Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Rehabil Sci ; 5: 1375561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38939055

RESUMEN

Background: Chronic cerebral hypoperfusion (CCH) leads to memory and learning impairments associated with degeneration and gliosis in the hippocampus. Treatment with physical exercise carries different therapeutic benefits for each sex. We investigated the effects of acrobatic training on astrocyte remodeling in the CA1 and CA3 subfields of the hippocampus and spatial memory impairment in male and female rats at different stages of the two-vessel occlusion (2VO) model. Methods: Wistar rats were randomly allocated into four groups of males and females: 2VO acrobatic, 2VO sedentary, sham acrobatic, and sham sedentary. The acrobatic training was performed for 4 weeks prior to the 2VO procedure. Brain samples were collected for morphological and biochemical analysis at 3 and 7 days after 2VO. The dorsal hippocampi were removed and prepared for Western blot quantification of Akt, p-Akt, COX IV, cleaved caspase-3, PARP, and GFAP. GFAP immunofluorescence was performed on slices of the hippocampus to count astrocytes and apply the Sholl's circle technique. The Morris water maze was run after 45 days of 2VO. Results: Acutely, the trained female rats showed increased PARP expression, and the 2VO-trained rats of both sexes presented increased GFAP levels in Western blot. Training, mainly in males, induced an increase in the number of astrocytes in the CA1 subfield. The 2VO rats presented branched astrocytes, while acrobatic training prevented branching. However, the 2VO-induced spatial memory impairment was partially prevented by the acrobatic training. Conclusion: Acrobatic training restricted the astrocytic remodeling caused by 2VO in the CA1 and CA3 subfields of the hippocampus. The improvement in spatial memory was associated with more organized glial scarring in the trained rats and better cell viability observed in females.

2.
Behav Brain Res ; 465: 114941, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38447760

RESUMEN

BACKGROUND: Chronic cerebral hypoperfusion in vascular dementia leads to memory and motor deficits; Physical exercise improves these aspects and promotes neuroprotection. Sexual dimorphism may significantly influence both ischemic and exercise outcomes. AIMS: The aim of this study was to investigate the effects of 2VO (Two-Vessel occlusion) and the acrobatic training on motor function, functional performance, and tissue loss in male and female rats. METHODS: Male and female rats were randomly divided into 4 groups: sham acrobatic, sham sedentary, 2VO acrobatic and 2VO sedentary. After 45 days of 2VO surgery, the animals received 4 weeks of acrobatic training. At the end, open field, beam balance and horizontal ladder tests were performed. Brain samples were taken for histological and morphological evaluation. RESULTS: Spontaneous motor activity in the open field was not affected by 2VO, on the other hand, an impairment in forelimb placement was observed after 2VO and acrobatic training prevented errors and improved hindlimb placement. Neuronal loss was found in the motor cortex and striatum after 2VO, especially in females, which was prevented by acrobatic training. CONCLUSION: Mild motor damage was found in animals after 2VO when refined movement was evaluated, probably associated to neuronal death in the motor cortex and striatum. The acrobatic exercise showed a neuroprotective effect, promoting neuronal survival and attenuating the motor deficit.


Asunto(s)
Isquemia Encefálica , Demencia Vascular , Corteza Motora , Ratas , Animales , Masculino , Femenino , Isquemia Encefálica/patología , Encéfalo , Isquemia , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
3.
Behav Brain Res ; 430: 113935, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35605797

RESUMEN

Chronic cerebral hypoperfusion leads to neuronal loss in the hippocampus and spatial memory impairments. Physical exercise is known to prevent cognitive deficits in animal models; and there is evidence of sex differences in behavioral neuroprotective approaches. The aim of present study was to investigate the effects of acrobatic training in male and female rats submitted to chronic cerebral hypoperfusion. Males and females rats underwent 2VO (two-vessel occlusion) surgery and were randomly allocated into 4 groups of males and 4 groups of females, as follows: 2VO acrobatic, 2VO sedentary, Sham acrobatic and Sham sedentary. The acrobatic training started 45 days after surgery and lasted 4 weeks; animals were then submitted to object recognition and water maze testing. Brain samples were collected for histological and morphological assessment and flow cytometry. 2VO causes cognitive impairments and acrobatic training prevented spatial memory deficits assessed in the water maze, mainly for females. Morphological analysis showed that 2VO animals had less NeuN labeling and acrobatic training prevented it. Increased number of GFAP positive cells was observerd in females; moreover, males had more branched astrocytes and acrobatic training prevented the branching after 2VO. Flow cytometry showed higher mitochondrial potential in trained animals and more reactive oxygen species production in males. Acrobatic training promoted neuronal survival and improved mitochondrial function in both sexes, and influenced the glial scar in a sex-dependent manner, associated to greater cognitive benefit to females after chronic cerebral hypoperfusion.


Asunto(s)
Isquemia Encefálica , Memoria Espacial , Animales , Femenino , Masculino , Ratas , Astrocitos/patología , Isquemia Encefálica/patología , Cicatriz/patología , Modelos Animales de Enfermedad , Hipocampo , Aprendizaje por Laberinto , Memoria Espacial/fisiología
4.
Behav Brain Res ; 414: 113480, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34302881

