Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 9(437): ra72, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27436360

RESUMEN

Activation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) by VEGF binding is critical for vascular morphogenesis. In addition, VEGF disrupts the endothelial barrier by triggering the phosphorylation and turnover of the junctional molecule VE-cadherin, a process mediated by the VEGFR2 downstream effectors T cell-specific adaptor (TSAd) and the tyrosine kinase c-Src. We investigated whether the VEGFR2-TSAd-c-Src pathway was required for angiogenic sprouting. Indeed, Tsad-deficient embryoid bodies failed to sprout in response to VEGF. Tsad-deficient mice displayed impaired angiogenesis specifically during tracheal vessel development, but not during retinal vasculogenesis, and in VEGF-loaded Matrigel plugs, but not in those loaded with FGF. The SH2 and proline-rich domains of TSAd bridged VEGFR2 and c-Src, and this bridging was critical for the localization of activated c-Src to endothelial junctions and elongation of the growing sprout, but not for selection of the tip cell. These results revealed that vascular sprouting and permeability are both controlled through the VEGFR2-TSAd-c-Src signaling pathway in a subset of tissues, which may be useful in developing strategies to control tissue-specific pathological angiogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Endoteliales/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Familia-src Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína Tirosina Quinasa CSK , Línea Celular , Células Endoteliales/patología , Ratones , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Familia-src Quinasas/genética
2.
Dev Cell ; 28(6): 633-46, 2014 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-24656741

RESUMEN

Neuropilin 1 (NRP1) modulates angiogenesis by binding vascular endothelial growth factor (VEGF) and its receptor, VEGFR2. We examined the consequences when VEGFR2 and NRP1 were expressed on the same cell (cis) or on different cells (trans). In cis, VEGF induced rapid VEGFR2/NRP1 complex formation and internalization. In trans, complex formation was delayed and phosphorylation of phospholipase Cγ (PLCγ) and extracellular regulated kinase 2 (ERK2) was prolonged, whereas ERK1 phosphorylation was reduced. Trans complex formation suppressed initiation and vascularization of NRP1-expressing mouse fibrosarcoma and melanoma. Suppression in trans required high-affinity, steady-state binding of VEGF to NRP1, which was dependent on the NRP1 C-terminal domain. Compatible with a trans effect of NRP1, quiescent vasculature in the developing retina showed continuous high NRP1 expression, whereas angiogenic sprouting occurred where NRP1 levels fluctuated between adjacent endothelial cells. Therefore, through communication in trans, NRP1 can modulate VEGFR2 signaling and suppress angiogenesis.


Asunto(s)
Endocitosis/fisiología , Endotelio Vascular/patología , Fibrosarcoma/irrigación sanguínea , Melanoma Experimental/irrigación sanguínea , Neovascularización Patológica/prevención & control , Neuropilina-1/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Comunicación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Endotelio Vascular/metabolismo , Fibrosarcoma/metabolismo , Fibrosarcoma/prevención & control , Técnica del Anticuerpo Fluorescente , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/prevención & control , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Fosfolipasa C gamma/metabolismo , Fosforilación , Estereoisomerismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
PLoS One ; 9(1): e86273, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489709

RESUMEN

ENDOGLIN (ENG) is a co-receptor for transforming growth factor-ß (TGF-ß) family members that is highly expressed in endothelial cells and has a critical function in the development of the vascular system. Mutations in Eng are associated with the vascular disease known as hereditary hemorrhagic telangiectasia type l. Using mouse embryonic stem cells we observed that angiogenic factors, including vascular endothelial growth factor (VEGF), induce vasculogenesis in embryoid bodies even when Eng deficient cells or cells depleted of Eng using shRNA are used. However, ENG is required for the stem cell-derived endothelial cells to organize effectively into tubular structures. Consistent with this finding, fetal metatarsals isolated from E17.5 Eng heterozygous mouse embryos showed reduced VEGF-induced vascular network formation. Moreover, shRNA-mediated depletion and pharmacological inhibition of ENG in human umbilical vein cells mitigated VEGF-induced angiogenesis. In summary, we demonstrate that ENG is required for efficient VEGF-induced angiogenesis.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Endoglina , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Neovascularización Fisiológica/genética
4.
Angiogenesis ; 16(4): 939-52, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23892628

