Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411905, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112373

RESUMEN

Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, the practical application is still suffering from the decreased function, inadequate infiltration, and immunosuppressive microenvironment in solid tumor. Herein, we construct the light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on NK cell surface, it forms a catalytic array with light-harvesting capabilities. This functionality transforms NK cells into cellular factories, capable of catalyzing the production of active agents in a light-controlled manner. The NK@p-Fe can generate active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, the NK@p-Fe can also bioorthogonally catalyze to produce FDA approved immune agonist, imiquimod (IMQ). The activated immune agonist plays a dual role by inducing DC maturation for NK cells activation and reshaping tumor immunosuppressive microenvironment for NK cells infiltration. This work represents a paradigm for modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.

2.
Chem Sci ; 15(33): 13201-13208, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183930

RESUMEN

Alzheimer's disease (AD) is one of the most fatal and irreversible neurodegenerative diseases, which causes a huge emotional and financial burden on families and society. Despite the progress made with recent clinical use of inhibitors of acetylcholinesterase and amyloid-ß (Aß) antibodies, the curative effects of AD treatment remain unsatisfactory, which is probably due to the complexity of pathogenesis and the multiplicity of therapeutic targets. Thus, modulating complex pathological networks could be an alternative approach to treat AD. Here, a neutrophil membrane-coated MOF nanozyme (denoted as Neu-MOF/Fla) is biomimetically engineered to disturb the malignant Aß deposition-inflammation cycle and ameliorate the pathological network for effective AD treatment. Neu-MOF/Fla could recognize the pathological inflammatory signals of AD, and deliver the photo-triggered anti-inflammatory CO and MOF based hydrolytic nanozymes to the lesion area of the brain in a spontaneous manner. Based on the in vitro and in vivo studies, Neu-MOF/Fla significantly suppresses neuroinflammation, mitigates the Aß burden, beneficially modulates the pro-inflammatory microglial phenotypes and improves the cognitive defects of AD mice models. Our work presents a good example for developing biomimetic multifunctional nanotherapeutics against AD by means of amelioration of multiple symptoms and improvement of cognitive defects.

3.
Adv Healthc Mater ; : e2402342, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031538

RESUMEN

Current phototherapeutic approaches for Alzheimer's disease (AD) exhibit restricted clinical outcomes due to the limited physical penetration and comprised brain microenvironment of noninvasive nanomedicine. Herein, a hydrogen-bonded organic framework (HOF) based sonosensitizer is designed and synthesized. Mn-TCPP, a planar molecule where Mn2+ ion is chelated in the core with a large p-conjugated system and 4 carboxylate acid groups, has been successfully used as building blocks to construct an ultrasound-sensitive HOF (USI-MHOF), which can go deep in the brain of AD animal models. The both in vitro and in vivo studies indicate that USI-MHOF can generate singlet oxygen (1O2) and oxidize ß-amyloid (Aß) to inhibit aggregation, consequently attenuating Aß neurotoxicity. More intriguingly, USI-MHOF exhibits catalase (CAT)- and superoxide dismutase (SOD)-like activities, mitigating neuron oxidative stress and reprograming the brain microenvironment. For better crossing the blood-brain barrier (BBB), the peptide KLVFFAED (KD8) has been covalently grafted to USI-MHOF for improving BBB permeability and Aß selectivity. Further, in vivo experiments demonstrate a significant reduction of the craniocerebral Aß plaques and improvement of the cognition deficits in triple-transgenic AD (3×Tg-AD) mice models following deep-penetration ultrasound treatment. The work provides the first example of an ultrasound-responsive biocompatible HOF as non-invasive nanomedicine for in-depth treatment of AD.

4.
Nat Cell Biol ; 26(7): 1212-1224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961283

RESUMEN

Despite the demonstrated importance of DNA G-quadruplexes (G4s) in health and disease, technologies to readily manipulate specific G4 folding for functional analysis and therapeutic purposes are lacking. Here we employ G4-stabilizing protein/ligand in conjunction with CRISPR to selectively facilitate single or multiple targeted G4 folding within specific genomic loci. We demonstrate that fusion of nucleolin with a catalytically inactive Cas9 can specifically stabilize G4s in the promoter of oncogene MYC and muscle-associated gene Itga7 as well as telomere G4s, leading to cell proliferation arrest, inhibition of myoblast differentiation and cell senescence, respectively. Furthermore, CRISPR can confer intra-G4 selectivity to G4-binding compounds pyridodicarboxamide and pyridostatin. Compared with traditional G4 ligands, CRISPR-guided biotin-conjugated pyridodicarboxamide enables a more precise investigation into the biological functionality of de novo G4s. Our study provides insights that will enhance understanding of G4 functions and therapeutic interventions.


