Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Front Neurol ; 15: 1399124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854965

RESUMEN

Introduction: Distinguishing tremor-dominant Parkinson's disease (tPD) from essential tremor with rest tremor (rET) can be challenging and often requires dopamine imaging. This study aimed to differentiate between these two diseases through a machine learning (ML) approach based on rest tremor (RT) electrophysiological features and structural MRI data. Methods: We enrolled 72 patients including 40 tPD patients and 32 rET patients, and 45 control subjects (HC). RT electrophysiological features (frequency, amplitude, and phase) were calculated using surface electromyography (sEMG). Several MRI morphometric variables (cortical thickness, surface area, cortical/subcortical volumes, roughness, and mean curvature) were extracted using Freesurfer. ML models based on a tree-based classification algorithm termed XGBoost using MRI and/or electrophysiological data were tested in distinguishing tPD from rET patients. Results: Both structural MRI and sEMG data showed acceptable performance in distinguishing the two patient groups. Models based on electrophysiological data performed slightly better than those based on MRI data only (mean AUC: 0.92 and 0.87, respectively; p = 0.0071). The top-performing model used a combination of sEMG features (amplitude and phase) and MRI data (cortical volumes, surface area, and mean curvature), reaching AUC: 0.97 ± 0.03 and outperforming models using separately either MRI (p = 0.0001) or EMG data (p = 0.0231). In the best model, the most important feature was the RT phase. Conclusion: Machine learning models combining electrophysiological and MRI data showed great potential in distinguishing between tPD and rET patients and may serve as biomarkers to support clinicians in the differential diagnosis of rest tremor syndromes in the absence of expensive and invasive diagnostic procedures such as dopamine imaging.

2.
J Imaging ; 10(4)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38667994

RESUMEN

Radiomics represents an innovative approach to medical image analysis, enabling comprehensive quantitative evaluation of radiological images through advanced image processing and Machine or Deep Learning algorithms. This technique uncovers intricate data patterns beyond human visual detection. Traditionally, executing a radiomic pipeline involves multiple standardized phases across several software platforms. This could represent a limit that was overcome thanks to the development of the matRadiomics application. MatRadiomics, a freely available, IBSI-compliant tool, features its intuitive Graphical User Interface (GUI), facilitating the entire radiomics workflow from DICOM image importation to segmentation, feature selection and extraction, and Machine Learning model construction. In this project, an extension of matRadiomics was developed to support the importation of brain MRI images and segmentations in NIfTI format, thus extending its applicability to neuroimaging. This enhancement allows for the seamless execution of radiomic pipelines within matRadiomics, offering substantial advantages to the realm of neuroimaging.

3.
Diagnostics (Basel) ; 14(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396401

RESUMEN

Most patients with idiopathic REM sleep behavior disorder (iRBD) present peculiar repetitive leg jerks during sleep in their clinical spectrum, called periodic leg movements (PLMS). The clinical differentiation of iRBD patients with and without PLMS is challenging, without polysomnographic confirmation. The aim of this study is to develop a new Machine Learning (ML) approach to distinguish between iRBD phenotypes. Heart rate variability (HRV) data were acquired from forty-two consecutive iRBD patients (23 with PLMS and 19 without PLMS). All participants underwent video-polysomnography to confirm the clinical diagnosis. ML models based on Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) were trained on HRV data, and classification performances were assessed using Leave-One-Out cross-validation. No significant clinical differences emerged between the two groups. The RF model showed the best performance in differentiating between iRBD phenotypes with excellent accuracy (86%), sensitivity (96%), and specificity (74%); SVM and XGBoost had good accuracy (81% and 78%, respectively), sensitivity (83% for both), and specificity (79% and 72%, respectively). In contrast, LR had low performances (accuracy 71%). Our results demonstrate that ML algorithms accurately differentiate iRBD patients from those without PLMS, encouraging the use of Artificial Intelligence to support the diagnosis of clinically indistinguishable iRBD phenotypes.