RESUMEN

GATA-binding protein 2 (GATA2) and LIM domain only 2 (Lmo2) form common transcription complexes during hematopoietic differentiation. Here we show that these two transcription factors also play a key role in endothelial cells (EC) and lymphatic EC (LEC) function. Primary EC and tumor-associated blood vessels expressed GATA2 and Lmo2. VEGF-induced sprouting angiogenesis in both differentiating embryonic stem cells (embryoid bodies) and primary EC increased GATA2 and Lmo2 levels. Conversely, silencing of GATA2 and Lmo2 expression in primary EC inhibited VEGF-induced angiogenic activity, including EC migration and sprouting in vitro, two key steps of angiogenesis in vivo. This inhibition of EC function was associated with downregulated expression of neuropilin-2 (NRP2), a co-receptor of VEGFRs for VEGF, at the protein, mRNA and promoter levels. NRP2 overexpression partially rescued the impaired angiogenic sprouting in the GATA2/Lmo2 knockdown EC, confirming that GATA2 and Lmo2 mediated EC function, at least in part, by directly regulating NRP2 gene expression. Furthermore, it was found that primary LEC expressed GATA2 and Lmo2 as well. Silencing of GATA2 and Lmo2 expression in LEC inhibited VEGF-induced LEC sprouting, also in a NRP2-dependent manner. In conclusion, our results demonstrate that GATA2 and Lmo2 cooperatively regulate VEGF-induced angiogenesis and lymphangiogenesis via NRP2.


Asunto(s)
Células Endoteliales/fisiología , Factor de Transcripción GATA2/fisiología , Proteínas con Dominio LIM/fisiología , Linfangiogénesis/fisiología , Neovascularización Fisiológica/fisiología , Neuropilina-2/fisiología , Transcripción Genética , Animales , Línea Celular Tumoral , Cuerpos Embrioides , Células Endoteliales/metabolismo , Femenino , Factor de Transcripción GATA2/genética , Regulación de la Expresión Génica , Glioblastoma/irrigación sanguínea , Glioblastoma/patología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Proteínas con Dominio LIM/genética , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/patología , Ratones , Ratones Desnudos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiología , Neuropilina-2/genética , Regiones Promotoras Genéticas/genética , Interferencia de ARN , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor A de Crecimiento Endotelial Vascular/fisiología
5.
Exp Cell Res ; 319(9): 1264-70, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23454603

RESUMEN

Blood vessels are composed of endothelial cells, mural cells (smooth muscle cells and pericytes) and their shared basement membrane. During embryonic development a multitude of signaling components orchestrate the formation of new vessels. The process is highly dependent on correct dosage, spacing and timing of these signaling molecules. As vessels mature some cascades remain active, albeit at very low levels, and may be reactivated upon demand. Members of the Transforming growth factor ß (TGF-ß) protein family are strongly engaged in developmental angiogenesis but are also regulators of vascular integrity in the adult. In humans various genetic alterations within this protein family cause vascular disorders, involving disintegration of vascular integrity. Here we summarize and discuss recent data gathered from conditional and endothelial cell specific genetic loss-of-function of members of the TGF-ß family in the mouse.


Asunto(s)
Proteínas de la Superfamilia TGF-beta/genética , Animales , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteínas de la Superfamilia TGF-beta/metabolismo , Proteínas de la Superfamilia TGF-beta/fisiología
6.
Biochim Biophys Acta ; 1831(1): 13-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23022664

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D that generates the multifunctional lipid mediator lysophosphatidic acid (LPA). LPA signals through six distinct G protein-coupled receptors, acting alone or in concert to activate multiple effector pathways. The ATX-LPA signaling axis is implicated in a remarkably wide variety of physiological and pathological processes and plays a vital role in embryonic development. Disruption of the ATX-encoding gene (Enpp2) in mice results in intrauterine death due to vascular defects in the extra-embryonic yolk sac and embryo proper. In addition, Enpp2 (-/-) embryos show impaired neural development. The observed angiogenic defects are attributable, at least in part, to loss of LPA signaling through the Gα(12/13)-linked RhoA-ROCK-actin remodeling pathway. Studies in zebrafish also have uncovered a dual role for ATX in both vascular and neural development; furthermore, they point to a key role for ATX-LPA signaling in the regulation of left-right asymmetry. Here we discuss our present understanding of the role of ATX-LPA signaling in vertebrate development. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.


