Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 13(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38472843

RESUMEN

Recent advancements in the field of food science have spurred a surge of research focused on unraveling the intricate world of flavor compounds in fermented food products [...].

2.
Crit Rev Biotechnol ; 44(1): 100-119, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36823717

RESUMEN

As a metaphor, lemons get a bad rap; however the proverb 'if life gives you lemons, make lemonade' is often used in a motivational context. The same could be said of Hanseniaspora in winemaking. Despite its predominance in vineyards and grape must, this lemon-shaped yeast is underappreciated in terms of its contribution to the overall sensory profile of fine wine. Species belonging to this apiculate yeast are known for being common isolates not just on grape berries, but on many other fruits. They play a critical role in the early stages of a fermentation and can influence the quality of the final product. Their deliberate addition within mixed-culture fermentations shows promise in adding to the complexity of a wine and thus provide sensorial benefits. Hanseniaspora species are also key participants in the fermentations of a variety of other foodstuffs ranging from chocolate to apple cider. Outside of their role in fermentation, Hanseniaspora species have attractive biotechnological possibilities as revealed through studies on biocontrol potential, use as a whole-cell biocatalyst and important interactions with Drosophila flies. The growing amount of 'omics data on Hanseniaspora is revealing interesting features of the genus that sets it apart from the other Ascomycetes. This review collates the fields of research conducted on this apiculate yeast genus.


Asunto(s)
Hanseniaspora , Vitis , Vino , Humanos , Levaduras , Vino/análisis , Fermentación
3.
Cell Genom ; 3(11): 100379, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020977

RESUMEN

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.

4.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37500280

RESUMEN

Lack of gene-function analyses tools limits studying the biology of Hanseniaspora uvarum, one of the most abundant yeasts on grapes and in must. We investigated a rapid PCR-based gene targeting approach for one-step gene replacement in this diploid yeast. To this end, we generated and validated two synthetic antibiotic resistance genes, pFA-hygXL and pFA-clnXL, providing resistance against hygromycin and nourseothricin, respectively, for use with H. uvarum. Addition of short flanking-homology regions of 56-80 bp to these selection markers via PCR was sufficient to promote gene targeting. We report here the deletion of the H. uvarum LEU2 and LYS2 genes with these marker genes via two rounds of consecutive transformations, each resulting in the generation of auxotrophic strains (leu2/leu2; lys2/lys2). The hereby constructed leucine auxotrophic leu2/leu2 strain was subsequently complemented in a targeted manner, thereby further validating this approach. PCR-based gene targeting in H. uvarum was less efficient than in Saccharomyces cerevisiae. However, this approach, combined with the availability of two marker genes, provides essential tools for directed gene manipulations in H. uvarum.


Asunto(s)
Hanseniaspora , Hanseniaspora/genética , Saccharomyces cerevisiae/genética , Reacción en Cadena de la Polimerasa , Marcación de Gen
5.
Foods ; 12(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37238757

RESUMEN

Traditional kombucha is a functional tea-based drink that has gained attention as a low or non-alcoholic beverage. The fermentation is conducted by a community of different microorganisms, collectively called SCOBY (Symbiotic Culture of Bacteria and Yeast) and typically consists of different acetic acid bacteria and fermenting yeast, and in some cases lactic acid bacteria that would convert the sugars into organic acids-mostly acetic acid. In this study, the effect of including a Pichia kluyveri starter culture in a kombucha fermentation was investigated. P. kluyveri additions led to a quicker accumulation of acetic acid along with the production of several acetate esters including isoamyl acetate and 2-phenethyl acetate. A subsequent tasting also noted a significant increase in the fruitiness of the kombucha. The significant contribution to the aroma content shows the promise of this yeast in future microbial formulations for kombucha fermentations.

6.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708173

RESUMEN

Wine is composed of multitudinous flavour components and volatile organic compounds that provide this beverage with its attractive properties of taste and aroma. The perceived quality of a wine can be attributed to the absolute and relative concentrations of favourable aroma compounds; hence, increasing the detectable levels of an attractive aroma, such as ß-ionone with its violet and berry notes, can improve the organoleptic qualities of given wine styles. We here describe the generation of a new grape-must fermenting strain of Saccharomyces cerevisiae that is capable of releasing ß-ionone through the heterologous expression of both the enzyme carotenoid cleavage dioxygenase 1 (CCD1) and its substrate, ß-carotene. Haploid laboratory strains of S. cerevisiae were constructed with and without integrated carotenogenic genes and transformed with a plasmid containing the genes of CCD1. These strains were then mated with a sporulated diploid wine industry yeast, VIN13, and four resultant crosses-designated MQ01-MQ04-which were capable of fermenting the must to dryness were compared for their ability to release ß-ionone. Analyses of their fermentation products showed that the MQ01 strain produced a high level of ß-ionone and offers a fermenting hybrid yeast with the potential to enhance the organoleptic qualities of wine.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Odorantes , Norisoprenoides/metabolismo , Fermentación
7.
Int J Food Microbiol ; 365: 109549, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35074659