4.
J Neurol ; 271(4): 1910-1920, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38108896

RESUMEN

BACKGROUND: Postural instability (PI) is a common disabling symptom in Parkinson's disease (PD), but little is known on its pathophysiological basis. OBJECTIVE: In this study, we aimed to identify the brain structures associated with PI in PD patients, using different MRI approaches. METHODS: We consecutively enrolled 142 PD patients and 45 control subjects. PI was assessed using the MDS-UPDRS-III pull-test item (PT). A whole-brain regression analysis identified brain areas where grey matter (GM) volume correlated with the PT score in PD patients. Voxel-based morphometry (VBM) and Tract-Based Spatial Statistics (TBSS) were also used to compare unsteady (PT ≥ 1) and steady (PT = 0) PD patients. Associations between GM volume in regions of interest (ROI) and several clinical features were then investigated using LASSO regression analysis. RESULTS: PI was present in 44.4% of PD patients. The whole-brain approach identified the bilateral inferior frontal gyrus (IFG) and superior temporal gyrus (STG) as the only regions associated with the presence of postural instability. VBM analysis showed reduced GM volume in fronto-temporal areas (superior, middle, medial and inferior frontal gyrus, and STG) in unsteady compared with steady PD patients, and the GM volume of these regions was selectively associated with the PT score and not with any other motor or non-motor symptom. CONCLUSIONS: This study demonstrates a significant atrophy of fronto-temporal regions in unsteady PD patients, suggesting that these brain areas may play a role in the pathophysiological mechanisms underlying postural instability in PD. This result paves the way for further studies on postural instability in Parkinsonism.


Asunto(s)
Enfermedad de Parkinson , Humanos , Encéfalo , Sustancia Gris , Neuroimagen , Imagen por Resonancia Magnética/métodos
5.
Bioengineering (Basel) ; 10(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37760127

RESUMEN

Rest tremor (RT) is observed in subjects with Parkinson's disease (PD) and Essential Tremor (ET). Electromyography (EMG) studies have shown that PD subjects exhibit alternating contractions of antagonistic muscles involved in tremors, while the contraction pattern of antagonistic muscles is synchronous in ET subjects. Therefore, the RT pattern can be used as a potential biomarker for differentiating PD from ET subjects. In this study, we developed a new wearable device and method for differentiating alternating from a synchronous RT pattern using inertial data. The novelty of our approach relies on the fact that the evaluation of synchronous or alternating tremor patterns using inertial sensors has never been described so far, and current approaches to evaluate the tremor patterns are based on surface EMG, which may be difficult to carry out for non-specialized operators. This new device, named "RT-Ring", is based on a six-axis inertial measurement unit and a Bluetooth Low-Energy microprocessor, and can be worn on a finger of the tremulous hand. A mobile app guides the operator through the whole acquisition process of inertial data from the hand with RT, and the prediction of tremor patterns is performed on a remote server through machine learning (ML) models. We used two decision tree-based algorithms, XGBoost and Random Forest, which were trained on features extracted from inertial data and achieved a classification accuracy of 92% and 89%, respectively, in differentiating alternating from synchronous tremor segments in the validation set. Finally, the classification response (alternating or synchronous RT pattern) is shown to the operator on the mobile app within a few seconds. This study is the first to demonstrate that different electromyographic tremor patterns have their counterparts in terms of rhythmic movement features, thus making inertial data suitable for predicting the muscular contraction pattern of tremors.

6.
Parkinsonism Relat Disord ; 113: 105768, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37480615

RESUMEN

OBJECTIVE: We aimed to identify the brain structures associated with postural instability (PI) in Progressive Supranuclear Palsy (PSP). METHODS: Forty-seven PSP patients and 45 control subjects were enrolled in this study. PI was assessed using the items 27 and 28 of the PSP rating scale (postural instability score, PIS). PSP patients were compared with controls using voxel-based morphometry (VBM). In PSP patients, LASSO regression model was used to investigate associations between VBM-based Region-Of-Interest grey matter (GM) volumes and different categories of the PSP rating scale. A whole-brain multi-regression analysis was also used to identify brain areas where GM volumes correlated with the PIS in PSP patients. RESULTS: VBM analysis showed widespread GM atrophy (fronto-temporal-parietal-occipital regions, limbic lobes, insula, cerebellum, and basal ganglia) in PSP patients compared with control subjects. In PSP patients, LASSO regression analysis showed associations of the right cerebellar lobules IV-V with ocular motor category score, and the left Rolandic area with bulbar category score, while the right inferior frontal gyrus (IFG) was negatively correlated with the PIS. The whole-brain multi-regression analysis identified the right IFG as the only area significantly associated with the PIS. CONCLUSIONS: In our study, two different approaches demonstrated that the IFG volume was associated with PIS in PSP patients, suggesting that this area may play a role in the pathophysiological mechanisms underlying PI. Our findings may have important implications for developing optimal Transcranial Magnetic Stimulation protocols targeting IFG in parkinsonism with postural disorders.