Asunto(s)
Desarrollo Embrionario , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Vasos Sanguíneos/embriología , Vasos Sanguíneos/metabolismo , Tipificación del Cuerpo , Humanos , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores de Lisoesfingolípidos/metabolismo
7.
J Biol Chem ; 288(1): 510-9, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23150666

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), playing a key role in diverse physiological and pathological processes. ATX exists in distinct splice variants, but isoform-specific functions remain elusive. Here we characterize the ATXα isoform, which differs from the canonical form (ATXß) in having a 52-residue polybasic insertion of unknown function in the catalytic domain. We find that the ATXα insertion is susceptible to cleavage by extracellular furin-like endoproteases, but cleaved ATXα remains structurally and functionally intact due to strong interactions within the catalytic domain. Through ELISA and surface plasmon resonance assays, we show that ATXα binds specifically to heparin with high affinity (K(d) ~10(-8) M), whereas ATXß does not; furthermore, heparin moderately enhanced the lysophospholipase D activity of ATXα. We further show that ATXα, but not ATXß, binds abundantly to SKOV3 carcinoma cells. ATXα binding was abolished after treating the cells with heparinase III, but not after chondroitinase treatment. Thus, the ATXα insertion constitutes a cleavable heparin-binding domain that mediates interaction with heparan sulfate proteoglycans, thereby targeting LPA production to the plasma membrane.


Asunto(s)
Proteoglicanos de Heparán Sulfato/química , Heparina/química , Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Movimiento Celular , Cristalografía por Rayos X/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Células HEK293 , Humanos , Cinética , Lípidos/química , Lisofosfolípidos/química , Microscopía Fluorescente/métodos , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
8.
J Biol Chem ; 287(22): 18551-61, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493445

RESUMEN

Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor ß (TGF-ß) type I receptor, and endoglin, a TGF-ß co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. However, its effects on endothelial cell function and mechanism of action are unclear. Here we demonstrate that anti-hALK1 antibody selectively recognizes human ALK1. The anti-hALK1 antibody interfered with bone morphogenetic protein 9 (BMP9)-induced signaling in endothelial cells. Consistent with this notion, anti-hALK1 antibody was found to compete highly efficiently with the binding of the ALK1 ligand BMP9 and TGF-ß to ALK1. Moreover, it prevented BMP9-dependent recruitment of co-receptor endoglin into this angiogenesis-mediating signaling complex. In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.


Asunto(s)
Receptores de Activinas Tipo II/inmunología , Endotelio Vascular/metabolismo , Factor 2 de Diferenciación de Crecimiento/fisiología , Transducción de Señal/fisiología , Receptores de Activinas Tipo II/metabolismo , Células Cultivadas , Endotelio Vascular/citología , Citometría de Flujo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Humanos , Reacción en Cadena de la Polimerasa , Unión Proteica
9.
Cell Tissue Res ; 347(1): 177-86, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21866313

RESUMEN

Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-ß. Indeed many studies have pointed to the important role of TGF-ß receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-ß receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis.