RESUMEN

Certain yeast species belonging to the Pichia genus are known to form a distinctive film on grape must and wine. In a mixed-culture type fermentation, Pichia spp. (P. kluyveri in particular) are known to impart beneficial oenological attributes. In this study, we report on an easy isolation method of Pichia spp. from grape must by exploiting their film-forming capacity on media containing 10% ethanol. We isolated and identified two Pichia species, namely Pichia kudriavzevii and Pichia kluyveri, and subsequently co-inoculated them with Saccharomyces cerevisiae to ferment Gewürztraminer musts. Noteworthy differences included a significant increase in the 2-phenethyl acetate levels with the P. kluyveri co-fermentation and a general increase in ethyl esters with the P. kudriavzevii co-fermentation. Both Pichia co-inoculations yielded higher levels of glycerol in the final wines. Based on all the wine parameters we tested, the P. kluyveri strain that was isolated performed similarly to a commercial P. kluyveri strain.


Asunto(s)
Vitis , Vino , Fermentación , Pichia , Saccharomyces cerevisiae , Vino/análisis
8.
J Agric Food Chem ; 69(40): 11919-11925, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34609136

RESUMEN

Polyfunctional thiols like 3-sulfanylhexan-1-ol (3SH) and its ester 3-sulfanylhexyl acetate (3SHA) are important aroma determinants in wine with exceptionally low odor thresholds. 3SH is largely found in grape must bound to glutathione and cysteine and requires enzymatic action to be perceived sensorially. The wine yeast Saccharomyces cerevisiae is ineffective in releasing volatile thiols from their precursor configuration. For this purpose, a yeast strain was constructed that expresses the carbon-sulfur lyase encoding the tnaA gene from Escherichia coli and overexpresses its native alcohol acetyltransferase encoding genes, ATF1 and ATF2. The resulting yeast strain, which co-expresses tnaA and ATF1, showed elevated 3SH-releasing capabilities and the esterification of 3SH to its acetate ester 3SHA. Levels of over 7000 ng/L of 3SHA in Sauvignon blanc wines were achieved. Enhanced release and esterification of 3SH were also shown in the fermentation of guava and passionfruit pulp and three hop varieties. This study offers prospects for the development of flavor-enhancing yeast strains with optimized thiol-releasing and esterification capabilities in a diverse set of beverage matrices.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vitis , Vino , Acetiltransferasas , Esterificación , Fermentación , Hexanoles , Odorantes/análisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Compuestos de Sulfhidrilo , Vino/análisis
9.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669299

RESUMEN

Apiculate yeasts belonging to the genus Hanseniaspora are commonly isolated from viticultural settings and often dominate the initial stages of grape must fermentations. Although considered spoilage yeasts, they are now increasingly becoming the focus of research, with several whole-genome sequencing studies published in recent years. However, tools for their molecular genetic manipulation are still lacking. Here, we report the development of a tool for the genetic modification of Hanseniaspora uvarum. This was employed for the disruption of the HuATF1 gene, which encodes a putative alcohol acetyltransferase involved in acetate ester formation. We generated a synthetic marker gene consisting of the HuTEF1 promoter controlling a hygromycin resistance open reading frame (ORF). This new marker gene was used in disruption cassettes containing long-flanking (1000 bp) homology regions to the target locus. By increasing the antibiotic concentration, transformants were obtained in which both alleles of the putative HuATF1 gene were deleted in a diploid H. uvarum strain. Phenotypic characterisation including fermentation in Müller-Thurgau must showed that the null mutant produced significantly less acetate ester, particularly ethyl acetate. This study marks the first steps in the development of gene modification tools and paves the road for functional gene analyses of this yeast.


