Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 739
Filtrar
1.
Water Res ; 262: 122097, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39018583

RESUMEN

The UV/monochloramine (UV/NH2Cl) process, while efficiently eliminating micropollutants, produces toxic byproducts. This study utilized Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to investigate molecular-level changes in natural organic matter (NOM) and to disclose formation pathways of nitro(so) and chloro byproducts in the UV/NH2Cl process. The UV/NH2Cl process significantly increased the saturation and oxidation levels and altered the elemental composition of NOM. Using 15N labeling and a screening workflow, nitro(so) byproducts with nitrogen originating from inorganic sources (i.e., reactive nitrogen species (RNS) and/or NH2Cl) were found to exhibit total intensities comparable to those from NOM. RNS, rather than NH2Cl, played a significant role in incorporating nitrogen into NOM. Through linkage analysis, nitro(so) addition emerged as an important reaction type among the 25 reaction types applied. By using phenol as a representative model compound, the nitro byproducts were confirmed to be mainly generated through the oxidation of nitroso byproducts instead of nitration. Machine learning and SHAP analysis further identified the major molecular indices distinguishing nitro(so) and chloro precursors from non-precursors. This study enhances our fundamental understanding of the mechanisms driving the generation of nitro(so) and chloro byproducts from their precursors in complex NOM during the UV/NH2Cl process.

2.
Free Radic Biol Med ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992393

RESUMEN

Ferroptosis is a form of iron-dependent regulated cell death which is different from apoptosis. Chemically-induced ferroptosis is characterized by an accumulation of lipid reactive oxygen species (ROS) in the cells. A number of earlier studies have suggested the involvement of mitochondrial ROS in ferroptosis, and the present study seeks to further investigate the role of mitochondrial ROS in the induction of chemically-induced ferroptotic cell death. We find that during erastin-induced, glutathione depletion-associated ferroptosis, mitochondrial ROS accumulation is an important late event, which likely is involved in the final execution of ferroptotic cell death. The mitochondrion-originated ROS is found to accumulate in large quantities inside the nuclei during the late phases of erastin-induced ferroptosis. Completion of the late-phase accumulation of mitochondrion-produced ROS inside the nucleus of a cell likely marks an irreversible point in the cell death process. Similarly, accumulation of large amounts of mitochondrion-produced ROS inside the nucleus is also observed in the late phases of RSL3-induced ferroptosis. The results of this study indicate that the mitochondrial ROS play an important role in the final steps of both erastin- and RSL3-induced ferroptotic cell death.

3.
Pharmacol Biochem Behav ; 242: 173820, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996926

RESUMEN

BACKGROUND: Emerging data has demonstrated that in mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Thus, it is possible that SorCS2 plays a role in the pathophysiology of depression by regulating the BDNF-TrkB system. METHODS: In the present study, SorCS2 expression in different brain regions [hippocampus, medial prefrontal cortex (mPFC), hypothalamus, amygdala, ventral tegmental area (VTA), and nucleus accumbens (NAc)] was thoroughly investigated in the chronic social defeat stress (CSDS) and chronic unpredictable mild stress (CUMS) models of depression. The changes in depressive-like behaviors, the hippocampal BDNF signaling cascade, and amounts of hippocampal immature neurons were further investigated after SorCS2 overexpression by microinjection of the adenovirus associated virus vector containing the coding sequence of mouse SorCS2 (AAV-SorCS2) into the hippocampus of mice exposed to CSDS or CUMS. RESULTS: It was found that both CSDS and CUMS significantly decreased the protein and mRNA expression of SorCS2 in the hippocampus but not in other brain regions. Chronic stress also notably downregulated the level of hippocampal SorCS2-TrkB binding in mice. In contrast, AAV-based genetic overexpression of hippocampal SorCS2 fully reversed the chronic stress-induced not only depressive-like behaviors but also decreased SorCS2-TrkB binding, BDNF signaling pathway, and amounts of immature neurons in the hippocampus of mice. CONCLUSION: All these results suggest that enhancing the hippocampal SorCS2 expression protects against chronic stress, producing antidepressant-like actions. Hippocampal SorCS2 may participate in depression neurobiology and be a potential antidepressant target. SIGNIFICANCE STATEMENT: Targeting of proteins to distinct subcellular compartments is essential for neuronal activity and modulated by VPS10P domain receptors which include SorCS2. In mature neurons, SorCS2 localizes to the postsynaptic density of dendritic spines and facilitates plasma membrane sorting of TrkB by interacting with it, transmitting positive signaling from BDNF on neurons. Our study is the first direct evidence preliminarily showing that SorCS2 plays a role in depression neurobiology. It was found that chronic stress induced not only depressive-like behaviors but also decreased SorCS2 expression in the hippocampus. Chronic stress did not affect SorCS2 expression in the mPFC, hypothalamus, amygdala, VTA, or NAc. In contrast, genetic overexpression of hippocampal SorCS2 prevented against chronic stress, producing antidepressant-like actions in mice. Thus, hippocampal SorCS2 is a potential participant underlying depression neurobiology and may be a novel antidepressant target. Our study may also extend the knowledge of the neurotrophic hypothesis of depression.