Asunto(s)
Células Endoteliales/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Biomarcadores/metabolismo , Diferenciación Celular/fisiología , Transdiferenciación Celular/fisiología , Células Endoteliales/citología , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Mesodermo/citología , Mesodermo/fisiología , Neoplasias/metabolismo , Neoplasias/patología , Transducción de Señal/fisiología
10.
Curr Pharm Biotechnol ; 12(12): 2108-20, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21619534

RESUMEN

Angiogenesis, the formation of new blood vessels is essential for diverse physiological processes such as development, but also for pathological conditions like tumor growth. Most studied in this context are tyrosine kinase signaling pathways such as those involving vascular endothelial growth factor (VEGF). There is however accumulating evidence that more pathways are as essential for angiogenesis. Knockout studies of factors in transforming growth factor ß (TGF-ß) signaling have for example showed that also this pathway is indispensable for angiogenesis. This review highlights our understanding of TGF-ß signaling in vascular development and angiogenesis. In particular, we focus on recent insights into the role of the TGF-ß type I receptor ALK1 and co-receptor endoglin in tumor angiogenesis, which provide opportunities for the development of new anti-angiogenesis therapies for treatment of cancer patients.


Asunto(s)
Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Animales , Endotelio Vascular/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Fisiológica/fisiología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
11.
J Lipid Res ; 52(6): 1247-1255, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21421848

RESUMEN

Autotaxin (ATX) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA). ATX is secreted by adipose tissue and its expression is enhanced in obese/insulin-resistant individuals. Here, we analyzed the specific contribution of adipose-ATX to fat expansion associated with nutritional obesity and its consequences on plasma LPA levels. We established ATX(F/F)/aP2-Cre (FATX-KO) transgenic mice carrying a null ATX allele specifically in adipose tissue. FATX-KO mice and their control littermates were fed either a normal or a high-fat diet (HFD) (45% fat) for 13 weeks. FATX-KO mice showed a strong decrease (up to 90%) in ATX expression in white and brown adipose tissue, but not in other ATX-expressing organs. This was associated with a 38% reduction in plasma LPA levels. When fed an HFD, FATX-KO mice showed a higher fat mass and a higher adipocyte size than control mice although food intake was unchanged. This was associated with increased expression of peroxisome proliferator-activated receptor (PPAR)γ2 and of PPAR-sensitive genes (aP2, adiponectin, leptin, glut-1) in subcutaneous white adipose tissue, as well as in an increased tolerance to glucose. These results show that adipose-ATX is a negative regulator of fat mass expansion in response to an HFD and contributes to plasma LPA levels.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Modelos Animales de Enfermedad , Lisofosfolípidos , Complejos Multienzimáticos , Obesidad/metabolismo , PPAR gamma/metabolismo , Fosfodiesterasa I , Pirofosfatasas , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/fisiopatología , Tejido Adiposo Blanco/fisiopatología , Animales , Glucemia/análisis , Tamaño de la Célula , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/metabolismo , Femenino , Efecto Fundador , Eliminación de Gen , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Lisofosfolípidos/sangre , Masculino , Ratones , Ratones Noqueados , Complejos Multienzimáticos/deficiencia , Complejos Multienzimáticos/genética , Obesidad/genética , Obesidad/fisiopatología , PPAR gamma/antagonistas & inhibidores , PPAR gamma/genética , Fosfodiesterasa I/deficiencia , Fosfodiesterasa I/genética , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/deficiencia , Pirofosfatasas/genética
12.
Nat Struct Mol Biol ; 18(2): 198-204, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21240271

RESUMEN

Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.


Asunto(s)
Integrinas/metabolismo , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/química , Pirofosfatasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Humanos , Lisofosfolípidos/metabolismo , Datos de Secuencia Molecular , Mutación , Hidrolasas Diéster Fosfóricas/genética , Unión Proteica , Estructura Terciaria de Proteína , Pirofosfatasas/genética , Ratas , Especificidad por Sustrato
13.
Artículo en Inglés | MEDLINE | ID: mdl-20823545

RESUMEN

Autotaxin (ATX or ENPP2) is a secreted glycosylated mammalian enzyme that exhibits lysophospholipase D activity, hydrolyzing lysophosphatidylcholine to the signalling lipid lysophosphatidic acid. ATX is an approximately 100 kDa multi-domain protein encompassing two N-terminal somatomedin B-like domains, a central catalytic phosphodiesterase domain and a C-terminal nuclease-like domain. Protocols for the efficient expression of ATX from stably transfected mammalian HEK293 cells in amounts sufficient for crystallographic studies are reported. Purification resulted in protein that crystallized readily, but various attempts to grow crystals suitable in size for routine crystallographic structure determination were not successful. However, the available micrometre-thick plates diffracted X-rays beyond 2.0 A resolution and allowed the collection of complete diffraction data to about 2.6 A resolution. The problems encountered and the current advantages and limitations of diffraction data collection from thin crystal plates are discussed.


