data in order to determine which set of parameters adequately describes the organization of enzymes within the Golgi. The model is described in detail along with a proof of concept and therapeutic applications.


Asunto(s)
Aparato de Golgi , Teorema de Bayes , Simulación por Computador , Glicosilación , Aparato de Golgi/metabolismo , Polisacáridos/metabolismo
7.
Beilstein J Org Chem ; 16: 2523-2533, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33093930

RESUMEN

The heterogeneity, mobility and complexity of glycans in glycoproteins have been, and currently remain, significant challenges in structural biology. These aspects present unique problems to the two most prolific techniques: X-ray crystallography and cryo-electron microscopy. At the same time, advances in mass spectrometry have made it possible to get deeper insights on precisely the information that is most difficult to recover by structure solution methods: the full-length glycan composition, including linkage details for the glycosidic bonds. The developments have given rise to glycomics. Thankfully, several large scale glycomics initiatives have stored results in publicly available databases, some of which can be accessed through API interfaces. In the present work, we will describe how the Privateer carbohydrate structure validation software has been extended to harness results from glycomics projects, and its use to greatly improve the validation of 3D glycoprotein structures.

8.
ACS Appl Nano Mater ; 3(6): 5008-5013, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32626842

RESUMEN

Nanoparticles could conceal bioactive proteins during therapeutic delivery, avoiding side effects. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with a temperature-sensitive polymer were tested for protein release. We show that coated SPIONs can entrap test proteins and release them in a temperature-controlled manner in a biological system. Magnetically heating SPIONs triggered protein release at bulk solution temperatures below the polymer transition. The entrapped growth factor Wnt3a was inactive until magnetically triggered release, upon which it could increase mesenchymal stem cell proliferation. Once the polymer transition will be chemically adjusted above body temperature, this system could be used for targeted cell stimulation in model animals and humans.

9.
Front Cell Dev Biol ; 7: 157, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31457009

RESUMEN

Heterogeneity is an inherent feature of the glycosylation process. Mammalian cells often produce a variety of glycan structures on separate molecules of the same protein, known as glycoforms. This heterogeneity is not random but is controlled by the organization of the glycosylation machinery in the Golgi cisternae. In this work, we use a computational model of the N-glycosylation process to probe how the organization of the glycosylation machinery into different cisternae drives N-glycan biosynthesis toward differing degrees of heterogeneity. Using this model, we demonstrate the N-glycosylation potential and limits of the mammalian Golgi apparatus, for example how the number of cisternae limits the goal of achieving near homogeneity for N-glycans. The production of specific glycoforms guided by this computational study could pave the way for "glycoform engineering," which will find uses in the functional investigation of glycans, the modulation of glycan-mediated physiological functions, and in biotechnology.

10.
Cell Rep ; 27(4): 1231-1243.e6, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018136

RESUMEN

The decoration of proteins by carbohydrates is essential for eukaryotic life yet heterogeneous due to a lack of biosynthetic templates. This complex carbohydrate mixture-the glycan profile-is generated in the compartmentalized Golgi, in which level and localization of glycosylation enzymes are key determinants. Here, we develop and validate a computational model for glycan biosynthesis to probe how the biosynthetic machinery creates different glycan profiles. We combined stochastic modeling with Bayesian fitting that enables rigorous comparison to experimental data despite starting with uncertain initial parameters. This is an important development in the field of glycan modeling, which revealed biological insights about the glycosylation machinery in altered cellular states. We experimentally validated changes in N-linked glycan-modifying enzymes in cells with perturbed intra-Golgi-enzyme sorting and the predicted glycan-branching activity during osteogenesis. Our model can provide detailed information on altered biosynthetic paths, with potential for advancing treatments for glycosylation-related diseases and glyco-engineering of cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Diferenciación Celular , Aparato de Golgi/metabolismo , Células Madre Mesenquimatosas/patología , Osteoblastos/patología , Osteogénesis , Polisacáridos/metabolismo , Teorema de Bayes , Movimiento Celular , Células Cultivadas , Glicosilación , Homeostasis , Humanos , Células Madre Mesenquimatosas/metabolismo , Modelos Biológicos , Osteoblastos/metabolismo , Transporte de Proteínas
11.
Nat Commun ; 10(1): 127, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631079