4.
Biomed Environ Sci ; 37(4): 354-366, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727158

RESUMEN

Objective: This study investigated the impact of occupational mercury (Hg) exposure on human gene transcription and expression, and its potential biological mechanisms. Methods: Differentially expressed genes related to Hg exposure were identified and validated using gene expression microarray analysis and extended validation. Hg-exposed cell models and PTEN low-expression models were established in vitro using 293T cells. PTEN gene expression was assessed using qRT-PCR, and Western blotting was used to measure PTEN, AKT, and PI3K protein levels. IL-6 expression was determined by ELISA. Results: Combined findings from gene expression microarray analysis, bioinformatics, and population expansion validation indicated significant downregulation of the PTEN gene in the high-concentration Hg exposure group. In the Hg-exposed cell model (25 and 10 µmol/L), a significant decrease in PTEN expression was observed, accompanied by a significant increase in PI3K, AKT, and IL-6 expression. Similarly, a low-expression cell model demonstrated that PTEN gene knockdown led to a significant decrease in PTEN protein expression and a substantial increase in PI3K, AKT, and IL-6 levels. Conclusion: This is the first study to report that Hg exposure downregulates the PTEN gene, activates the PI3K/AKT regulatory pathway, and increases the expression of inflammatory factors, ultimately resulting in kidney inflammation.


Asunto(s)
Inflamación , Mercurio , Fosfohidrolasa PTEN , Humanos , Regulación hacia Abajo , Células HEK293 , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/sangre , Mercurio/toxicidad , Exposición Profesional/efectos adversos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Exp Physiol ; 109(6): 956-965, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643470

RESUMEN

Traumatic brain injury (TBI) is a major cause of morbidity and mortality globally. We unveiled the diagnostic value of serum NLRP3, metalloproteinase-9 (MMP-9) and interferon-γ (IFN-γ) levels in post-craniotomy intracranial infections and hydrocephalus in patients with severe craniocerebral trauma to investigate the high risk factors for these in patients with TBI, and the serological factors predicting prognosis, which had a certain clinical predictive value. Study subjects underwent bone flap resection surgery and were categorized into the intracranial infection/hydrocephalus/control (without postoperative hydrocephalus or intracranial infection) groups, with their clinical data documented. Serum levels of NLRP3, MMP-9 and IFN-γ were determined using ELISA kits, with their diagnostic efficacy on intracranial infections and hydrocephalus evaluated by receiver operating characteristic curve analysis. The independent risk factors affecting postoperative intracranial infections and hydrocephalus were analysed by logistic multifactorial regression. The remission after postoperative symptomatic treatment was counted. The intracranial infection/control groups had significant differences in Glasgow Coma Scale (GCS) scores, opened injury, surgical time and cerebrospinal fluid leakage, whereas the hydrocephalus and control groups had marked differences in GCS scores, cerebrospinal fluid leakage and subdural effusion. Serum NLRP3, MMP-9 and IFN-γ levels were elevated in patients with post-craniotomy intracranial infections/hydrocephalus. The area under the curve values of independent serum NLRP3, MMP-9, IFN-γ and their combination for diagnosing postoperative intracranial infection were 0.822, 0.722, 0.734 and 0.925, respectively, and for diagnosing hydrocephalus were 0.865, 0.828, 0.782 and 0.957, respectively. Serum NLRP3, MMP-9 and IFN-γ levels and serum NLRP3 and MMP-9 levels were independent risk factors influencing postoperative intracranial infection and postoperative hydrocephalus, respectively. Patients with hydrocephalus had a high remission rate after postoperative symptomatic treatment. Serum NLRP3, MMP-9 and IFN-γ levels had high diagnostic efficacy in patients with postoperative intracranial infection and hydrocephalus, among which serum NLRP3 level played a major role.


