Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Neurorobot ; 17: 1294606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38089149

RESUMEN

Ultra-flat carrying robots (UCR) are used to carry soft targets for functional safety road tests of intelligent driving vehicles and should have superior control performance. For the sake of analyzing and upgrading the motion control performance of the ultra-flat carrying robot, this paper develops the mathematical model of its motion control system on the basis of the test data and the system identification method. Aiming at ameliorating the defects of the standard particle swarm optimization (PSO) algorithm, namely, low accuracy, being susceptible to being caught in a local optimum, and slow convergence when dealing with the parameter identification problems of complex systems, this paper proposes a refined PSO algorithm with inertia weight cosine adjustment and introduction of natural selection principle (IWCNS-PSO), and verifies the superiority of the algorithm by test functions. Based on the IWCNS-PSO algorithm, the identification of transfer functions in the motion control system of the ultra-flat carrying robot was completed. In comparison with the identification results of the standard PSO and linear decreasing inertia weight (LDIW)-PSO algorithms, it indicated that the IWCNS-PSO has the optimal performance, with the number of iterations it takes to reach convergence being only 95 and the fitness value being only 0.117. The interactive simulation model was constructed in MATLAB/Simulink, and the critical proportioning method and the IWCNS-PSO algorithm were employed respectively to complete the tuning and optimization of the Proportional-Integral (PI) controller parameters. The results of simulation indicated that the PI parameters optimized by the IWCNS-PSO algorithm reduce the adjustment time to 7.99 s and the overshoot to 13.41% of the system, and the system is significantly improved with regard to the control performance, which basically meets the performance requirements of speed, stability, and accuracy for the control system. In conclusion, the IWCNS-PSO algorithm presented in this paper represents an efficient system identification method, as well as a system optimization method.

2.
Ann Transl Med ; 9(7): 534, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33987232

RESUMEN

BACKGROUND: The outbreak of the novel 2019 coronavirus disease (COVID-19) was declared a global pandemic by the World Health Organization (WHO) on March 11, 2020. The diagnosis of COVID-19 is frequently based on a positive serological test. We noted the occurrence of false-positive results for COVID-19 in the colloidal gold-based immunochromatographic strip (ICS) assay in sera from patients with autoimmune diseases (ADs). This study aimed to evaluate the possible reasons for the false-positive results in two ICS assays (Wondfo ICS and Innovita ICS) and to investigate the effect of urea dissociation in reducing false-positive results. METHODS: The sera of 135 patients with ADs, 13 confirmed COVID-19 patients, 95 disease controls, and 120 healthy controls were tested for immunoglobin M (IgM) and IgG against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using Wondfo and Innovita ICS kits. The distributions of auto-antibodies in antibody-positive and antibody-negative groups were also compared, and bivariable logistic regression was used to assess auto-antibodies associated with false-positive results. A urea dissociation test of ICS was performed for the SARS-CoV-2 antibody-positive samples. RESULTS: Specificity of Wondfo ICS for the 95 disease controls was 94.74% compared to 98.95% and 96.84% for Innovita SARS-CoV-2 IgM and IgG, respectively. Specificity of Wondfo ICS for the 120 healthy controls was 97.5% compared to 100% and 99.17% for Innovita SARS-CoV-2 IgM and IgG, respectively. Specificity of Wondfo ICS for AD patients was 73.33% compared to 97.78% and 96.30% for Innovita SARS-CoV-2 IgM and IgG, respectively. Sensitivity was 74.07% for Wondfo compared to 70.37% for Innovita IgM and 66.67% for Innovita IgG. Using the Wondfo ICS, the percentage of elevated rheumatoid factor (RF) level (>20 IU/mL) was higher in the SARS-CoV-2 antibody-positive group compared with the antibody-negative group [27/36 (75.0%) vs. 34/99 (34.34%), P=0.001]. The elevated RF was associated with antibody positivity, with an odds ratio of 4.671 [95% confidence interval (CI), 1.88-11.69]. The specificity of the Wondfo ICS assay for the AD patients was increased from 73.33% to 94.07% after the urea dissociation assay. CONCLUSIONS: An elevated serum RF level could lead to false-positive results when detecting SARS-CoV-2 antibodies using the Wondfo ICS kit, and the urea dissociation assay would be helpful in reducing the incidence of false-positive results.

