Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(17): e2306534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38348596

RESUMEN

Uranium extraction from seawater has attracted worldwide attention due to the massive reserves of uranium. Due to the straightforward synthesis and strong affinity toward uranyl ions (UO2 2+), the amidoxime group shows promise for use in highly efficient uranium capture.  However, the low mass transfer efficiency within traditional amidoxime-based adsorbents severely limits the adsorption rate and the utilization of adsorption sites. In this work, a macroporous polyamidoxime (PAO) hydrogel is prepared by yeast-based biological foaming combined with ice crystal dispersion that effectively maintained the yeast activity. The yeast-raised PAO (Y-PAO) adsorbent has numerous bubble-like holes with an average pore diameter >100 µm. These macropores connected with the intrinsic micropores of PAO to construct efficient diffusion channels for UO2 2+ provided fast mass transporting channels, leading to the sufficient exposure of hidden binding sites. The maximum adsorption capacity of Y-PAO membrane reached 10.07 mg-U/g-ads, ≈1.54 times higher than that of the control sample. It took only eight days for Y-PAO to reach the saturation adsorption capacity of the control PAO (6.47 mg-U/g-ads, 28 days). Meanwhile, Y-PAO possessed excellent ion selectivity, good reusability, and low cost. Overall, the Y-PAO membrane is a highly promising adsorbent for use in industrial-scale uranium extraction from seawater.

2.
Water Res ; 245: 120600, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713791

RESUMEN

This study investigated the formation of dichloroacetamide (DCAM) and dichloroacetic acid (DCAA) from the abatement of three phenicol antibiotics (PABs, chloramphenicol, thiamphenicol, and florfenicol) during ozonation and post-chlor(am)ination. Results show that the three PABs have a low ozone reactivity (kO3 = 0.11‒0.12 M-1 s-1), and therefore are mainly abated through the hydrogen abstraction mechanism by hydroxyl radicals (•OH) during ozonation. During PAB degradation, the carboxamide moiety in the parent molecules can be cleaved off by •OH attack and thus gives rise to DCAM. The formed DCAM can then be further oxidized by O3 and/or •OH to DCAA as a more stable transformation product (TP). When the three PABs were adequately abated (abatement efficiency of ∼82 %‒95 %), the molar yields of DCAM and DCAA were determined to be 2.79 %‒4.71 % and 32.9 %‒37.2 %, respectively. Furthermore, post-chloramination of the ozonation effluents increased the yields of DCAM and DCAA slightly to 4.20 %‒6.45 % and 39.0 %‒41.1 %, respectively. In comparison, post-chlorination eliminated DCAM in the solutions, but significantly increased DCAA yields to ∼100 % due to the further conversion of DCAM and other ozonation TPs to DCAA by chlorine oxidation. The results of this study indicate that high yields of DCAM and DCAA can be generated from PAB degradation during ozonation, and post-chlorination and post-chloramination will result in very different fates of DCAM and DCAA in the disinfected effluent. The formation and transformation of DCAM and DCAA during PAB degradation need to be taken into account when selecting multi-barrier treatment processes for the treatment of PAB-containing water.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Ácido Dicloroacético , Contaminantes Químicos del Agua/análisis , Halogenación , Purificación del Agua/métodos , Desinfección/métodos
3.
J Hazard Mater ; 433: 128789, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35358815

RESUMEN

Owing to the abundant uranium reserves in the oceans, the collection of uranium from seawater has aroused the widespread interest. Compared to the uranium extraction from ore, uranium collection from seawater is a more environmentally friendly strategy. The amidoxime (AO) functional group has been considered as one of the most efficient chelating groups for uranium capture. In this work, by drawing upon the photothermal character and antibacterial activity of cuttlefish ink, a cuttlefish ink loaded polyamidoxime (CI-PAO) membrane adsorbent is developed. Under one-sun illumination, the CI-PAO membrane shows a high extraction capacity of 488.76 mg-U/g-Ads in 500 mL 8 ppm uranium spiked simulated seawater, which is 1.24 times higher than PAO membrane. The adsorption rate of CI-PAO membrane is increased by 32.04%. Furthermore, exhibiting roughly 75% bacteriostatic rate in composite marine bacteria, the CI-PAO shows a dramatically antibacterial activity, which effectively prevents the functional sites on the adsorbent surface from being occupied by the biofouling blocks. After immersing in natural seawater for 4 weeks, light-irradiated CI-PAO gave high uranium uptake capacity of 6.17 mg-U/g-Ads. Hence, the CI-PAO membrane adsorbent can be considered as a potential candidate for the practical application for uranium extraction from seawater.