Asunto(s)
Sistemas CRISPR-Cas , G-Cuádruplex , Nucleolina , Proteínas de Unión al ARN , Humanos , Ligandos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Ácidos Picolínicos/farmacología , Ácidos Picolínicos/química , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Regiones Promotoras Genéticas , Telómero/metabolismo , Telómero/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/farmacología , Piridinas/química , ADN/metabolismo , ADN/genética , Ratones , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células HEK293 , Mioblastos/metabolismo , Mioblastos/citología , Aminoquinolinas
5.
Nano Lett ; 24(29): 8929-8939, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38865330

RESUMEN

Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.


Asunto(s)
ADN Mitocondrial , Epigénesis Genética , Mitocondrias , Especies Reactivas de Oxígeno , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , ADN Mitocondrial/genética , Epigénesis Genética/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Enlace de Hidrógeno , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasa 1/genética , Profármacos/farmacología , Profármacos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología
6.
J Mater Chem B ; 12(10): 2481-2485, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38375678

RESUMEN

6-Nitrobenzo[cd]indole-2(1H)-ketone (compound C2) exhibits an excellent germicidal effect against methicillin-resistant Staphylococcus aureus (MRSA). Mechanism studies show that C2 induces ROS over-production, cell membrane damage, and ATP and virulence factor down-regulation in bacteria. More importantly, C2 can inhibit biofilm formation and accelerate wound healing in a mouse infection model induced by MRSA.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Antibacterianos/farmacología , Cetonas/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Modelos Animales de Enfermedad , Indoles/farmacología
7.
Bioresour Technol ; 395: 130357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262542

RESUMEN

The disposal of iron-rich sludge by landfill or incineration poses environmental risks and wastes resources. The utilization of iron-rich sludge for magnetic material preparation offers a sustainable and resource-efficient solution for its disposal. Herein, self-endowed magnetic photocatalysts were initially prepared by pyrolysis using iron-rich sludge without any additives. The photocatalysts performance were evaluated for tetracycline degradation, with the highest degradation rate of 95.3 % at a concentration of 10 mg·L-1 (pH = 7) within 5 h being achieved for the photocatalyst prepared at 800 °C. The reactive radical species in the photocatalysis process were confirmed to be •OH and O2•- activated by ferrous oxygen species under light irradiation. Furthermore, quinone-like structures induced bound persistent free radicals, which emerged as the predominant factors influencing 1O2 formation. The employed photocatalyst can be efficiently separated and recovered owing to its magnetism. This work presents an economic solution for antibiotic removal using waste iron-rich sludge.


Asunto(s)
Hierro , Aguas del Alcantarillado , Hierro/química , Tetraciclina/química , Antibacterianos , Oxígeno , Fenómenos Magnéticos , Catálisis
8.
J Am Chem Soc ; 145(41): 22539-22547, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37788384

RESUMEN

The creation of artificial high-performance photosynthetic assemblies with a tailorable antenna system to deliver absorbed solar energy to a photosynthetic reaction center, thereby mimicking biological photosynthesis, remains a major challenge. We report the construction of recyclable, high-performance photosynthetic nanofibers with a crystalline π-conjugated polyfluorene core as an antenna system that funnels absorbed solar energy to spatially defined sensitized Co(II) porphyrin photocatalysts for the hydrogen evolution reaction. Highly effective energy funneling was achieved by tuning the dimensions of the nanofibers to exploit the very long exciton diffusion lengths (>200 nm) associated with the highly crystalline polyfluorene core formed using the living crystallization-driven self-assembly seeded growth method. This enabled efficient solar light-driven hydrogen production from water with a turnover number of over 450 for 8 h of irradiation, an H2 production rate of ca. 65 mmol h-1 g-1, and an overall quantum yield of 0.4% in the wavelength region (<405 nm) beyond the absorption of the molecular photocatalyst. The strategy of using a tailored antenna system based on π-conjugated polymers and maximizing exciton transport to a reaction center reported in this work opens up future opportunities for potential applications in other fields such as solar overall water splitting, CO2 reduction, and photocatalytic small molecule synthesis.