RESUMEN

Learning complex motor skills is an essential process in our daily lives. Moreover, it is an important aspect for the development of therapeutic strategies that refer to rehabilitation processes since motor skills previously acquired can be transferred to similar tasks (motor skill transfer) or recovered without further practice after longer delays (motor skill retention). Different acrobatic exercise training (AE) protocols induce plastic changes in areas involved in motor control and improvement in motor performance. However, the plastic mechanisms involved in the retention of a complex motor skill, essential for motor learning, are not well described. Thus, our objective was to analyze the brain plasticity mechanisms involved in motor skill retention in AE . Motor behavior tests, and the expression of synaptophysin (SYP), synapsin-I (SYS), and early growth response protein 1 (Egr-1) in brain areas involved in motor learning were evaluated. Young male Wistar rats were randomly divided into 3 groups: sedentary (SED), AE, and AE with retention period (AER). AE was performed three times a week for 8 weeks, with 5 rounds in the circuit. After a fifteen-day retention interval, the AER animals was again exposed to the acrobatic circuit. Our results revealed motor performance improvement in the AE and AER groups. In the elevated beam test, the AER group presented a lower time and greater distance, suggesting retention period is important for optimizing motor learning consolidation. Moreover, AE promoted significant plastic changes in the expression of proteins in important areas involved in control and motor learning, some of which were maintained in the AER group. In summary, these data contribute to the understanding of neural mechanisms involved in motor learning in an animal model, and can be useful to the construction of therapeutics strategies that optimize motor learning in a rehabilitative context.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Retención en Psicología/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Humanos , Masculino , Ratas Wistar , Conducta Sedentaria
5.
Exp Gerontol ; 113: 18-28, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30243893

RESUMEN

The aging process is associated with structural and functional changes in the nervous system. Considering that exercise can improve the quality of life of the elderly, the aim of this study was to evaluate the effects of exercise protocols with different motor demands on synaptic protein expression (i.e., synapsin-I and synaptophysin). Cognitive and motor brain areas and the motor performance of adult and aged animals were analyzed. Adult (7 months old) and aged (18 months old) male Wistar rats were used. Animals were divided into the following groups: treadmill exercise (TE, rhythmic motor activity), acrobatic exercise (AE, complex motor activity) and sedentary (SED, control). The animals were exposed to exercise 3 times per week for 8 weeks. The brains were collected for immunohistochemistry and immunoblotting assays. Our results showed that both types of exercise induced changes in motor performance and synaptic protein expression in adult and aged animals. However, acrobatic exercise promoted a greater number of changes, mainly in the aged animals. In addition, protein expression changes occurred in a greater number of brain areas in the aged animals than in adult animals. There were clear increases in synapsin-I expression in all areas analyzed of aged animals only after acrobatic exercises. On the other hand, synaptophysin increased in the same areas but with both types of exercise. Thus, in general, our data suggest that even at advanced ages, when the aging process is already in progress, initiating physical training may be beneficial to generate neuroplasticity that can improve motor performance.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Plasticidad Neuronal , Condicionamiento Físico Animal , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Animales , Encéfalo/patología , Prueba de Esfuerzo , Masculino , Calidad de Vida , Ratas , Ratas Wistar
6.
Brain Struct Funct ; 223(5): 2055-2071, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29480413

RESUMEN

Acrobatic exercise is considered a complex motor activity and may promote motor learning and neuroplasticity. The objective of this systematic review was to verify possible plastic brain changes induced by acrobatic exercise in non-lesioned rat and mouse through the analysis of experimental studies. Manual and electronic searches were conducted in MEDLINE, EMBASE and ISI Web of Science databases, without restriction to language or publication date. Synaptogenesis and neurogenesis were selected as the primary outcomes. To evaluate the risk of bias of individual studies, we used the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) RoB tool. We found 1780 studies, from which 18 fulfilled the inclusion criteria in this review. Seventeen studies evaluated the cerebellum, six the motor cortex, five the striatum and two evaluated the hippocampus. The results showed that acrobatic exercise promotes plastic changes in brain areas of rats, and such changes are dependent of training frequency and duration. However, studies were heterogeneous regarding the proteins analyzed and the training protocols, which made it difficult to compare and determine ideal acrobatic exercise parameters for neuroplasticity. Concerning the methodological quality of studies, most of them presented high risk of bias with absence of relevant study design information. New research with detailing training protocols and analysis might contribute to clarify the role of acrobatic exercise in neuroplasticity and how it could be used in translational research.


Asunto(s)
Encéfalo/citología , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/métodos , Animales
7.
Behav Brain Res ; 308: 64-74, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27126278

RESUMEN

Short and long-term physical exercise induce physiological and structural changes in brain motor areas. The relationship between changes of structural and synaptic proteins in brain motor areas and acrobatic exercise is less understood. Our aim was to evaluate the expression of synapsin I (SYS), synaptophysin (SYP), microtubule-associated protein 2 (MAP2), neurofilament (NF), and a marker for recent neuronal activity (Egr-1) in the motor cortex, striatum and cerebellum of adult rats subjected to acrobatic exercise (AE, for 1-4 weeks). We used adult Wistar rats, divided into 4 groups based on duration of acrobatic training, namely 1 week (AE1, n=15), 2 weeks (AE2, n=15), 4 weeks (AE4, n=15), and sedentary (SED, n=15). In AE groups, the rats covered 5 times a circuit that was composed of obstacles, three times a week. The protein levels were analyzed by immunoblotting and immunohistochemistry. The results revealed that short-term AE (AE1 and AE2) induced MAP2 decreases and NF, SYP and Egr-1 increases in the motor cortex; an increase of MAP2, SYS and SYP in the dorsolateral striatum, whereas the dorsomedial striatum showed increased NF, SYS, SYP and Egr-1. Granular cerebellar layer showed increased NF and Egr-1, with increased NF and SYP in the molecular layer. Long-term AE (AE4) promoted an increase of MAP2, SYP and Egr-1 in motor cortex; MAP2, SYS and SYP in the dorsomedial striatum; and NF and Egr-1 in the cerebellar granular layer. In conclusion, our data suggest that different durations of AE induce distinct plastic responses among distinct cortical and subcortical circuits.


Asunto(s)
Corteza Motora/metabolismo , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...