Asunto(s)
Hidrocefalia , Interferón gamma , Metaloproteinasa 9 de la Matriz , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Femenino , Persona de Mediana Edad , Interferón gamma/sangre , Adulto , Hidrocefalia/cirugía , Traumatismos Craneocerebrales/complicaciones , Traumatismos Craneocerebrales/sangre , Complicaciones Posoperatorias/sangre , Anciano , Factores de Riesgo , Biomarcadores/sangre , Adulto Joven
6.
Biochemistry ; 63(8): 984-999, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38569593

RESUMEN

Ferroptosis is a recently identified form of regulated cell death, characterized by excessive iron-dependent lipid peroxidation. Recent studies have demonstrated that protein disulfide isomerase (PDI) is an important mediator of chemically induced ferroptosis and also a new target for protection against ferroptosis-associated cell death. In the present study, we identified that 4-hydroxyestrone (4-OH-E1), a metabolic derivative of endogenous estrogen, is a potent small-molecule inhibitor of PDI, and can strongly protect against chemically induced ferroptotic cell death in the estrogen receptor-negative MDA-MB-231 human breast cancer cells. Pull-down and CETSA assays demonstrated that 4-OH-E1 can directly bind to PDI both in vitro and in intact cells. Computational modeling analysis revealed that 4-OH-E1 forms two hydrogen bonds with PDI His256, which is essential for its binding interaction and thus inhibition of PDI's catalytic activity. Additionally, PDI knockdown attenuates the protective effect of 4-OH-E1 as well as cystamine (a known PDI inhibitor) against chemically induced ferroptosis in human breast cancer cells. Importantly, inhibition of PDI by 4-OH-E1 and cystamine or PDI knockdown by siRNAs each markedly reduces iNOS activity and NO accumulation, which has recently been demonstrated to play an important role in erastin-induced ferroptosis. In conclusion, this study demonstrates that 4-OH-E1 is a novel inhibitor of PDI and can strongly inhibit ferroptosis in human breast cancer cells in an estrogen receptor-independent manner. The mechanistic understanding gained from the present study may also aid in understanding the estrogen receptor-independent cytoprotective actions of endogenous estrogen metabolites in many noncancer cell types.


Asunto(s)
Neoplasias de la Mama , Hidroxiestronas , Piperazinas , Proteína Disulfuro Isomerasas , Humanos , Femenino , Proteína Disulfuro Isomerasas/química , Neoplasias de la Mama/tratamiento farmacológico , Cistamina , Muerte Celular , Estrógenos , Receptores de Estrógenos
7.
Water Res ; 256: 121564, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615605

RESUMEN

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.


Asunto(s)
Aprendizaje Automático , Sulfatos , Sulfatos/química , Animales , Células CHO , Rayos Ultravioleta , Cricetulus , Espectrometría de Masas , Purificación del Agua/métodos , Oxidación-Reducción
8.
J Mater Chem B ; 12(18): 4398-4408, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651348