Asunto(s)
Parálisis Supranuclear Progresiva , Humanos , Encéfalo/diagnóstico por imagen , Neuroimagen , Corteza Cerebral , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
7.
J Neurol ; 270(11): 5502-5515, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37507502

RESUMEN

BACKGROUND: Differentiating Progressive supranuclear palsy-Richardson's syndrome (PSP-RS) from PSP-Parkinsonism (PSP-P) may be extremely challenging. In this study, we aimed to distinguish these two PSP phenotypes using MRI structural data. METHODS: Sixty-two PSP-RS, 40 PSP-P patients and 33 control subjects were enrolled. All patients underwent brain 3 T-MRI; cortical thickness and cortical/subcortical volumes were extracted using Freesurfer on T1-weighted images. We calculated the automated MR Parkinsonism Index (MRPI) and its second version including also the third ventricle width (MRPI 2.0) and tested their classification performance. We also employed a Machine learning (ML) classification approach using two decision tree-based algorithms (eXtreme Gradient Boosting [XGBoost] and Random Forest) with different combinations of structural MRI data in differentiating between PSP phenotypes. RESULTS: MRPI and MRPI 2.0 had AUC of 0.88 and 0.81, respectively, in differentiating PSP-RS from PSP-P. ML models demonstrated that the combination of MRPI and volumetric/thickness data was more powerful than each feature alone. The two ML algorithms showed comparable results, and the best ML model in differentiating between PSP phenotypes used XGBoost with a combination of MRPI, cortical thickness and subcortical volumes (AUC 0.93 ± 0.04). Similar performance (AUC 0.93 ± 0.06) was also obtained in a sub-cohort of 59 early PSP patients. CONCLUSION: The combined use of MRPI and volumetric/thickness data was more accurate than each MRI feature alone in differentiating between PSP-RS and PSP-P. Our study supports the use of structural MRI to improve the early differential diagnosis between common PSP phenotypes, which may be relevant for prognostic implications and patient inclusion in clinical trials.


Asunto(s)
Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Humanos , Trastornos Parkinsonianos/diagnóstico , Imagen por Resonancia Magnética/métodos , Parálisis Supranuclear Progresiva/diagnóstico , Neuroimagen , Diagnóstico Diferencial
8.
Diagnostics (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359532

RESUMEN

Background and purpose: Growing evidence suggests that Machine Learning (ML) models can assist the diagnosis of neurological disorders. However, little is known about the potential application of ML in diagnosing idiopathic REM sleep behavior disorder (iRBD), a parasomnia characterized by a high risk of phenoconversion to synucleinopathies. This study aimed to develop a model using ML algorithms to identify iRBD patients and test its accuracy. Methods: Data were acquired from 32 participants (20 iRBD patients and 12 controls). All subjects underwent a video-polysomnography. In all subjects, we measured the components of heart rate variability (HRV) during 24 h recordings and calculated night-to-day ratios (cardiac autonomic indices). Discriminating performances of single HRV features were assessed. ML models based on Logistic Regression (LR), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were trained on HRV data. The utility of HRV features and ML models for detecting iRBD was evaluated by area under the ROC curve (AUC), sensitivity, specificity and accuracy corresponding to optimal models. Results: Cardiac autonomic indices had low performances (accuracy 63-69%) in distinguishing iRBD from control subjects. By contrast, the RF model performed the best, with excellent accuracy (94%), sensitivity (95%) and specificity (92%), while XGBoost showed accuracy (91%), specificity (83%) and sensitivity (95%). The mean triangular index during wake (TIw) was the best discriminating feature between iRBD and HC, with 81% accuracy, reaching 84% accuracy when combined with VLF power during sleep using an LR model. Conclusions: Our findings demonstrated that ML algorithms can accurately identify iRBD patients. Our model could be used in clinical practice to facilitate the early detection of this form of RBD.