RESUMEN

COPI is a key mediator of protein trafficking within the secretory pathway. COPI is recruited to the membrane primarily through binding to Arf GTPases, upon which it undergoes assembly to form coated transport intermediates responsible for trafficking numerous proteins, including Golgi-resident enzymes. Here, we identify GORAB, the protein mutated in the skin and bone disorder gerodermia osteodysplastica, as a component of the COPI machinery. GORAB forms stable domains at the trans-Golgi that, via interactions with the COPI-binding protein Scyl1, promote COPI recruitment to these domains. Pathogenic GORAB mutations perturb Scyl1 binding or GORAB assembly into domains, indicating the importance of these interactions. Loss of GORAB causes impairment of COPI-mediated retrieval of trans-Golgi enzymes, resulting in a deficit in glycosylation of secretory cargo proteins. Our results therefore identify GORAB as a COPI scaffolding factor, and support the view that defective protein glycosylation is a major disease mechanism in gerodermia osteodysplastica.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteína Coat de Complejo I/metabolismo , Enzimas/metabolismo , Aparato de Golgi/metabolismo , Proteínas Adaptadoras del Transporte Vesicular , Enfermedades Óseas/congénito , Enfermedades Óseas/genética , Enfermedades Óseas/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Proteína Coat de Complejo I/genética , Proteínas de Unión al ADN , Enanismo/genética , Enanismo/metabolismo , Glicosilación , Proteínas de la Matriz de Golgi , Células HEK293 , Células HeLa , Humanos , Mutación , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Enfermedades Cutáneas Genéticas/genética , Enfermedades Cutáneas Genéticas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Cell Sci ; 131(4)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29361539

RESUMEN

Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed osteoblasts 3 weeks later. In contrast, inhibition of N-glycan processing in MSCs altered differentiation to enhance the mineralization capacity of the osteoblasts. The effect of N-glycans on MSC differentiation was mediated by the phosphoinositide-3-kinase (PI3K)/Akt pathway owing to reduced Akt phosphorylation. Interestingly, by inhibiting PI3K during the first 2 days of osteogenesis, we were able to phenocopy the effect of inhibiting N-glycan processing. Thus, glycan processing provides another layer of regulation that can modulate the functional outcome of differentiation. Glycan processing can thereby offer a novel set of targets for many therapeutically attractive processes.


Asunto(s)
Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Polisacáridos/metabolismo , Calcificación Fisiológica/genética , Línea Celular , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
Bio Protoc ; 7(22)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29201946

RESUMEN

Intra-Golgi retrograde vesicle transport is used to traffic and sort resident Golgi enzymes to their appropriate cisternal locations. An assay was established to investigate the molecular details of vesicle targeting in a cell-free system. Stable cell lines were generated in which the trans-Golgi enzyme galactosyltransferase (GalT) was tagged with either CFP or YFP. Given that GalT is recycled to the cisterna where it is located at steady state, GalT-containing vesicles target GalT-containing cisternal membranes. Golgi membranes were therefore isolated from GalT-CFP expressing cells, while vesicles were prepared from GalT-YFP expressing ones. Incubating CFP-labelled Golgi with YFP-labelled vesicles in the presence of cytosol and an energy regeneration mixture at 37 °C produced a significant increase in CFP-YFP co-localization upon fluorescent imaging of the mixture compared to incubation on ice. The assay was validated to require energy, proteins and physiologically important trafficking components such as Rab GTPases and the conserved oligomeric Golgi tethering complex. This assay is useful for the investigation of both physiological and pathological changes that affect the Golgi trafficking machinery, in particular, vesicle tethering.