RESUMEN

Neurological disorders are closely linked to the alterations in cell membrane permeability (CMP) and mitochondrial membrane potential (MMP). Changes in CMP and MMP may lead to damage and death of nerve cells, thus triggering the onset and progression of neurological diseases. Therefore, monitoring the changes of these two physiological parameters not only benefits the accurate assessment of nerve cell health status, but also enables providing key information for the diagnosis and treatment of neurological diseases. However, the simultaneous monitoring of these two cellular physiological parameters is still challenging. Herein, we design and synthesize two quinolinium-carbazole-derivated fluorescent probes (OQ and PQ). As isomers, the only difference in their chemical structures is the linking position of the carbazole unit in quinoline rings. Strikingly, such a subtle difference endows OQ and PQ with significantly different organelle-staining behaviors. PQ mainly targets at the nucleus, OQ can simultaneously stain cell membranes and mitochondria in normal cells, and performs CMP and MMP-dependent translocation from the cell membrane to mitochondria then to the nucleus, thus holding great promise as an intracellular translocation probe to image the changes of CMP and MMP. After unraveling the intrinsic mechanism of their different translocation abilities by combining experiments with molecular dynamics simulations and density functional theory calculations, we successfully used OQ to monitor the continuous changes of CMP and MMP in three neurological disease-related cell models, including oxidative stress-damaged, Parkinson's disease, and virus-infected ones. Besides providing a validated imaging tool for monitoring cellular physiological parameters, this work paves a promising route for designing intracellular translocation probes to analyze cellular physiological parameters associated with various diseases.


Asunto(s)
Colorantes Fluorescentes , Potencial de la Membrana Mitocondrial , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Enfermedades del Sistema Nervioso , Teoría Funcional de la Densidad , Permeabilidad de la Membrana Celular , Carbazoles/química , Estructura Molecular , Animales , Imagen Óptica
9.
Anal Chem ; 96(18): 6968-6977, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662948

RESUMEN

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Asunto(s)
Colorantes Fluorescentes , Células Espumosas , Gotas Lipídicas , Colorantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patología , Animales , Ratones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen Óptica , Humanos , Células RAW 264.7 , Concentración de Iones de Hidrógeno , Color
10.
J Mech Behav Biomed Mater ; 154: 106532, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574437

RESUMEN

Polymeric lattice materials with micro/nano-structures are attractive for applications in a wide range of bioengineering systems. Resent experimental results show that elastic constitutive law of polymer materials is in line with the Cosserat elasticity. In this work, a Cosserat continuum spectral element method is employed to explore the size-dependent mechanical performance of polymer polymeric lattice with horseshoe microstructures, efficiently. The mechanical performance predicted by the proposed method agrees very well with the experiment data. Our results demonstrate that size effects are significant in polymeric lattice materials. The size-dependent negative Poisson's ratio is found in the polymeric lattice materials with the same topological structure due to the size effect caused by the Cosserat elasticity of the polymer materials. It could be implied that it is possible to continuously adjust the negative Poisson's ratio of the polymeric lattice material over a wide range by only changing its microstructural size.


Asunto(s)
Polímeros , Elasticidad
11.
Pharmacol Res ; 202: 107122, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428703

RESUMEN

The ectonucleotidase CD39 has been regarded as a promising immune checkpoint in solid tumors. However, the expression of CD39 by tumor-infiltrating CD8+ T cells as well as their potential roles and clinical implications in human gastric cancer (GC) remain largely unknown. Here, we found that GC-infiltrating CD8+ T cells contained a fraction of CD39hi cells that constituted about 6.6% of total CD8+ T cells in tumors. These CD39hi cells enriched for GC-infiltrating CD8+ T cells with features of exhaustion in transcriptional, phenotypic, metabolic and functional profiles. Additionally, GC-infiltrating CD39hiCD8+ T cells were also identified for tumor-reactive T cells, as these cells expanded in vitro were able to recognize autologous tumor organoids and induced more tumor cell apoptosis than those of expanded their CD39int and CD39-CD8+ counterparts. Furthermore, CD39 enzymatic activity controlled GC-infiltrating CD39hiCD8+ T cell effector function, and blockade of CD39 efficiently enhanced their production of cytokines IFN-γ and TNF-α. Finally, high percentages of GC-infiltrating CD39hiCD8+ T cells correlated with tumor progression and independently predicted patients' poor overall survival. These findings provide novel insights into the association of CD39 expression level on CD8+ T cells with their features and potential clinical implications in GC, and empowering those exhausted tumor-reactive CD39hiCD8+ T cells through CD39 inhibition to circumvent the suppressor program may be an attractive therapeutic strategy against GC.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Citocinas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
BMC Chem ; 18(1): 49, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454508