Asunto(s)
Eliminación de Gen , Ingeniería Genética/métodos , Hanseniaspora/enzimología , Hanseniaspora/genética , Microorganismos Modificados Genéticamente/genética , Proteínas/genética , Acetatos/metabolismo , Alelos , Fermentación/genética , Genes Fúngicos , Sistemas de Lectura Abierta , Fenotipo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vitis/metabolismo , Vino
10.
Cells ; 9(11)2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158165

RESUMEN

Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors.


Asunto(s)
Mycobacterium abscessus/enzimología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Animales , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Eliminación de Gen , Humanos , Larva/microbiología , Macrófagos/microbiología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/patogenicidad , Mycobacterium abscessus/ultraestructura , N-Acetil Muramoil-L-Alanina Amidasa/antagonistas & inhibidores , Fenotipo , Homología Estructural de Proteína , Células THP-1 , Virulencia , Pez Cebra
11.
Foods ; 9(6)2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32498265

RESUMEN

Speeding up grape must fermentation would be of great economic benefit. We subjected Saccharomyces cerevisiae VIN13 and two recombinant VIN13-strains expressing ATF1 alleles under two different promoters (either PGK1 or HXT7) to four styles of grape must fermentations; we then assessed the effect of constantly stirring a must fermentation (isomixing). The four different fermentation setups were as follows: isomixed, closed in an ANKOM Rf Gas productions system; isomixed, open in a stirred tall tube cylinder; static, closed constituting a conventional fermentation in a wine bottle equipped with an airlock and static; and static, open in a tall tube cylinder (without stirring). We report on major fermentation parameters and the volatile aroma compositions generated in the finished wines. The primary fermentations of the strains subjected to constant stirring finished after 7 days, whereas the static fermentations reached dryness after 19 days. The wines derived from isomixed fermentations produced approximately 0.7% less ethanol compared to the unstirred fermentations. The speed that the isomixed fermentation took to reach completion may provide an alternative to static fermentations in the preparation of base wines for sparkling wine production. The observed increase of volatiles of isomixed fermentations merits further investigation.

12.
Int J Food Microbiol ; 324: 108615, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32371236

RESUMEN

In recent years, CRISPR/Cas9-based genetic editing has become a mainstay in many laboratories including manipulations done with yeast. We utilized this technique to generate a self-cloned wine yeast strain that overexpresses two genes of oenological relevance i.e. the glycerol-3-phosphate dehydrogenase 1 (GPD1) and the alcohol acetyltransferase 1 (ATF1) directly implicated in glycerol and acetate ester production respectively. Riesling wine made from the resulting strain showed increased glycerol and acetate ester levels compared to the parental strain. In addition, significantly less acetic acid levels were measured in wine made with yeast containing both genetic alterations compared to wine made with the strain that only overexpresses GPD1. Thus, this strain provides an alternative strategy for alleviating the accumulation of acetic acid once glycerol production is favoured during alcoholic fermentation with the addition of dramatically increasing acetate esters production.


Asunto(s)
Sistemas CRISPR-Cas , Saccharomyces cerevisiae/genética , Vino/microbiología , Ácido Acético/análisis , Ácido Acético/metabolismo , Fermentación , Edición Génica , Glicerol/análisis , Glicerol/metabolismo , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/genética , Glicerol-3-Fosfato Deshidrogenasa (NAD+)/metabolismo , Fenotipo , Proteínas/genética , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vino/análisis
13.
J Agric Food Chem ; 67(49): 13496-13505, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31724402

RESUMEN

Despite being used chiefly for fermenting the sugars of grape must to alcohol, wine yeasts (most prominently Saccharomyces cerevisiae) play a pivotal role in the final aroma profiles of wines. Strain selection, intentionally incorporating non-Saccharomyces yeast in so-called mixed-culture fermentations, and genetic modifications of S. cerevisiae have all been shown to greatly enhance the chemical composition and sensory profile of wines. In this Review, we highlight how wine researchers employ fermenting yeasts to expand on the aroma profiles of the wines they study.