3.
Opt Lett ; 44(7): 1860-1863, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30933166

RESUMEN

We present a scanning average method used in laser Doppler vibrometry systems for mitigating the noise induced by dynamic speckles. In this method, the measurement beam is scanned over the target surface within the area of interest at a relatively high frequency. Then an averaging operation (e.g., low-pass filtering) is applied to the acquired photocurrent signals to remove the impacts of the scan. Movement signals recovered from the averaged photocurrents turn out to have lower speckle-induced noise. We report the experimental demonstration of this technique through the use of a silicon-based photonic integrated circuit.

4.
Opt Express ; 26(3): 3638-3645, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29401891

RESUMEN

This paper describes an integrated six-beam homodyne laser Doppler vibrometry (LDV) system based on a silicon-on-insulator (SOI) full platform technology, with on-chip photo-diodes and phase modulators. Electronics and optics are also implemented around the integrated photonic circuit (PIC) to enable a simultaneous six-beam measurement. Measurement of a propagating guided elastic wave in an aluminum plate (speed ≈ 909 m/s @ 61.5 kHz) is demonstrated.

5.
Opt Express ; 25(4): 3605-3612, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241573

RESUMEN

This paper reports a hitherto undiscovered cyclic error whose origin is different from that of conventional errors in homodyne interferometers. To explain this error, a model based on ghost reflections and the interference principle is developed. In general, in homodyne interferometers, multi-order Doppler frequency shift ghost beams participate in the final interference and generate multi-order cyclic errors. This "new" cyclic error is compared with conventional errors by means of Lissajous curves. And we establish a setup to validate our proposed model. We use a corner cube retroreflector to replace the mirror and we find the error is significantly reduced. We believe that our findings can contribute to the further development of highly accurate homodyne interferometers.

6.
Opt Express ; 23(7): 8399-408, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968679

RESUMEN

This study presents an analysis of the cyclic nonlinearity in the homodyne interferometer starting from the interference principle. We present the design for an enhanced homodyne interferometer without DC offset, for which the nonlinearity model will not be influenced by the intensity of the measurement beam. Our experimental results show that the enhanced interferometer can suppress the nonlinearity to less than 0.5 nm with a system calibration involving gain adjustment and phase-correction methods.

7.
Sensors (Basel) ; 15(2): 3090-106, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25647739

RESUMEN

This paper presents a real-time method to compensate for the variable cyclic error in a homodyne laser interferometer. The parameters describing the quadrature signals of the interferometer are estimated using simple peak value detectors. The cyclic error in the homodyne laser interferometer was then corrected through simple arithmetic calculations of the quadrature signals. A field programmable gate array was utilized for the real-time compensation of the cyclic error in a homodyne laser interferometer. The simulation and experimental results indicated that the proposed method could provide a cyclic error that was fixed without compensation down to a value under 0.6 nm in a homodyne laser interferometer. The proposed method could also reduce the time-varying cyclic error to a value under 0.6 nm in a homodyne laser interferometer, in contrast to the equivalent value of 13.3 nm for a conventional elliptical fitting method.

8.
Appl Opt ; 54(34): 10196-9, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26836677

RESUMEN

This paper describes a homodyne laser vibrometer with optical shutters. The parameters that define the nonlinearity of the quadrature signals in a vibrometer can be pre-extracted before the measurement, and can then be used to compensate for nonlinear errors, such as unequal AC amplitudes and DC offsets. The experimental results indicated that the homodyne laser vibrometer developed has the ability to accurately detect the vibration state of the object to be measured, even when the amplitude is ≤λ/4. The displacement residual error can be reduced to a value under 0.9 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...