RESUMEN

Carbazole derivatives can be used as antioxidants in the lubricating oil industry. The alkylation of carbazole with 2-chloro-2-methylpropane and 2-bromopropane catalyzed by anhydrous aluminum chloride was studied. Initially, 3,6-di-iso-propylcarbazole and 3,6-di-tert-butylcarbazole were using dichloromethane and dibromomethane as solvents at room temperature, respectively. The synthesis conditions were optimized. Subsequently, the effects of reaction time, catalyst dosage, and molar ratio of carbazole to alkylating agent were investigated, and orthogonal experiments were performed. The structures of the carbazole derivatives were characterized by Fourier infrared spectroscopy (FT-IR), mass spectrum (MS) and nuclear magnetic resonance spectroscopy (NMR). The thermal stability of the synthesized carbazole derivatives was investigated by differential scanning calorimetry (DSC). The carbazole derivatives were added into the lubricating oil with a mass fraction of 0.8% and the miscibility, stability and oxidation resistance of the mixed system were evaluated by mechanical stirring and a rotary pressure vessel oxidation test (RPVOT). The DSC results showed that there was good thermal stability for the carbazole derivatives. The mechanical stirring method revealed good solubility and stability for the mixture of oil and carbazole derivatives. The RPVOT results showed that isopropyl carbazole derivatives could increase the oxidation induction period of lubricating oil to 1.39 times, and tert-butyl carbazole derivatives could increase the oxidation induction period of lubricating oil to 1.91 times. The antioxidant effect of tert-butyl carbazole derivatives was better than that of isopropyl carbazole derivatives.

13.
Clin Transl Immunology ; 13(3): e1499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501063

RESUMEN

Objectives: CD4+ T cell helper and regulatory function in human cancers has been well characterised. However, the definition of tumor-infiltrating CD4+ T cell exhaustion and how it contributes to the immune response and disease progression in human gastric cancer (GC) remain largely unknown. Methods: A total of 128 GC patients were enrolled in the study. The expression of CD39 and PD-1 on CD4+ T cells in the different samples was analysed by flow cytometry. GC-infiltrating CD4+ T cell subpopulations based on CD39 expression were phenotypically and functionally assessed. The role of CD39 in the immune response of GC-infiltrating T cells was investigated by inhibiting CD39 enzymatic activity. Results: In comparison with CD4+ T cells from the non-tumor tissues, significantly more GC-infiltrating CD4+ T cells expressed CD39. Most GC-infiltrating CD39+CD4+ T cells exhibited CD45RA-CCR7- effector-memory phenotype expressing more exhaustion-associated inhibitory molecules and transcription factors and produced less TNF-α, IFN-γ and cytolytic molecules than their CD39-CD4+ counterparts. Moreover, ex vivo inhibition of CD39 enzymatic activity enhanced their functional potential reflected by TNF-α and IFN-γ production. Finally, increased percentages of GC-infiltrating CD39+CD4+ T cells were positively associated with disease progression and patients' poorer overall survival. Conclusion: Our study demonstrates that CD39 expression defines GC-infiltrating CD4+ T cell exhaustion and their immunosuppressive function. Targeting CD39 may be a promising therapeutic strategy for treating GC patients.