14.
Anal Chem ; 89(11): 5840-5849, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28453257

RESUMEN

A method has been developed for release/isolation of O-glycans from glycoproteins in whole cell lysates for mass spectrometric analysis. Cells are lysed in SDS, which is then exchanged for urea and ammonium bicarbonate in a centrifugal filter, before treating with NH4OH to release O-glycans. Following centrifugation, O-glycans are recovered in the filtrate. Sonication achieves O-glycan release in 1 h. Combining the established protocol for filter-aided N-glycan separation, here optimized for enhanced PNGase F efficiency, with the developed O-glycan release method allows analysis of both N- and O-glycans from one sample, in the same filter unit, from 0.5 to 1 million cells. The method is compatible with subsequent analysis of the residual protein by liquid chromatography-mass spectrometry (LC-MS) after glycan release. The medium throughput approach is amenable to analysis of biological replicates, offering a simple way to assess the often subtle changes to glycan profiles accompanying differentiation and disease progression, in a statistically robust way.


Asunto(s)
Glicoproteínas/análisis , Polisacáridos/aislamiento & purificación , Proteínas/metabolismo , Diferenciación Celular , Cromatografía Liquida , Progresión de la Enfermedad , Glicosilación , Métodos , Polisacáridos/análisis , Espectrometría de Masas en Tándem
15.
J Clin Invest ; 127(1): 117-131, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27869652

RESUMEN

Tumor cells gain metastatic capacity through a Golgi phosphoprotein 3-dependent (GOLPH3-dependent) Golgi membrane dispersal process that drives the budding and transport of secretory vesicles. Whether Golgi dispersal underlies the pro-metastatic vesicular trafficking that is associated with epithelial-to-mesenchymal transition (EMT) remains unclear. Here, we have shown that, rather than causing Golgi dispersal, EMT led to the formation of compact Golgi organelles with improved ribbon linking and cisternal stacking. Ectopic expression of the EMT-activating transcription factor ZEB1 stimulated Golgi compaction and relieved microRNA-mediated repression of the Golgi scaffolding protein PAQR11. Depletion of PAQR11 dispersed Golgi organelles and impaired anterograde vesicle transport to the plasma membrane as well as retrograde vesicle tethering to the Golgi. The N-terminal scaffolding domain of PAQR11 was associated with key regulators of Golgi compaction and vesicle transport in pull-down assays and was required to reconstitute Golgi compaction in PAQR11-deficient tumor cells. Finally, high PAQR11 levels were correlated with EMT and shorter survival in human cancers, and PAQR11 was found to be essential for tumor cell migration and metastasis in EMT-driven lung adenocarcinoma models. We conclude that EMT initiates a PAQR11-mediated Golgi compaction process that drives metastasis.


Asunto(s)
Adenocarcinoma/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal , Aparato de Golgi/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Progesterona/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Eliminación de Gen , Aparato de Golgi/genética , Aparato de Golgi/patología , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Dominios Proteicos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptores de Progesterona/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
16.
Biol Open ; 5(8): 1102-10, 2016 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481842

RESUMEN

Protein recycling is important for maintaining homeostasis of the Golgi and its cisternae. The Vps54 (Scat) protein, a subunit of the GARP tethering complex, is a central factor in retrograde transport to the trans-Golgi. We found the scat(1) mutant to be male sterile in Drosophila with individualization problems occurring during spermatogenesis. Another typically observed phenotype was the abnormal nuclear structure in elongated mutant cysts. When examining the structure and function of the Golgi, a failure in acrosome formation and endosome-Golgi vesicular transport were found in the scat(1) mutant. This acrosome formation defect was due to a fault in the trans-Golgi side of the acroblast ribbon. When testing a mutation in a second retrograde transport protein, Fws, a subunit of the conserved oligomeric Golgi (COG) tethering complex, the acroblast structure, was again disrupted. fws(P) caused a similar, albeit milder, acrosome and sperm individualization phenotype as the scat(1) mutant. In the case of fws(P) the cis side of the acroblast ribbon was dispersed, in-line with the intra-Golgi retrograde function of COG. Our results highlight the importance of an intact acroblast for acrosome formation, nuclear elongation and therefore sperm maturation. Moreover, these results suggest the importance of retrograde tethering complexes in the formation of a functional Golgi ribbon.