Asunto(s)
Aromatizantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Vino/análisis , Fermentación , Aromatizantes/química , Odorantes/análisis , Saccharomyces cerevisiae/genética , Vitis/química , Vitis/microbiología
15.
Acta Crystallogr D Struct Biol ; 74(Pt 5): 383-393, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717709

RESUMEN

In mycobacteria, the ketoacyl-acyl carrier protein (ACP) reductase MabA (designated FabG in other bacteria) catalyzes the NADPH-dependent reduction of ß-ketoacyl-ACP substrates to ß-hydroxyacyl-ACP products. This first reductive step in the fatty-acid biosynthesis elongation cycle is essential for bacteria, which makes MabA/FabG an interesting drug target. To date, however, very few molecules targeting FabG have been discovered and MabA remains the only enzyme of the mycobacterial type II fatty-acid synthase that lacks specific inhibitors. Despite the existence of several MabA/FabG crystal structures, the structural rearrangement that occurs upon cofactor binding is still not fully understood. Therefore, unlocking this knowledge gap could help in the design of new inhibitors. Here, high-resolution crystal structures of MabA from Mycobacterium smegmatis in its apo, NADP+-bound and NADPH-bound forms are reported. Comparison of these crystal structures reveals the structural reorganization of the lid region covering the active site of the enzyme. The crystal structure of the apo form revealed numerous residues that trigger steric hindrance to the binding of NADPH and substrate. Upon NADPH binding, these residues are pushed away from the active site, allowing the enzyme to adopt an open conformation. The transition from an NADPH-bound to an NADP+-bound form is likely to facilitate release of the product. These results may be useful for subsequent rational drug design and/or for in silico drug-screening approaches targeting MabA/FabG.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/química , Mycobacterium smegmatis/química , NADP/química , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Acido Graso Sintasa Tipo II , Mycobacterium smegmatis/enzimología , NADP/metabolismo , Unión Proteica , Conformación Proteica
16.
Tuberculosis (Edinb) ; 108: 169-177, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29523320

RESUMEN

Nucleoid associated proteins (NAPs) are known organisers of chromosomal structure and regulators of transcriptional expression. The number of proposed NAPs in mycobacteria are significantly lower than the number identified in other organisms. An interesting feature of mycobacterial NAPs is their low sequence similarity with those in other species, a property that has hindered their identification. In this review, we discuss the current evidence for the proposed classification of six mycobacterial proteins, Lsr2, EspR, mIHF, HupB, MDP2 and NapM, as NAPs in mycobacterial species with an emphasis on their roles in modulating chromosome structure and transcriptional regulation. In addition, we highlight the technical difficulties associated with investigating and providing evidence for the classification of proteins as NAPs in mycobacteria. We also address the role of mycobacterial NAPs as mediators of stress responses and highlight the recent developments aimed at targeting NAP-DNA interactions for the development of novel anti-TB drugs.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/genética , Proteínas Bacterianas/metabolismo , Cromosomas Bacterianos/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Conformación de Ácido Nucleico , Estrés Fisiológico , Transcripción Genética
17.
Glycobiology ; 27(5): 392-399, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28168306

RESUMEN

It was recently shown that Mycobacterium tuberculosis produces cellulose which forms an integral part of its extracellular polymeric substances within a biofilm set-up. Using Mycobacterium smegmatis as a proxy model organism, we demonstrate that M. smegmatis biofilms treated with purified MSMEG_6752 releases the main cellulose degradation-product (cellobiose), detected by using ionic chromatography, suggesting that MSMEG_6752 encodes a cellulase. Its overexpression in M. smegmatis prevents spontaneous biofilm formation. Moreover, the method reported here allowed detecting cellobiose when M. smegmatis cultures were exposed to a subinhibitory dose of rifampicin. Overall, this study highlights the role of the MSMEG_6752 in managing cellulose production induced during biofilm formation and antibiotic stress response.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Celulasa/química , Celulosa/metabolismo , Mycobacterium smegmatis/enzimología , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Celulasa/metabolismo , Celulosa/biosíntesis , Celulosa/química , Cromatografía , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Mycobacterium tuberculosis/enzimología , Rifampin/farmacología
18.
Biochem J ; 474(6): 907-921, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28126742

RESUMEN

The ketoacyl-acyl carrier protein (ACP) reductase FabG catalyzes the NADPH/NADH dependent reduction of ß-ketoacyl-ACP substrates to ß-hydroxyacyl-ACP products, the first reductive step in the fatty acid biosynthesis elongation cycle. FabG proteins are ubiquitous in bacteria and are part of the type II fatty acid synthase system. Mining the Mycobacterium smegmatis genome uncovered several putative FabG-like proteins. Among them, we identified M. smegmatis MSMEG_6753 whose gene was found adjacent to MSMEG_6754, encoding a recently characterized enoyl-CoA dehydratase, and to MSMEG_6755, encoding another potential reductase. Recombinantly expressed and purified MSMEG_6753 exhibits ketoacyl reductase activity in the presence of acetoacetyl-CoA and NADPH. This activity was subsequently confirmed by functional complementation studies in a fabG thermosensitive Escherichia coli mutant. Furthermore, comparison of the apo and the NADP+-bound MSMEG_6753 crystal structures showed that cofactor binding induces a closed conformation of the protein. A ΔMSMEG_6753 deletion mutant could be generated in M. smegmatis, indicating that this gene is dispensable for mycobacterial growth. Overall, these results showcase the diversity of FabG-like proteins in mycobacteria and new structural features regarding the catalytic mechanism of this important family of enzymes that may be of importance for the rational design of specific FabG inhibitors.