14.
Int J Biol Macromol ; 265(Pt 2): 130957, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499121

RESUMEN

Deterioration in mechanical performances and aging resistance due to the introduction of flame retardants is a major obstacle for bio-based fire-safety polypropylene (PP). Herein, we reported a kind of functionalized lignin nanoparticles assembled with MXene (MX@LNP), and applied it to construct the flame-retardant PP composites (PP-MA) with superior fire safety, excellent mechanical performance, electromagnetic shielding effects and aging resistance. Specifically, the PP-MA doped with only 18 wt% flame-retardant additives (PP-MA18) achieved the UL-94 V-0 rating. In comparison to pure PP, PP-MA18 presented a greatly decreased peak of heat release rate (pHRR), total heat rate (THR), and peak smoke production rate (pSPR) by 79.7 %, 69.0 % and 75.8 %, respectively, and satisfactory decrease in total flammable and toxic volatiles evolved. The formed fine solid microstructure of carbon residuals effectively promoted the compactness of char layers. More importantly, the nano-effect and the strong interface interaction between the complexed MX@LNP and PP enhanced the tensile strength (45.78 MPa) and elongation at break (725.95 %) of PP-MA. Additionally, the significant ultraviolet absorption and electromagnetic wave dissipation performance of MXene and lignin enabled excellent aging resistance and electromagnetic shielding effects of PP-MA compared with PP. This achieved MX@LNP afforded a novel approach for developing flame retardant materials with excellent application performance.


Asunto(s)
Retardadores de Llama , Nanopartículas , Nitritos , Elementos de Transición , Lignina , Polipropilenos , Fenómenos Electromagnéticos
15.
Eur J Pharmacol ; 968: 176404, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38382804

RESUMEN

ß-thalassemia, a globally prevalent genetic disorder, urgently requires innovative treatment options. Fetal hemoglobin (HbF) induction stands as a key therapeutic approach. This investigation focused on Ginsenoside Rg1 from the Panax genus for HbF induction. Employing K562 cells and human erythroid precursor cells (ErPCs) derived from neonatal cord blood, the study tested Rg1 at different concentrations. We measured its effects on γ-globin mRNA levels and HbF expression, alongside assessments of cell proliferation and differentiation. In K562 cells, Rg1 at 400 µM significantly increased γ-globin mRNA expression by 4.24 ± 1.08-fold compared to the control. In ErPCs, the 800 µM concentration was most effective, leading to an over 80% increase in F-cells and a marked upregulation in HbF expression. Notably, Rg1 did not adversely affect cell proliferation or differentiation, with the 200 µM concentration showing an increase in γ-globin mRNA by 2.33 ± 0.58-fold, and the 800 µM concentration enhancing HbF expression by 2.59 ± 0.03-fold in K562 cells. Our results underscore Rg1's potential as an effective and safer alternative for ß-thalassemia treatment. By significantly enhancing HbF levels without cytotoxicity, Rg1 offers a notable advantage over traditional treatments like Hydroxyurea. While promising, these in vitro findings warrant further in vivo exploration to confirm Rg1's therapeutic efficacy and to unravel its underlying mechanistic pathways.


Asunto(s)
Ginsenósidos , Talasemia beta , Recién Nacido , Humanos , Talasemia beta/genética , Hemoglobina Fetal , gamma-Globinas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Int J Biol Macromol ; 264(Pt 1): 130409, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417750

RESUMEN

Flame retardants containing biomass receive growing interest in environmental friendliness and sustainability but usually face the low flame-retardant efficiency and deterioration on mechanical property of matrix. Herein, a calcium gluconate-based flame retardant (CG@APP) was chemically prepared using calcium gluconate (CG) and ammonium polyphosphate (APP) via ion exchange reaction, and enabled the excellent fire safety and mechanical enhancement for epoxy resin (EP). The resulted EP composites containing 6 wt% CG@APP (EP/CG@APP6) exhibited V-0 ratings in UL-94 test. Furthermore, with respect to EP/APP6, the peak of heat release rate (pHRR) and peak of smoke production rate (pSPR) of EP/CG@APP6 decreased by 70.5 % and 50.0 %, respectively. The well synergistic flame-retardant mechanism of CG@APP between gaseous and solid phases was revealed to generate denser and more continuous charring residuals, which could do well work on insulation for heat transfer and fuel diffusion. In addition, the shell rich in hydroxyl group and Ca2+ on the surface of CG@APP well enhanced the interface compatibility through the hydrogen bond and coordinated bond, thus the tensile strength, flexural strength and impact strength of EP/CG@APP6 increased by 18.2 %, 4.5 % and 9.1 % compared with pure EP, respectively. This work provided a simple and sustainable way to construct excellent fire-safety composites.