9.
Parkinsonism Relat Disord ; 103: 7-14, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35988437

RESUMEN

INTRODUCTION: Progressive supranuclear palsy (PSP) and idiopathic normal pressure hydrocephalus (iNPH) share several clinical and radiological features, making the differential diagnosis challenging. In this study, we aimed to differentiate between these two diseases using a machine learning approach based on cortical thickness and volumetric data. METHODS: Twenty-three iNPH patients, 50 PSP patients and 55 control subjects were enrolled. All participants underwent a brain 3T-MRI, and cortical thickness and volumes were extracted using Freesurfer 6 on T1-weighted images and compared among groups. Finally, the performance of a machine learning approach with random forest using the extracted cortical features was investigated to differentiate between iNPH and PSP patients. RESULTS: iNPH patients showed cortical thinning and volume loss in the frontal lobe, temporal lobe and cingulate cortex, and thickening in the superior parietal gyrus in comparison with controls and PSP patients. PSP patients only showed mild thickness and volume reduction in the frontal lobe, compared to control subjects. Random Forest algorithm distinguished iNPH patients from controls with AUC of 0.96 and from PSP patients with AUC of 0.95, while a lower performance (AUC 0.76) was reached in distinguishing PSP from controls. CONCLUSION: This study demonstrated a more severe and widespread cortical involvement in iNPH than in PSP, possibly due to the marked lateral ventricular enlargement which characterizes iNPH. A machine learning model using thickness and volumetric data led to accurate differentiation between iNPH and PSP patients, which may help clinicians in the differential diagnosis and in the selection of patients for shunt procedures.


Asunto(s)
Hidrocéfalo Normotenso , Enfermedades Neurodegenerativas , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Atrofia , Hidrocéfalo Normotenso/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático
10.
Brain Sci ; 12(7)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35884755

RESUMEN

The clinical differential diagnosis between Parkinson's disease (PD) and progressive supranuclear palsy (PSP) is often challenging. The description of milder PSP phenotypes strongly resembling PD, such as PSP-Parkinsonism, further increased the diagnostic challenge and the need for reliable neuroimaging biomarkers to enhance the diagnostic certainty. This review aims to summarize the contribution of a relatively simple and widely available imaging technique such as MR planimetry in the differential diagnosis between PD and PSP, focusing on the recent advancements in this field. The development of accurate MR planimetric biomarkers, together with the implementation of automated algorithms, led to robust and objective measures for the differential diagnosis of PSP and PD at the individual level. Evidence from longitudinal studies also suggests a role of MR planimetry in predicting the development of the PSP clinical signs, allowing to identify PSP patients before they meet diagnostic criteria when their clinical phenotype can be indistinguishable from PD. Finally, promising evidence exists on the possible association between MR planimetric measures and the underlying pathology, with important implications for trials with new disease-modifying target therapies.

11.
J Neurol ; 269(11): 6029-6035, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35852601

RESUMEN

BACKGROUND: Imaging studies investigating cerebellar gray matter (GM) in essential tremor (ET) showed conflicting results. Moreover, no large study explored the cerebellum in ET patients with resting tremor (rET), a syndrome showing enhanced blink reflex recovery cycle (BRrc). OBJECTIVE: To investigate cerebellar GM in ET and rET patients using voxel-based morphometry (VBM) analysis. METHODS: Seventy ET patients with or without resting tremor and 39 healthy controls were enrolled. All subjects underwent brain 3 T-MRI and BRrc recording. We compared the cerebellar GM volumes between ET (n = 40) and rET (n = 30) patients and controls through a VBM analysis. Moreover, we investigated possible correlations between cerebellar GM volume and R2 component of BRrc. RESULTS: rET and ET patients had similar disease duration. All rET patients and none of ET patients had enhanced BRrc. No differences in the cerebellar volume were found when ET and rET patients were compared to each other or with controls. By considering together the two tremor syndromes in a large patient group, the VBM analysis showed bilateral clusters of reduced GM volumes in Crus II in comparison with controls. The linear regression analysis in rET patients revealed a cluster in the left Crus II where the decrease in GM volume correlated with the R2BRrc increase. CONCLUSION: Our study suggests that ET and rET are different tremor syndromes with similar mild cerebellar gray matter involvement. In rET patients, the left Crus II may play a role in modulating the brainstem excitability, encouraging further studies on the role of cerebellum in these patients.