9.
Chem Commun (Camb) ; 59(85): 12703-12706, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819218

RESUMEN

The infectious disease coronavirus 2019 (SARS-CoV-2) is caused by a virus that has RNA as its genetic material. To understand the detailed structural features of SARS-COV-2 RNA, we probed the RNA structure by NMR. Two RNA sequences form a duplex and self-associate to form a dimeric G-quadruplex. The FrG nucleoside was employed as a 19F sensor to confirm the RNA structure in cells by 19F NMR. A FRET assay further demonstrated that the dimeric G-quadruplex resulted in RNA dimerization in cells. These results provide the basis for the elucidation of SARS-COV-2 RNA function, which provides new insights into developing novel antiviral drugs against SARS-COV-2.


Asunto(s)
COVID-19 , G-Cuádruplex , Humanos , SARS-CoV-2 , ARN Viral/genética , Dimerización
10.
Nat Commun ; 14(1): 4647, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532731

RESUMEN

Lack of sufficient cytotoxic T lymphocytes (CD8+ T cells) infiltration and dysfunctional state of CD8+ T cells are considered enormous obstacles to antitumor immunity. Herein, we construct a synergistic nanoplatform to promote CD8+ T cell infiltration in tumors while restoring T cell function by regulating methionine metabolism and activating the STING innate immune pathway. The CRISPR/Cas9 system down-regulates the methionine transporter SLC43A2 and restricts the methionine uptake by tumor cells, thereby relieving the methionine competition pressure of T cells; simultaneously, the released nutrition metal ions activate the cGAS/STING pathway. In this work, the described nanoplatform can enhance the effect of immunotherapy in preclinical cancer models in female mice, enhancing STING pathway mediated immunity and facilitating the development of amino acid metabolic intervention-based cancer therapy.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Femenino , Ratones , Animales , Sistemas CRISPR-Cas , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Inmunoterapia , Metionina/metabolismo , Inmunidad
11.
Angew Chem Int Ed Engl ; 62(32): e202303989, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293817

RESUMEN

Since polyoxometalates (POMs) can undergo reversible multi-electron redox transformations, they have been used to modulate the electronic environment of metal nanoparticles for catalysis. Besides, POMs possess unique electronic structures and acid-responsive self-assembly ability. These properties inspired us to tackle the drawbacks of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction in biomedical applications, such as low catalytic efficiency and unsatisfactory disease selectivity. Herein, we construct molybdenum (Mo)-based POM nanoclusters doped with Cu (Cu-POM NCs) as a highly efficient bioorthogonal catalyst, which is responsive to pathologicallyacid and H2 S for selective antibiofilm therapy. Leveraging the merits of POMs, the Cu-POM NCs exhibit biofilm-responsive self-assembly behavior, efficient CuAAC-mediated in situ synthesis of antibacterial molecules, and a NIR-II photothermal effect selectively triggered by H2 S in pathogens. The consumption of bacterial H2 S at the pathological site by Cu-POM NCs extremely decreases the number of persisterbacteria, which is conducive to the inhibition of bacterial tolerance and elimination of biofilms. Unlocked at pathological sites and endowed with NIR-II photothermal property, the constructed POM-based bioorthogonal catalytic platform provides new insights into the design of efficient and selective bioorthogonal catalysts for disease therapy.


Asunto(s)
Cobre , Molibdeno , Cobre/química , Molibdeno/química , Catálisis , Alquinos/química
12.
Small ; 19(35): e2301519, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156740

RESUMEN

Combination therapies involving metabolic regulation and immune checkpoint blockade are considered an encouraging new strategy for cancer therapy. However, the effective utilization of combination therapies for activating tumor-associated macrophages (TAMs) remains challenging. Herein, a lactate-catalyzed chemodynamic approach to activate the therapeutic genome editing of signal-regulatory protein α (SIRPα) to reprogram TAMs and improve cancer immunotherapy is proposed. This system is constructed by encapsulating lactate oxidase (LOx) and clustered regularly interspaced short palindromic repeat-mediated SIRPα genome-editing plasmids in a metal-organic framework (MOF). The genome-editing system is released and activated by acidic pyruvate, which is produced by the LOx-catalyzed oxidation of lactate. The synergy between lactate exhaustion and SIRPα signal blockade can enhance the phagocytic ability of TAMs and promote the repolarization of TAMs to the antitumorigenic M1 phenotype. Lactate exhaustion-induced CD47-SIRPα blockade efficiently improves macrophage antitumor immune responses and effectively reverses the immunosuppressive tumor microenvironment to inhibit tumor growth, as demonstrated by in vitro and in vivo studies. This study provides a facile strategy for engineering TAMs in situ by combining CRISPR-mediated SIRPα knockout with lactate exhaustion for effective immunotherapy.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
13.
ACS Nano ; 17(6): 5808-5820, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36916491