Asunto(s)
Resinas Epoxi , Retardadores de Llama , Gluconato de Calcio , Biomasa , Difusión , Polifosfatos
17.
ACS Appl Mater Interfaces ; 16(7): 9060-9067, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38336611

RESUMEN

Filter-free wavelength-selective photodetectors have garnered significant attention due to the growing demand for smart sensors, artificial intelligence, the Internet of Everything, and so forth. However, the challenges associated with large-scale preparation and compatibility with complementary metal-oxide-semiconductor (CMOS) technology limit their wide-ranging applications. In this work, we address the challenges by constructing vertically stacked graded-band-gap zinc-tin oxide (ZTO) thin-film transistors (TFTs) specifically designed for wavelength-selective photodetection. The ZTO thin films with various band gaps are fabricated via atomic layer deposition (ALD) by varying the ALD cycle ratios of zinc oxide (ZnO) and SnO2. The ZTO film with a small Sn ratio exhibits a decreased band gap, and the resultant TFT shows a degraded performance, which can be attributed to the Sn4+ dopant introducing a series of deep-state energy levels in the ZnO band gap. As the ratio of Sn increases further, the band gap of the ZTO also increases, and the mobility of the ZTO TFT increases up to 30 cm2/V s, with a positive shift of the threshold voltage. The photodetectors employing ZTO thin films with distinct band gaps show different spectral responsivities. Then, vertically stacked ZTO (S-ZTO) thin films, with gradient band gaps increasing from the bottom to the top, have been successfully deposited using consecutive ALD technology. The S-ZTO TFT shows decent performance with a mobility of 18.4 cm2/V s, a threshold voltage of 0.5 V, an on-off current ratio higher than 107, and excellent stability under ambient conditions. The resultant S-ZTO TFT also exhibits obviously distinct photoresponses to light at different wavelength ranges. Furthermore, a device array of S-ZTO TFTs demonstrates color imaging by precisely reconstructing patterned illuminations with different wavelengths. Therefore, this work provides CMOS-compatible and structure-compact wavelength-selective photodetectors for advanced and integrable optoelectronic applications.

18.
BMC Med Genomics ; 17(1): 55, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378613

RESUMEN

BACKGROUND: Gene variants are responsible for more than half of hearing loss, particularly in nonsyndromic hearing loss (NSHL). The most common pathogenic variant in SLC26A4 gene found in East Asian populations is c.919-2A > G followed by c.2168A > G (p.H723R). This study was to evaluate their variant frequencies in patients with NSHL from special education schools in nine different areas of Southwest China's Yunnan. METHODS: We performed molecular characterization by PCR-products directly Sanger sequencing of the SLC26A4 c.919-2AG and c.2168 A > G variants in 1167 patients with NSHL including 533 Han Chinese and 634 ethnic minorities. RESULTS: The SLC26A4 c.919-2A > G variant was discovered in 8 patients with a homozygous state (0.69%) and twenty-five heterozygous (2.14%) in 1167 patients with NSHL. The total carrier rate of the c.919-2A > G variant was found in Han Chinese patients with 4.50% and ethnic minority patients with 1.42%. A significant difference existed between the two groups (P < 0.05). The c.919-2A > G allele variant frequency was ranged from 3.93% in Kunming to zero in Lincang and Nvjiang areas of Yunnan. We further detected the SLC26A4 c.2168 A > G variant in this cohort with one homozygotes (0.09%) and seven heterozygotes (0.60%), which was detected in Baoshan, Honghe, Licang and Pu`er areas. Between Han Chinese group (0.94%) and ethnic minority group (0.47%), there was no statistical significance (P > 0.05). Three Han Chinese patients (0.26%) carried compound heterozygosity for c.919-2A > G and c.2168 A > G. CONCLUSION: These data suggest that the variants in both SLC26A4 c.919-2A > G and c.2168 A > G were relatively less frequencies in this cohort compared to the average levels in most regions of China, as well as significantly lower than that in Han-Chinese patients. These results broadened Chinese population genetic information resources and provided more detailed information for regional genetic counselling for Yunnan.