Asunto(s)
Uranio , Animales , Antibacterianos/farmacología , Decapodiformes , Tinta , Agua de Mar
4.
Chemosphere ; 236: 124374, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31344619

RESUMEN

The degradation of irgarol, a frequently detected algaecide in the aquatic environment, by ozonation was investigated in this study. The second-order rate constants for the reaction of irgarol with ozone (O3) and hydroxyl radical (OH) were determined to be 505 M-1 s-1 and 4.96 × 109 M-1 s-1, respectively. During ozonation, sixteen transformation products (TPs) of irgarol were proposed using an electrospray ionization quadrupole time-of-flight mass spectrometer. Most of the TPs are ozone-refractory compounds and therefore could only be further transformed by oxidation with OH generated from O3 decomposition during ozonation. Toxicity analysis using the ecological structure activity relationship class program indicates that some of the TPs (e.g., irgarol sulfoxide) still exhibit high acute or chronic toxicity to aquatic organisms (fish, daphnia, and algae) as the parent compound. With a typical ozone dose applied in water treatment (2 mg/L, corresponding to a specific ozone dose of 0.8 mg O3/mg dissolved organic carbon), irgarol could be completely abated in a selected surface water by ozonation. However, most of the TPs persisted in the ozonation effluent because of their low ozone reactivity. The results of this study suggest that ozonation with typical ozone doses applied in water treatment may not be able to sufficiently reduce the ecotoxicological effects of irgarol on aquatic organisms. More effective treatment processes such as ozone-based advanced oxidation processes may be required to enhance the removal of toxic TPs of irgarol in water treatment.


Asunto(s)
Herbicidas/química , Herbicidas/toxicidad , Ozono/química , Ozono/toxicidad , Triazinas/química , Purificación del Agua/instrumentación , Radical Hidroxilo/química , Cinética , Estructura Molecular , Oxidación-Reducción , Triazinas/toxicidad , Aguas Residuales/química
5.
Water Res ; 157: 209-217, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30954696

RESUMEN

The formation of chlorinated by-products is a major concern associated with electrochemical water treatment processes. This study investigated the formation of chlorinated by-products during surface water treatment by a newly developed electrochemical advanced oxidation process (EAOP), the electro-peroxone (E-peroxone) process, which couples ozonation with in situ electro-generation of hydrogen peroxide (H2O2) from cathodic oxygen reduction. Due to the enhanced ozone (O3) conversion to hydroxyl radicals (•OH) by electro-generated H2O2, the E-peroxone process considerably accelerated the abatement of ozone-refractory micropollutants such as clofibric acid and chloramphenicol in the selected surface water compared to conventional ozonation. In addition, the cathodically generated H2O2 effectively quenched hypochlorous acid (HOCl) derived from the anodic oxidation of chloride in the surface water. Therefore, the formation of trichloromethane (TCM) and chloroacetic acids (CAAs) from the reactions of HOCl with dissolved organic matter (DOM) was insignificant during the E-peroxone process, and similar levels of TCM and CAAs were generally observed in the conventional ozonation and E-peroxone treated water. In contrast, considerable amounts of HOCl could be generated from the anodic oxidation of chloride and then accumulated in the surface water during conventional electrolysis process, which resulted in significantly higher concentrations of TCM and CAAs in the electrolysis treated water. The results of this study suggest that the E-peroxone process can overcome the major limitation of conventional electrochemical processes and provide an effective and safe EAOP alternative for micropollutant abatement during water treatment.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Electrólisis , Peróxido de Hidrógeno , Oxidación-Reducción
6.
Water Res ; 138: 106-117, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29574198