Asunto(s)
Glicoproteínas/química , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas/química , Animales , Cristalización , Cristalografía por Rayos X , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Células HEK293 , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/aislamiento & purificación , Pirofosfatasas/genética , Pirofosfatasas/aislamiento & purificación , Ratas
14.
Mol Cancer Res ; 8(8): 1063-73, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20651020

RESUMEN

Neuropilins (NRP1 and NRP2) are coreceptors for vascular endothelial growth factor (VEGF) and mediate angiogenesis and tumor progression. VEGF binds to the NRP1 and NRP2 B domains. Previously, it was shown that mutagenesis of the soluble NRP2 B domain (MutB-NRP2) increased affinity to VEGF by 8-fold. Here, we show that MutB-NRP2 inhibited (125)I-VEGF binding to NRP1, NRP2, and VEGFR-2. It antagonized VEGF-induced VEGFR-2/NRP2 complex formation and inhibited VEGF-induced activation of AKT, a mediator of cell survival, without affecting activation of VEGFR-2. In three-dimensional embryoid bodies, a model of VEGF-induced angiogenesis, MutB-NRP2 inhibited VEGF-induced sprouting. When overexpressed in human melanoma cells, MutB-NRP2 inhibited tumor growth compared with control tumors. Avastin (bevacizumab), a monoclonal antibody to VEGF, inhibited VEGF interactions with VEGFR-2, but not with NRPs. The combination of MutB-NRP2 and Avastin resulted in an enhanced inhibition of human melanoma tumor growth compared with MutB-NRP2 treatment only or Avastin treatment only. In conclusion, these results indicate that MutB-NRP2 is a novel antagonist of VEGF bioactivity and tumor progression.


Asunto(s)
Melanoma/prevención & control , Mutación/genética , Neuropilina-2/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Aorta/citología , Aorta/efectos de los fármacos , Aorta/metabolismo , Bevacizumab , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , Neuropilina-1/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Porcinos , Transfección , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
J Med Chem ; 53(13): 4958-67, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20536182

RESUMEN

Autotaxin (ATX) is an extracellular enzyme that hydrolyzes lysophosphatidylcholine (LPC) to produce the lipid mediator lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in diverse physiological and pathological processes, including vascular development, inflammation, fibrotic disease, and tumor progression. Therefore, targeting ATX with small molecule inhibitors is an attractive therapeutic strategy. We recently reported that 2,4-thiazolidinediones inhibit ATX activity in the micromolar range. Interestingly, inhibitory potency was dramatically increased by introduction of a boronic acid moiety, designed to target the active site threonine in ATX. Here we report on the discovery and further optimization of boronic acid based ATX inhibitors. The most potent of these compounds inhibits ATX-mediated LPC hydrolysis in the nanomolar range (IC(50) = 6 nM). The finding that ATX can be targeted by boronic acids may aid the development of ATX inhibitors for therapeutic use.


Asunto(s)
Ácidos Borónicos/síntesis química , Ácidos Borónicos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Complejos Multienzimáticos/antagonistas & inhibidores , Fosfodiesterasa I/antagonistas & inhibidores , Pirofosfatasas/antagonistas & inhibidores , Ácidos Borónicos/química , Ácidos Borónicos/metabolismo , Línea Celular , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Concentración 50 Inhibidora , Lisofosfatidilcolinas/metabolismo , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Complejos Multienzimáticos/metabolismo , Fosfodiesterasa I/metabolismo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Tiazolidinedionas/síntesis química , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacología
16.
Proc Natl Acad Sci U S A ; 107(16): 7257-62, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20360563

RESUMEN

Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.


