RESUMEN
Survival data with time-varying covariates are common in practice. If relevant, they can improve on the estimation of a survival function. However, the traditional survival forests-conditional inference forest, relative risk forest and random survival forest-have accommodated only time-invariant covariates. We generalize the conditional inference and relative risk forests to allow time-varying covariates. We also propose a general framework for estimation of a survival function in the presence of time-varying covariates. We compare their performance with that of the Cox model and transformation forest, adapted here to accommodate time-varying covariates, through a comprehensive simulation study in which the Kaplan-Meier estimate serves as a benchmark, and performance is compared using the integrated L2 difference between the true and estimated survival functions. In general, the performance of the two proposed forests substantially improves over the Kaplan-Meier estimate. Taking into account all other factors, under the proportional hazard setting, the best method is always one of the two proposed forests, while under the non-proportional hazard setting, it is the adapted transformation forest. K-fold cross-validation is used as an effective tool to choose between the methods in practice.
Asunto(s)
Proyectos de Investigación , Análisis de Supervivencia , Modelos de Riesgos Proporcionales , Estimación de Kaplan-Meier , Simulación por ComputadorRESUMEN
Interval-censored data analysis is important in biomedical statistics for any type of time-to-event response where the time of response is not known exactly, but rather only known to occur between two assessment times. Many clinical trials and longitudinal studies generate interval-censored data; one common example occurs in medical studies that entail periodic follow-up. In this article, we propose a survival forest method for interval-censored data based on the conditional inference framework. We describe how this framework can be adapted to the situation of interval-censored data. We show that the tuning parameters have a non-negligible effect on the survival forest performance and guidance is provided on how to tune the parameters in a data-dependent way to improve the overall performance of the method. Using Monte Carlo simulations, we find that the proposed survival forest is at least as effective as a survival tree method when the underlying model has a tree structure, performs similarly to an interval-censored Cox proportional hazards model fit when the true relationship is linear, and outperforms the survival tree method and Cox model when the true relationship is nonlinear. We illustrate the application of the method on a tooth emergence data set.