Asunto(s)
Temblor Esencial , Cerebelo/diagnóstico por imagen , Temblor Esencial/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Temblor
12.
Parkinsonism Relat Disord ; 99: 84-90, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642995

RESUMEN

INTRODUCTION: Progressive supranuclear palsy (PSP) patients show reduced amplitude and velocity of vertical saccades, but saccadic abnormalities have also been reported in Parkinson's disease (PD). We investigated amplitude and velocity of vertical saccades in PSP and PD patients, to establish the best video-oculographic (VOG) parameters for PSP diagnosis. METHODS: Fifty-one PSP patients, 113 PD patients and 40 controls were enrolled. The diagnosis was performed on a clinico-radiological basis (MR Parkinsonism index [MRPI] and MRPI 2.0). We used VOG to assess the diagnostic performances of saccadic amplitude, peak velocity, and their product (AxV) in upward or downward direction and in vertical gaze (upward and downward averaged) in distinguishing PSP from PD patients. The vestibulo-ocular reflex, necessary to establish the supranuclear nature of ocular dysfunction, was evaluated clinically. RESULTS: PSP patients showed significantly reduced amplitude and peak velocity of ocular saccades in upward and downward directions compared to PD and healthy subjects. In PD patients, upward gaze amplitude was lower than in controls. In vertical gaze, the peak velocity showed 99.1% specificity and 54.7% sensitivity for PSP classification. The AxV product showed high specificity (94.7%) and sensitivity (84.3%) and yielded higher accuracy (91.5%) than velocity and amplitude used alone in distinguishing PSP from PD. CONCLUSION: Our study demonstrates that the peak velocity of vertical saccades was a very low sensitive parameter and cannot be used alone for PSP diagnosis. A new index combining amplitude and peak velocity in vertical gaze seems the most suitable video-oculographic biomarker for differentiating PSP from PD and controls.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Biomarcadores , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Trastornos Parkinsonianos/diagnóstico , Parálisis Supranuclear Progresiva/diagnóstico
13.
Mov Disord ; 37(6): 1272-1281, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403258

RESUMEN

BACKGROUND: Differentiating progressive supranuclear palsy-parkinsonism (PSP-P) from Parkinson's disease (PD) is clinically challenging. OBJECTIVE: This study aimed to develop an automated Magnetic Resonance Parkinsonism Index 2.0 (MRPI 2.0) algorithm to distinguish PSP-P from PD and to validate its diagnostic performance in two large independent cohorts. METHODS: We enrolled 676 participants: a training cohort (n = 346; 43 PSP-P, 194 PD, and 109 control subjects) from our center and an independent testing cohort (n = 330; 62 PSP-P, 171 PD, and 97 control subjects) from an international research group. We developed a new in-house algorithm for MRPI 2.0 calculation and assessed its performance in distinguishing PSP-P from PD and control subjects in both cohorts using receiver operating characteristic curves. RESULTS: The automated MRPI 2.0 showed excellent performance in differentiating patients with PSP-P from patients with PD and control subjects both in the training cohort (area under the receiver operating characteristic curve [AUC] = 0.93 [95% confidence interval, 0.89-0.98] and AUC = 0.97 [0.93-1.00], respectively) and in the international testing cohort (PSP-P versus PD, AUC = 0.92 [0.87-0.97]; PSP-P versus controls, AUC = 0.94 [0.90-0.98]), suggesting the generalizability of the results. The automated MRPI 2.0 also accurately distinguished between PSP-P and PD in the early stage of the diseases (AUC = 0.91 [0.84-0.97]). A strong correlation (r = 0.91, P < 0.001) was found between automated and manual MRPI 2.0 values. CONCLUSIONS: Our study provides an automated, validated, and generalizable magnetic resonance biomarker to distinguish PSP-P from PD. The use of the automated MRPI 2.0 algorithm rather than manual measurements could be important to standardize measures in patients with PSP-P across centers, with a positive impact on multicenter studies and clinical trials involving patients from different geographic regions. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Parálisis Supranuclear Progresiva , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Parálisis/diagnóstico , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/diagnóstico por imagen , Trastornos Parkinsonianos/diagnóstico por imagen , Parálisis Supranuclear Progresiva/diagnóstico por imagen
14.
Neurol Sci ; 43(6): 3621-3627, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35034234