Asunto(s)
Ácidos Borónicos/metabolismo , Lisofosfolípidos/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Glicoproteínas/química , Humanos , Concentración 50 Inhibidora , Lípidos/química , Masculino , Ratones , Complejos Multienzimáticos/metabolismo , Fosfodiesterasa I/metabolismo , Hidrolasas Diéster Fosfóricas/química , Pirofosfatasas/metabolismo , Transducción de Señal , Tiazolidinedionas/química
17.
Nature ; 464(7290): 917-21, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20228789

RESUMEN

The vascular endothelial growth factors (VEGFs) are major angiogenic regulators and are involved in several aspects of endothelial cell physiology. However, the detailed role of VEGF-B in blood vessel function has remained unclear. Here we show that VEGF-B has an unexpected role in endothelial targeting of lipids to peripheral tissues. Dietary lipids present in circulation have to be transported through the vascular endothelium to be metabolized by tissue cells, a mechanism that is poorly understood. Bioinformatic analysis showed that Vegfb was tightly co-expressed with nuclear-encoded mitochondrial genes across a large variety of physiological conditions in mice, pointing to a role for VEGF-B in metabolism. VEGF-B specifically controlled endothelial uptake of fatty acids via transcriptional regulation of vascular fatty acid transport proteins. As a consequence, Vegfb(-/-) mice showed less uptake and accumulation of lipids in muscle, heart and brown adipose tissue, and instead shunted lipids to white adipose tissue. This regulation was mediated by VEGF receptor 1 and neuropilin 1 expressed by the endothelium. The co-expression of VEGF-B and mitochondrial proteins introduces a novel regulatory mechanism, whereby endothelial lipid uptake and mitochondrial lipid use are tightly coordinated. The involvement of VEGF-B in lipid uptake may open up the possibility for novel strategies to modulate pathological lipid accumulation in diabetes, obesity and cardiovascular diseases.


Asunto(s)
Endotelio/metabolismo , Ácidos Grasos/metabolismo , Factor B de Crecimiento Endotelial Vascular/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Transporte Biológico , Línea Celular , Núcleo Celular/genética , Células Cultivadas , Endotelio/citología , Proteínas de Transporte de Ácidos Grasos/genética , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculos/metabolismo , Miocardio/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Transducción de Señal , Transcripción Genética , Factor B de Crecimiento Endotelial Vascular/deficiencia , Factor B de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
18.
J Biol Chem ; 284(11): 7385-94, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19139100

RESUMEN

The lipid mediator lysophosphatidic acid (LPA) is a potent regulator of vascular cell function in vitro, but its physiologic role in the cardiovasculature is largely unexplored. To address the role of LPA in regulating platelet function and thrombosis, we investigated the effects of LPA on isolated murine platelets. Although LPA activates platelets from the majority of human donors, we found that treatment of isolated murine platelets with physiologic concentrations of LPA attenuated agonist-induced aggregation. Transgenic overexpression of autotaxin/lysophospholipase D (Enpp2), the enzyme necessary for production of the bulk of biologically active LPA in plasma, elevated circulating LPA levels and induced a bleeding diathesis and attenuation of thrombosis in mice. Intravascular administration of exogenous LPA recapitulated the prolonged bleeding time observed in Enpp2-Tg mice. Enpp2+/- mice, which have approximately 50% normal plasma LPA levels, were more prone to thrombosis. Plasma autotaxin associated with platelets during aggregation and concentrated in arterial thrombus, and activated but not resting platelets bound recombinant autotaxin/lysoPLD in an integrin-dependent manner. These results identify a novel pathway in which LPA production by autotaxin/lysoPLD regulates murine hemostasis and thrombosis and suggest that binding of autotaxin/lysoPLD to activated platelets may provide a mechanism to localize LPA production.