RESUMEN

The electro-peroxone (E-peroxone) process is an emerging ozone-based advanced oxidation process (AOP) that has shown large potential for micropollutant abatement in water treatment. To evaluate its performance under more realistic conditions of water treatment, a continuous-flow pilot E-peroxone system was developed and compared with conventional ozonation and a UV/O3 process for micropollutant abatements in various water matrices (groundwater, surface water, and secondary wastewater effluent) in this study. With a specific ozone dose of 1.5 mg O3/mg DOC, micropollutants that have high and moderate reactivity with ozone (O3) (diclofenac, naproxen, gemfibrozil, and bezafibrate) could be sufficiently abated (>90% abatement) in the various waters by all three processes. However, ozone-resistant micropollutants (ibuprofen, clofibric acid, and chloramphenicol) were abated only by ∼32-68%, 68-91%, and 73-90% during conventional ozonation of the selected groundwater, surface water, and secondary wastewater effluent, respectively. By electro-generating H2O2 or applying UV irradiation to enhance O3 transformation to •OH during ozonation, the E-peroxone and UV/O3 processes similarly enhanced the abatement efficiencies of ozone-resistant micropollutants by ∼15-43%, ∼5-15%, and ∼5-10% in the groundwater, surface water, and secondary wastewater effluent, respectively. In addition, the E-peroxone and UV/O3 processes significantly reduced bromate formation during the treatment of the three waters compared to conventional ozonation. Due to its higher efficiency, the E-peroxone process reduced ∼10-53% of the energy consumption required to abate the concentration of chloramphenicol (the most ozone-resistant micropollutant spiked in the waters) by 1 order of magnitude in the three waters compared to conventional ozonation. In contrast, the UV/O3 process consumed approximately 4-10 times higher energy than conventional ozonation. This pilot-scale study demonstrates that the E-peroxone process can provide a feasible, effective, and energy-efficient alternative for micropollutant abatement and bromate control in water and wastewater treatment.


Asunto(s)
Peróxido de Hidrógeno/química , Ozono/química , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Bromatos/química , Oxidación-Reducción , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/efectos de la radiación , Aguas Residuales/análisis
7.
Water Res ; 130: 127-138, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29216480

RESUMEN

Pharmaceutical abatement in a groundwater (GW), surface water (SW), and secondary effluent (SE) by conventional ozonation, the conventional peroxone (O3/H2O2), and the electro-peroxone (E-peroxone) processes was compared in batch tests. SE had significantly more fast-reacting dissolved organic matter (DOM) moieties than GW and SW. Therefore, O3 decomposed much faster in SE than in GW and SW. At specific ozone doses of 0.5-1.5 mg O3/mg dissolved organic carbon (DOC), the application of O3/H2O2 and E-peroxone process (by adding external H2O2 stocks or in-situ generating H2O2 from cathodic O2 reduction during ozonation) similarly enhanced the OH yield from O3 decomposition by ∼5-12% and 5-7% in GW and SW, respectively, compared to conventional ozonation. In contrast, due to the slower reaction kinetics of O3 with H2O2 than O3 with fast-reacting DOM moieties, the addition or electro-generation of H2O2 hardly increased the OH yield (<4% increases) in SE. Corresponding to the changes in the OH yields, the abatement efficiencies of ozone-resistant pharmaceuticals (ibuprofen and clofibric acid) increased evidently in GW (up to ∼14-18% at a specific ozone dose of 1.5 mg O3/mg DOC), moderately in SW (up to 6-10% at 0.5 mg O3/mg DOC), and negligibly in SE during the O3/H2O2 and E-peroxone treatment compared to conventional ozonation. These results indicate that similar to the conventional O3/H2O2 process, the E-peroxone process can more pronouncedly enhance O3 transformation to OH, and thus increase the abatement efficiency of ozone-resistant pharmaceuticals in water matrices exerting relatively high ozone stability (e.g., groundwater and surface water with low DOM contents). Therefore, by installing electrodes in existing ozone reactors, the E-peroxone process may provide a convenient way to enhance pharmaceutical abatement in drinking water applications, where groundwater and surface water with low DOM contents are used as the source waters.


Asunto(s)
Agua Subterránea/química , Peróxido de Hidrógeno/química , Ozono/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ácido Clofíbrico/análisis , Ácido Clofíbrico/química , Ibuprofeno/análisis , Ibuprofeno/química , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/química
8.
Water Res ; 130: 322-332, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29247948

RESUMEN

The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H2O2) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O3) to hydroxyl radicals (OH) by electro-generated H2O2, the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO3-) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation.