Asunto(s)
Sordera , Etnicidad , Proteínas de Transporte de Membrana , Humanos , Etnicidad/genética , Mutación , Proteínas de Transporte de Membrana/genética , Grupos Minoritarios , China/epidemiología , Conexinas/genética , Transportadores de Sulfato/genética
19.
JAMA Intern Med ; 184(3): 291-299, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285562

RESUMEN

Importance: Electronic cigarettes (ECs) are often used by smokers as an aid to stopping smoking, but evidence is limited regarding their efficacy compared with nicotine replacement therapy (NRT), and no evidence is available on how their efficacy compares with that of varenicline. Objective: To evaluate whether ECs are superior to NRT and noninferior to varenicline in helping smokers quit. Design, Setting, and Participants: This was a randomized clinical trial conducted at 7 sites in China and including participants who were smoking at least 10 cigarettes per day and motivated to quit, not using stop-smoking medications or EC, and willing to use any of the study products. Participants were first recruited in May 2021, and data analysis was conducted in December 2022. Interventions: A cartridge-based EC (30 mg/mL nicotine salt for 2 weeks and 50 mg/mL after that), varenicline (0.5 mg, once a day for 3 days; 0.5 mg, twice a day for 4 days; and 1 mg, twice a day, after that), and 2 mg (for smokers of ≤20 cigarettes per day) or 4 mg (>20 cigarettes per day) nicotine chewing gum, all provided for 12 weeks and accompanied by minimal behavioral support (an invitation to join a self-help internet forum). Main Outcomes and Measures: The primary outcome was sustained abstinence from smoking at 6 months as validated by an expired-air carbon monoxide reading (<8 parts per million). Participants lost to follow-up were included as nonabstainers. Results: Of 1068 participants, 357 (33.5%) were female, and the mean (SD) age was 33.9 (3.1) years. A total of 409 (38.3%), 409 (38.3%), and 250 (23.4%) participants were randomized to the EC, varenicline, and NRT arms, respectively. The 6-month biochemically validated abstinence rates were 15.7% (n = 64), 14.2% (n = 58), and 8.8% (n = 22) in the EC, varenicline, and NRT study arms, respectively. The quit rate in the EC arm was noninferior to the varenicline arm (absolute risk reduction, 1.47%; 95% CI, -1.41% to 4.34%) and higher than in the NRT arm (odds ratio, 1.92; 95% CI, 1.15-3.21). Treatment adherence was similar in all study arms during the initial 3 months, but 257 participants (62.8%) in the EC arm were still using ECs at 6 months, with no further use in the 2 other study arms. The most common adverse reactions were throat irritation (32 [7.8%]) and mouth irritation (28 [6.9%]) in the EC arm, nausea (36 [8.8%]) in the varenicline arm, and throat irritation (20 [8.0%]) and mouth irritation (22 [8.8%]) in the NRT arm. No serious adverse events were recorded. Conclusions and Relevance: The results of this randomized clinical trial found that when all treatments were provided with minimal behavior support, the efficacy of EC was noninferior to varenicline and superior to nicotine chewing gum. Trial Registration: Chinese Clinical Trial Registry: ChiCTR2100048156.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Chicles de Nicotina , Cese del Hábito de Fumar , Femenino , Humanos , Adulto , Masculino , Cese del Hábito de Fumar/métodos , Vareniclina/uso terapéutico , Agonistas Nicotínicos/efectos adversos , Dispositivos para Dejar de Fumar Tabaco , Fumar
20.
RSC Adv ; 14(1): 548-551, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38173620

RESUMEN

A diastereoselective 1,3-dipolar cycloaddition reaction between trifluoroethyl amine-derived isatin ketimines and chalcones was successfully achieved in the presence of DBU. A series of 5'-CF3-substituted 3,2'-pyrrolidinyl spirooxindoles were efficiently synthesized with high yields and excellent diastereoselectivities (up to 89% yield, and >99 : 1 dr). The in vitro anticancer activities of these highly functionalized spiro[pyrrolidin-3,2'-oxindole] derivatives were evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...