Asunto(s)
Hemostasis , Lisofosfolípidos/sangre , Complejos Multienzimáticos/sangre , Fosfodiesterasa I/sangre , Hidrolasas Diéster Fosfóricas/sangre , Pirofosfatasas/sangre , Trombosis/sangre , Animales , Plaquetas/metabolismo , Hemorragia/sangre , Hemorragia/genética , Humanos , Lisofosfolípidos/farmacología , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/genética , Fosfodiesterasa I/genética , Hidrolasas Diéster Fosfóricas/genética , Agregación Plaquetaria/genética , Pirofosfatasas/genética , Trombosis/genética
19.
Mol Cancer Res ; 6(9): 1452-60, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18723828

RESUMEN

Lysophosphatidic acid (LPA) is a lipid mediator of a large number of biological processes, including wound healing, brain development, vascular remodeling, and tumor progression. Its role in tumor progression is probably linked to its ability to induce cell proliferation, migration, and survival. In particular, the ascites of ovarian cancers is rich in LPA and has been implicated in growth and invasion of ovarian tumor cells. LPA binds to specific G protein-coupled receptors and thereby activates multiple signal transduction pathways, including those initiated by the small GTPases Ras, Rho, and Rac. We report here a genetic screen with retroviral cDNA expression libraries to identify genes that allow bypass of the p53-dependent replicative senescence response in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen. Using this approach, we identified the LPA receptor type 2 (LPA(2)) and the Rho-specific guanine nucleotide exchange factor Dbs as potent inducers of senescence bypass. Enhanced expression of LPA(2) or Dbs also results in senescence bypass in primary mouse embryo fibroblasts in the presence of wild-type p53, in a Rho GTPase-dependent manner. Our results reveal a novel and unexpected link between LPA signaling and the p53 tumor-suppressive pathway.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Lisofosfolípidos/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/fisiología , Animales , Antígenos Transformadores de Poliomavirus , Western Blotting , Encéfalo/metabolismo , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Biblioteca de Genes , Proteínas Fluorescentes Verdes , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Ratones , Ratones Noqueados , Músculo Estriado/citología , Músculo Estriado/metabolismo , Policitemia Vera/metabolismo , Policitemia Vera/patología , Receptores del Ácido Lisofosfatídico/genética , Retroviridae/genética , Factores de Intercambio de Guanina Nucleótido Rho , Proteínas de Unión al GTP rho/metabolismo
20.
Blood ; 112(9): 3638-49, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18664627

RESUMEN

Vascular endothelial growth factor (VEGF)-A regulates vascular development and angiogenesis. VEGF isoforms differ in ability to bind coreceptors heparan sulfate (HS) and neuropilin-1 (NRP1). We used VEGF-A165 (which binds HS and NRP1), VEGF-A121 (binds neither HS nor NRP1), and parapoxvirus VEGF-E-NZ2 (binds NRP1 but not HS) to investigate the role of NRP1 in organization of endothelial cells into vascular structures. All 3 ligands induced similar level of VEGFR-2 tyrosine phosphorylation in the presence of NRP1. In contrast, sprouting angiogenesis in differentiating embryonic stem cells (embryoid bodies), formation of branching pericyte-embedded vessels in subcutaneous matrigel plugs, and sprouting of intersegmental vessels in developing zebrafish were induced by VEGF-A165 and VEGF-E-NZ2 but not by VEGF-A121. Analyses of recombinant factors with NRP1-binding gain- and loss-of-function properties supported the conclusion that NRP1 is critical for VEGF-induced sprouting and branching of endothelial cells. Signal transduction antibody arrays implicated NRP1 in VEGF-induced activation of p38MAPK. Inclusion of the p38MAPK inhibitor SB203580 in VEGF-A165-containing matrigel plugs led to attenuated angiogenesis and poor association with pericytes. Our data strongly indicate that the ability of VEGF ligands to bind NRP1 influences p38MAPK activation, and formation of functional, pericyte-associated vessels.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Neuropilina-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Animales Modificados Genéticamente , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , Activación Enzimática/efectos de los fármacos , Humanos , Ligandos , Ratones , Modelos Biológicos , Neovascularización Fisiológica , Neuropilina-1/genética , Pericitos/citología , Pericitos/efectos de los fármacos , Pericitos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Porcinos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...