Asunto(s)
Desinfección/métodos , Técnicas Electroquímicas/métodos , Ozono/química , Trihalometanos/química , Purificación del Agua/métodos , Bromatos/química , Bromuros/química , Halogenación , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química
9.
Water Res ; 108: 373-382, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27839831

RESUMEN

In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O3) stock solutions and semi-batch tests with continuous O2/O3 gas sparging (simulating real ozone contactors) were conducted to investigate O3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O3/mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O3/mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H2O2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H2O2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement.


Asunto(s)
Peróxido de Hidrógeno/química , Agua , Ozono/química , Contaminantes Químicos del Agua/química , Purificación del Agua
10.
J Hazard Mater ; 319: 61-8, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-26777107

RESUMEN

This study compares the degradation of diethyl phthalate (DEP) by the electro-peroxone (E-peroxone) process with three different carbon-based cathodes, namely, carbon-polytetrafluorethylene (carbon-PTFE), carbon felt, and reticulated vitreous carbon (RVC). Results show that the three cathodes had different electrocatalytic activity for converting sparged O2 to H2O2, which increased in order of carbon felt, RVC, and carbon-PTFE. The in-situ generated H2O2 then reacts with sparged O3 to yield OH, which can in turn oxidize ozone-refractory DEP toward complete mineralization. In general, satisfactory total organic carbon removal yields (76.4-91.8%) could be obtained after 60min of the E-peroxone treatment with the three carbon-based cathodes, and the highest yield was obtained with the carbon-PTFE cathode due to its highest activity for H2O2 generation. In addition, the carbon-PTFE and carbon felt cathodes exhibited excellent stability over six cycles of the E-peroxone treatment of DEP solutions. Based on the intermediates (e.g., monoethyl phthalate, phthalic acid, phenolics, and carboxylic acids) identified by HPLC-UV, plausible reaction pathways were proposed for DEP mineralization by the E-peroxone process. The results of this study indicate that carbon-based cathodes generally have good electrocatalytic activity and stability for application in extended E-peroxone operations to effectively remove phthalates from water.

11.
Water Res ; 88: 691-702, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26580085

RESUMEN

This study investigated the degradation of clofibric acid and formation of perchlorate during the electro-peroxone (E-peroxone) treatment of chloride-containing (26.1-100 mg L(-1)) water (Na2SO4 electrolytes and secondary effluents). The E-peroxone process involves sparging O2 and O3 gas mixture into an electrolysis reactor where a carbon-based cathode is used to electrochemically convert the sparged O2 to H2O2. The electro-generated H2O2 then reacts with sparged O3 to produce OH, which can rapidly oxidize pollutants in the bulk solution. When boron-doped diamond (BDD) electrodes were used as the anode, perchlorate concentrations increased significantly from undetectable levels to ∼15-174 mg L(-1) in the different water samples as the applied current density was increased from 4 to 32 mA cm(-2). In contrast, no ClO4(-) was detected when Pt/Ti anodes were used in the E-peroxone process operated under similar reaction conditions. In addition, when sufficient O3 was sparged to maximize OH production from its peroxone reaction with electro-generated H2O2, the E-peroxone process with Pt/Ti anodes achieved comparable clofibric acid degradation and total organic carbon (TOC) removal yields as that with BDD anodes, but did not generate detectable ClO4(-). These results indicate that by optimizing operational parameters and using Pt/Ti anodes, the E-peroxone process can achieve the goal of both fast pollutant degradation and ClO4(-) prevention during the treatment of chloride-containing wastewater.


Asunto(s)
Cloruros/química , Ácido Clofíbrico/química , Electrólisis , Percloratos/análisis , Contaminantes Químicos del Agua/química , Anticolesterolemiantes/química , Hipolipemiantes/química , Oxidación-Reducción
12.
Water Res ; 88: 826-835, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26610192

RESUMEN

This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents.


Asunto(s)
Electrólisis , Peróxido de Hidrógeno/química , Preparaciones Farmacéuticas/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...