Asunto(s)
Acilcoenzima A/química , Oxidorreductasas de Alcohol/química , Proteínas Bacterianas/química , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , NADP/química , Acilcoenzima A/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Enoil-CoA Hidratasa/química , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Prueba de Complementación Genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , NADP/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
19.
Glycobiology ; 27(2): 112-122, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27697825

RESUMEN

Glycoside hydrolases (GHs) are enzymes that catalyze the hydrolysis of glycosidic bonds in glycoconjugates, oligo- and polysaccharides. A classification of these enzymes based on conserved sequence and structure motifs supported by the Carbohydrate Active Enzyme (CAZy) database has proven useful in the systematic groupings of similar enzymes into families. The human pathogen Mycobacterium tuberculosis employs 30 GHs to perform a variety of different functions, which can be divided into four broad categories: α-glucan metabolism, peptidoglycan remodeling, ß-glycan hydrolysis and α-demannosylation. The review presented here shows how the GHs that have been characterized play a role in each category. Expanding the genomic analysis of GH presence to other Mycobacterium species has highlighted the importance of certain families-most notably GH13 and GH23-in the general genomic make-up of mycobacteria. Since many GHs are still uncharacterized and considered as "conserved hypothetical" proteins, the grouping of them into respective families provides a strong prediction on their putative biological functions.


Asunto(s)
Pared Celular/enzimología , Glicósido Hidrolasas/genética , Mycobacterium tuberculosis/enzimología , beta-Glucanos/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Pared Celular/genética , Secuencia Conservada , Glicoconjugados/genética , Glicoconjugados/metabolismo , Glicósido Hidrolasas/clasificación , Humanos , Hidrólisis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Polisacáridos/genética , Polisacáridos/metabolismo
20.
FEBS J ; 282(24): 4782-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26426731

RESUMEN

Sucrolytic enzymes catalyse sucrose hydrolysis or the synthesis of fructooligosaccharides (FOSs), a prebiotic in human and animal nutrition. FOS synthesis capacity differs between sucrolytic enzymes. Amino-acid-sequence-based classification of FOS synthesizing enzymes would greatly facilitate the in silico identification of novel catalysts, as large amounts of sequence data lie untapped. The development of a bioinformatics tool to rapidly distinguish between high-level FOSs synthesizing predominantly sucrose hydrolysing enzymes from fungal genomic data is presented. Sequence comparison of functionally characterized enzymes displaying low- and high-level FOS synthesis revealed conserved motifs unique to each group. New light is shed on the sequence context of active site residues in three previously identified conserved motifs. We characterized two enzymes predicted to possess low- and high-level FOS synthesis activities based on their conserved motif sequences. FOS data for the enzymes confirmed our successful prediction of their FOS synthesis capacity. Structural comparison of enzymes displaying low- and high-level FOS synthesis identified steric hindrance between nystose and a long loop region present only in low-level FOS synthesizers. This loop is proposed to limit the synthesis of FOS species with higher degrees of polymerization, a phenomenon observed among enzymes displaying low-level FOS synthesis. Conserved sequence motifs surrounding catalytic residues and a distant structural determinant were identifiers of FOS synthesis capacity and allow for functional annotation of sucrolytic enzymes directly from amino acid sequence. The tool presented may also be useful to study the structure-function relationships of ß-fructofuranosidases by identifying mutations present in a group of closely related enzymes displaying similar function.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/enzimología , Hexosiltransferasas/metabolismo , beta-Fructofuranosidasa/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dominio Catalítico , Biología Computacional/métodos , Secuencia Conservada , Bases de Datos de Ácidos Nucleicos , Bases de Datos de Proteínas , Sistemas Especialistas , Proteínas Fúngicas/química , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Hexosiltransferasas/química , Hexosiltransferasas/clasificación , Hexosiltransferasas/genética , Cinética , Datos de Secuencia Molecular , Filogenia , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/clasificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/clasificación , beta-Fructofuranosidasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...