RESUMEN

BACKGROUND: Rest tremor (RT) can be observed in several positions (seated, standing, lying down) but it is unknown whether the tremor features may vary across them. This study aimed to compare the RT electrophysiological features across different positions in tremor-dominant Parkinson's disease (PD) and essential tremor plus (ET with RT, rET). METHODS: We consecutively enrolled 90 tremor-dominant PD and 24 rET patients. The RT presence was evaluated in three positions: with the patient seated, the arm flexed at 90°, the forearm supported against gravity, and the hand hanging down from the chair armrest (hand-hanging position), in lying down supine and in standing position. RT electrophysiological features (amplitude, frequency, burst duration, pattern) were compared between the two patient groups and across the different positions. RESULTS: All PD and rET patients showed RT in hand-hanging position. Supine and standing RT were significantly more common in PD (67.8% and 75.6%, respectively) than in rET patients (37.5% and 45.8%, respectively). RT amplitude, frequency and pattern were significantly different between groups in hand-hanging position whereas only pattern was significantly different between PD and rET in both standing and supine positions. In each patient group, all RT electrophysiological features did not significantly vary across different recording positions (p > 0.05). DISCUSSION: In our study, PD and rET showed RT in hand-hanging, supine, and standing positions. RT pattern was the only electrophysiological feature significantly different between PD and rET patients in all these positions, enabling clinicians to perform the RT analysis for diagnostic purposes in different tremor positions.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Temblor Esencial/diagnóstico , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Sedestación , Posición de Pie , Temblor/diagnóstico , Temblor/etiología
15.
Neurol Sci ; 43(1): 643-650, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33931819

RESUMEN

Deep grey nuclei of the human brain accumulate minerals both in aging and in several neurodegenerative diseases. Mineral deposition produces a shortening of the transverse relaxation time which causes hypointensity on magnetic resonance (MR) imaging. The physician often has difficulties in determining whether the incidental hypointensity of grey nuclei seen on MR images is related to aging or neurodegenerative pathology. We investigated the hypointensity patterns in globus pallidus, putamen, caudate nucleus, thalamus and dentate nucleus of 217 healthy subjects (ages, 20-79 years; men/women, 104/113) using 3T MR imaging. Hypointensity was detected more frequently in globus pallidus (35.5%) than in dentate nucleus (32.7%) and putamen (7.8%). A consistent effect of aging on hypointensity (p < 0.001) of these grey nuclei was evident. Putaminal hypointensity appeared only in elderly subjects whereas we did not find hypointensity in the caudate nucleus and thalamus of any subject. In conclusion, the evidence of hypointensity in the caudate nucleus and thalamus at any age or hypointensity in the putamen seen in young subjects should prompt the clinician to consider a neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Adulto , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Sustancia Gris , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/diagnóstico por imagen , Putamen/diagnóstico por imagen , Adulto Joven
16.
J Neurol ; 269(2): 1007-1012, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34213613

RESUMEN

BACKGROUND: The R2 component of blink reflex recovery cycle (R2BRrc) is a simple neurophysiological tool to detect the brainstem hyperexcitability commonly occurring in several neurological diseases such as Parkinson's disease and atypical parkinsonisms. In our study, we investigated for the first time the usefulness of R2BRrc to assess brainstem excitability in patients with idiopathic Normal Pressure Hydrocephalus (iNPH) in comparison with healthy subjects. METHODS: Eighteen iNPH patients and 25 age-matched control subjects were enrolled. R2BRrc was bilaterally evaluated at interstimulus intervals (ISIs) of 100, 150, 200, 300, 400, 500 and 750 ms in all participants. We investigated the diagnostic performance of R2BRrc in differentiating iNPH patients from control subjects using ROC analysis. Midbrain area and Magnetic Resonance Hydrocephalic Index (MRHI), an MRI biomarker for the diagnosis of iNPH, were measured on T1-weighted MR images, and correlations between R2BRrc values and MRI measurements were investigated. RESULTS: Fourteen (78%) of 18 iNPH patients showed an enhanced R2BRrc at ISIs 100-150-200 ms, while no control subjects had abnormal R2BRrc. The mean amplitude of bilateral R2BRrc at the shortest ISIs (100-150-200 ms) showed high accuracy in differentiating iNPH patients from controls (AUC = 0.89). R2BRrc values significantly correlated with midbrain area and MRHI values. CONCLUSIONS: This study represents the first evidence of brainstem hyperexcitability in iNPH patients. Given its low cost and wide availability, R2BRrc could be a useful tool for selecting elderly subjects with mild gait and urinary dysfunction who should undergo an extensive diagnostic workup for the diagnosis of NPH.