RESUMEN

Although cancer immunotherapy based on immune checkpoint blockade has shown promising clinical responses, the limited host response rate and systemic side effects still restrict immunotherapy efficacy. To address these challenges, here, we construct an aptamer-functionalized metal-organic framework (MOF) catalyst for bioorthogonal activation of Toll-like receptors (TLR) 7 agonists and programmed death-ligand 1 (PDL1) blockade for enhanced antitumor immunotherapy. The catalyst contains ultrasmall Pd nanoparticles enabling the local activation of TLR7 agonists in native form, which results in the remodeling of the tumor microenvironment (TME). Meanwhile, the loaded PDL1 aptamers release in response to phosphate and block the PD1/PDL1 signaling pathway between T cells and cancer cells. Thus, synergy between TLR7 agonists and PDL1 blockade induces the infiltration and activation of immune cells to initiate a robust immune response, thereby simultaneously inhibiting primary and distant metastatic tumors. The immunotherapeutic effect of our design has been demonstrated in both single and bilateral subcutaneous colorectal cancer (CT26) models. In situ bioorthogonal activation of agonists may offer an alternative approach to improve the therapeutic efficacy of immunotherapy with minimized systemic toxicity. Our work will provide good inspiration for current checkpoint blockade-based immunotherapy.


Asunto(s)
Neoplasias , Receptor Toll-Like 7 , Humanos , Receptor Toll-Like 7/agonistas , Neoplasias/tratamiento farmacológico , Inmunidad Innata , Adyuvantes Inmunológicos , Inmunoterapia/métodos , Microambiente Tumoral
15.
Environ Sci Pollut Res Int ; 30(22): 62410-62421, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36941523

RESUMEN

Water pollution by antibiotics is a serious and growing problem. Given this challenge, a free-standing three-dimensional (3D) reduced graphene oxide foam supported copper oxide nanoparticles (3D-rGO-CuxO) was synthesized using GO as a precursor and applied as an efficient persulfate activator for tetracycline (TC) degradation. The influences of CuxO mass, solution pH, persulfate dosage, and common anions on the TC degradation were investigated in detail. Analytical techniques indicated that the 3D-rGO-CuxO showed a cross-linking three-dimensional network structure, and CuxO particles with irregular shapes were uniformly loaded on graphene pore walls. The XPS and Auger spectra of Cu confirmed that Cu2O was the main component in solid copper compounds. The addition of CuxO was vitally important for the activation of the oxidation system, and the removal rate reached 98% with a CuxO load of 7:1. The pH showed little influence on the activation effect on TC degradation. For common anions, Cl- and CO32- had little influence on the system, while humic acid had a great inhibitory effect. The EPR test and quenching experiment revealed that the active substances in the oxidative degradation process mainly include SO4-·, ·OH, 1O2, and reactive Cu(III). Additionally, the 3D-rGO-CuxO material proved highly stable according to the replicated test results and was promising for the remediation of antibiotic-contaminated water.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Grafito/química , Cobre/química , Tetraciclina/química , Antibacterianos , Contaminantes Químicos del Agua/análisis
16.
Chem Commun (Camb) ; 59(8): 1078-1081, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36621881

RESUMEN

Here, we provide an out-of-the-box G-quadruplex (G4) targeting-based strategy for rescuing mitochondrial dysfunction in Alzheimer's disease. We predict and verify the presence of G4s within the promoter of an ageing epigenetic regulator BAZ2B. G4-specific ligands targeting BAZ2B G4s could significantly down-regulate the BAZ2B expression and relieve mitochondrial dysfunction. Therefore, this work may provide a new way of rescuing mitochondrial dysfunction in AD by targeting G4s in a specific ageing epigenetic regulator promoter.


Asunto(s)
Enfermedad de Alzheimer , G-Cuádruplex , Factores Generales de Transcripción , Humanos , Regiones Promotoras Genéticas , Mitocondrias , Epigénesis Genética , Ligandos
17.
ACS Nano ; 16(12): 20975-20984, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36394517