17.
Nat Struct Mol Biol ; 23(8): 758-60, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27428773

RESUMEN

The conserved oligomeric Golgi (COG) complex orchestrates vesicular trafficking to and within the Golgi apparatus. Here, we use negative-stain electron microscopy to elucidate the architecture of the hetero-octameric COG complex from Saccharomyces cerevisiae. Intact COG has an intricate shape, with four (or possibly five) flexible legs, that differs strikingly from that of the exocyst complex and appears to be well suited for vesicle capture and fusion.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Aparato de Golgi/ultraestructura , Microscopía Electrónica , Complejos Multiproteicos/ultraestructura , Estructura Cuaternaria de Proteína
18.
Front Cell Dev Biol ; 4: 52, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303666

RESUMEN

Different cell types have different N-glycomes in mammals. This means that cellular differentiation is accompanied by changes in the N-glycan profile. Yet when the N-glycomes of cell types with differing fates diverge is unclear. We have investigated the N-glycan profiles of two different clonal populations of mesenchymal stromal cells (MSCs). One clone (Y101), when differentiated into osteoblasts, showed a marked shift in the glycan profile toward a higher abundance of complex N-glycans and more core fucosylation. Yet chemical inhibition of complex glycan formation during osteogenic differentiation did not prevent the formation of functional osteoblasts. However, the N-glycan profile of another MSC clone (Y202), which cannot differentiate into osteoblasts, was not significantly different from that of the clone that can. Interestingly, incubation of Y202 cells in osteogenic medium caused a similar reduction of oligomannose glycan content in this non-differentiating cell line. Our analysis implies that the N-glycome changes seen upon differentiation do not have direct functional links to the differentiation process. Thus N-glycans may instead be important for self-renewal rather than for cell fate determination.

19.
Front Cell Dev Biol ; 4: 23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066481

RESUMEN

The Conserved Oligomeric Golgi complex is an evolutionarily conserved multisubunit tethering complex (MTC) that is crucial for intracellular membrane trafficking and Golgi homeostasis. The COG complex interacts with core vesicle docking and fusion machinery at the Golgi; however, its exact mechanism of action is still an enigma. Previous studies of COG complex were limited to the use of CDGII (Congenital disorders of glycosylation type II)-COG patient fibroblasts, siRNA mediated knockdowns, or protein relocalization approaches. In this study we have used the CRISPR approach to generate HEK293T knock-out (KO) cell lines missing individual COG subunits. These cell lines were characterized for glycosylation and trafficking defects, cell proliferation rates, stability of COG subunits, localization of Golgi markers, changes in Golgi structure, and N-glycan profiling. We found that all KO cell lines were uniformly deficient in cis/medial-Golgi glycosylation and each had nearly abolished binding of Cholera toxin. In addition, all cell lines showed defects in Golgi morphology, retrograde trafficking and sorting, sialylation and fucosylation, but severities varied according to the affected subunit. Lobe A and Cog6 subunit KOs displayed a more severely distorted Golgi structure, while Cog2, 3, 4, 5, and 7 knock outs had the most hypo glycosylated form of Lamp2. These results led us to conclude that every subunit is essential for COG complex function in Golgi trafficking, though to varying extents. We believe that this study and further analyses of these cells will help further elucidate the roles of individual COG subunits and bring a greater understanding to the class of MTCs as a whole.

20.
Front Cell Dev Biol ; 4: 15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014691

RESUMEN

Glycosylation is recognized as a vitally important posttranslational modification. The structure of glycans that decorate proteins and lipids is largely dictated by biosynthetic reactions occurring in the Golgi apparatus. This biosynthesis relies on the relative distribution of glycosyltransferases and glycosidases, which is maintained by retrograde vesicle traffic between Golgi cisternae. Tethering of vesicles at the Golgi apparatus prior to fusion is regulated by Rab GTPases, coiled-coil tethers termed golgins and the multisubunit tethering complex known as the conserved oligomeric Golgi (COG) complex. In this review we discuss the mechanisms involved in vesicle tethering at the Golgi apparatus and highlight the importance of tethering in the context of glycan biosynthesis and a set of diseases known as congenital disorders of glycosylation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...