Asunto(s)
Hidrocéfalo Normotenso , Enfermedad de Parkinson , Anciano , Parpadeo , Tronco Encefálico , Humanos , Hidrocéfalo Normotenso/diagnóstico , Imagen por Resonancia Magnética
17.
Parkinsonism Relat Disord ; 93: 77-84, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34839044

RESUMEN

INTRODUCTION: Parkinson's disease (PD), a progressive neurodegenerative disease, can be misdiagnosed with atypical conditions such as Progressive Supranuclear Paralysis (PSP) due to overlapping clinical features. MicroRNAs (miRNAs) are small non-coding RNAs with a key role in post-transcriptional gene regulation. The aim was to identify a set of differential exosomal miRNAs biomarkers, which may aid in diagnosis. METHODS: We analyzed the serum level of 188 miRNAs in a discovery set, by using RTqPCR based TaqMan assay, in a small cohort of healthy controls, PD and PSP patients. Subsequently, the differentially expressed miRNAs, between PSP and PD patients, were further tested in a larger and independent cohort of 33 healthy controls, 40 PD and 20 PSP patients. The most accurate diagnostic exosomal miRNAs classifiers were identified in a logistic regression model. RESULTS: A statistically significant set of three exosomal miRNAs: miR-21-3p, miR-22-3p and miR-223-5p, discriminated PD from HC (area under the curve of 0.75), and a set of three exosomal miRNAs, miR-425-5p, miR-21-3p, and miR-199a-5p, discriminated PSP from PD with good diagnostic accuracy (area under the curve of 0.86). Finally, the classifier that best discriminated PSP from PD consisted of six exosomal miRNAs (area under the curve = 0.91), with diagnostic sensitivity and specificity of 0.89 and 0.90, respectively. CONCLUSIONS: Based on our analysis, these data showed that exosomal miRNAs could act as biomarkers to differentiate between PSP and PD.


Asunto(s)
Exosomas/genética , MicroARNs/sangre , Enfermedad de Parkinson/genética , Parálisis Supranuclear Progresiva/genética , Anciano , Área Bajo la Curva , Biomarcadores/sangre , Estudios de Casos y Controles , Femenino , Regulación de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/sangre , Proyectos Piloto , Parálisis Supranuclear Progresiva/sangre
19.
Front Neurol ; 12: 680011, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177785

RESUMEN

Tremor is an impairing symptom associated with several neurological diseases. Some of such diseases are neurodegenerative, and tremor characterization may be of help in differential diagnosis. To date, electromyography (EMG) is the gold standard for the analysis and diagnosis of tremors. In the last decade, however, several studies have been conducted for the validation of different techniques and new, non-invasive, portable, or even wearable devices have been recently proposed as complementary tools to EMG for a better characterization of tremors. Such devices have proven to be useful for monitoring the efficacy of therapies or even aiding in differential diagnosis. The aim of this review is to present systematically such new solutions, trying to highlight their potentialities and limitations, with a hint to future developments.

20.
Diagnostics (Basel) ; 11(2)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33573076

RESUMEN

Involuntary tremor at rest is observed in patients with Parkinson's disease (PD) or essential tremor (ET). Electromyography (EMG) studies have shown that phase displacement between antagonistic muscles at prevalent tremor frequency can accurately differentiate resting tremor in PD from that detected in ET. Currently, phase evaluation is qualitative in most cases. The aim of this study is to develop and validate a new mobile tool for the automated and quantitative characterization of phase displacement (resting tremor pattern) in ambulatory clinical settings. A new low-cost, wearable mobile device, called µEMG, is described, based on low-end instrumentation amplifiers and simple digital signal processing (DSP) capabilities. Measurements of resting tremor characteristics from this new device were compared with standard EMG. A good level of agreement was found in a sample of 21 subjects (14 PD patients with alternating resting tremor pattern and 7 ET patients with synchronous resting tremor pattern). Our results demonstrate that tremor analysis using µEMG is easy to perform and it can be used in routine clinical practice for the automated quantification of resting tremor patterns. Moreover, the measurement process is handy and operator-independent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...