RESUMEN

As a burgeoning bioorthogonal reaction, the fluoride-mediated desilylation is capable of prodrug activation. However, due to the reactions lack of cell selectivity and unitary therapy modality, this strongly impedes their biomedical applications. Herein, we construct a cancer cell-selective biomimetic metal-organic framework (MOF)-F platform for prodrug activation and enhanced synergistic chemodynamic therapy (CDT). With cancer cell membranes camouflage, the designed biomimetic nanocatalyst displays preferential accumulation to homotypic cancer cells. Then, pH-responsive nanocatalyst releases fluoride ions and ferric ions. For activation of our designed prodrug tert-butyldimethyl silyl (TBS)-hydroxycamptothecin (TBSO-CPT), fluoride ions can desilylate TBS and cleave the designed silyl ether linker to synthesize the OH-CPT (10-hydroxycamptothecin) drug molecule, which effectively kills cancer cells. Intriguingly, the bioorthogonal-synthesized OH-CPT drug upregulates intracellular H2O2 by activating nicotinamide adenine dinucleotide phosphate oxidase (NOX), amplifying the released iron induced Fenton reaction for synergistic CDT. Both in vitro and in vivo studies demonstrate our strategy presents a versatile fluoride-activated bioorthogonal catalyst for cancer cell-selective drug synthesis. Our work may accelerate the biomedical applications of fluoride-activated bioorthogonal chemistry.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Profármacos/química , Estructuras Metalorgánicas/farmacología , Fluoruros/farmacología , Peróxido de Hidrógeno/metabolismo , Biomimética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Línea Celular Tumoral , Nanopartículas/química
18.
Angew Chem Int Ed Engl ; 61(47): e202211822, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36070976

RESUMEN

Chiral materials related to circularly polarized luminescence (CPL) make up a rapidly developing new field that has broad application prospects in optoelectronic devices, selective recognition, biomedicine, and other fields. Biofunctional chiral materials are also attracting increasing attention because of their unique biocompatibility, chiral recognition, and coding. However, there has been little discussion on biomolecule-based CPL till now. In this Review, the latest progress in CPL materials related with biomolecules are reviewed, including the chiral construction from molecular level to giant microstructure, as well as their emerging applications. In addition, we discuss the challenges and prospects of bio-based CPL materials, hoping this work will provide new perspectives and insights for more related research.


Asunto(s)
Luminiscencia , Mediciones Luminiscentes , Estereoisomerismo
19.
Cell Discov ; 8(1): 86, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068208

RESUMEN

The ongoing COVID-19 pandemic has continued to affect millions of lives worldwide, leading to the urgent need for novel therapeutic strategies. G-quadruplexes (G4s) have been demonstrated to regulate life cycle of multiple viruses. Here, we identify several highly conservative and stable G4s in SARS-CoV-2 and clarify their dual-function of inhibition of the viral replication and translation processes. Furthermore, the cationic porphyrin compound 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) targeting SARS-CoV-2 G4s shows excellent antiviral activity, while its N-methyl-2-pyridyl positional isomer TMPyP2 with low affinity for G4 has no effects on SARS-CoV-2 infection, suggesting that the antiviral activity of TMPyP4 attributes to targeting SARS-CoV-2 G4s. In the Syrian hamster and transgenic mouse models of SARS-CoV-2 infection, administration of TMPyP4 at nontoxic doses significantly suppresses SARS-CoV-2 infection, resulting in reduced viral loads and lung lesions. Worth to note, the anti-COVID-19 activity of TMPyP4 is more potent than remdesivir evidenced by both in vitro and in vivo studies. Our findings highlight SARS-CoV-2 G4s as a novel druggable target and the compelling potential of TMPyP4 for COVID-19 therapy. Different from the existing anti-SARS-CoV-2 therapeutic strategies, our work provides another alternative therapeutic tactic for SARS-CoV-2 infection focusing on targeting the secondary structures within SARS-CoV-2 genome, and would open a new avenue for design and synthesis of drug candidates with high selectivity toward the new targets.

20.
Proc Natl Acad Sci U S A ; 119(36): e2204725119, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36037371

RESUMEN

Precise manipulation of chromatin folding is important for understanding the relationship between the three-dimensional genome and nuclear function. Existing tools can reversibly establish individual chromatin loops but fail to manipulate two or more chromatin loops. Here, we engineer a powerful CRISPR system which can manipulate multiple chromatin contacts using bioorthogonal reactions, termed the bioorthogonal reaction-mediated programmable chromatin loop (BPCL) system. The multiinput BPCL system employs engineered single-guide RNAs recognized by discrete bioorthogonal adaptors to independently and dynamically control different chromatin loops formation without cross-talk in the same cell or to establish hubs of multiway chromatin contacts. We use the BPCL system to successfully juxtapose the pluripotency gene promoters to enhancers and activate their endogenous expression. BPCL enables us to independently engineer multiway chromatin contacts without cross-talk, which provides a way to precisely dissect the high complexity and dynamic nature of chromatin folding.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Cromatina/genética , Cromosomas , Elementos de Facilitación Genéticos , Genoma , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...