Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Ther ; 32(5): 1311-1327, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38449314

RESUMEN

While studying transgene expression after systemic administration of lentiviral vectors, we found that splenic B cells are robustly transduced, regardless of the types of pseudotyped envelope proteins. However, the administration of two different pseudotypes resulted in transduction of two distinct B cell populations, suggesting that each pseudotype uses unique and specific receptors for its attachment and entry into splenic B cells. Single-cell RNA sequencing analysis of the transduced cells demonstrated that different pseudotypes transduce distinct B cell subpopulations characterized by specific B cell receptor (BCR) genotypes. Functional analysis of the BCRs of the transduced cells demonstrated that BCRs specific to the pseudotyping envelope proteins mediate viral entry, enabling the vectors to selectively transduce the B cell populations that are capable of producing antibodies specific to their envelope proteins. Lentiviral vector entry via the BCR activated the transduced B cells and induced proliferation and differentiation into mature effectors, such as memory B and plasma cells. BCR-mediated viral entry into clonally specific B cell subpopulations raises new concepts for understanding the biodistribution of transgene expression after systemic administration of lentiviral vectors and offers new opportunities for BCR-targeted gene delivery by pseudotyped lentiviral vectors.


Asunto(s)
Linfocitos B , Vectores Genéticos , Lentivirus , Receptores de Antígenos de Linfocitos B , Transducción Genética , Transgenes , Proteínas del Envoltorio Viral , Lentivirus/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Animales , Ratones , Linfocitos B/metabolismo , Linfocitos B/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Tropismo Viral , Humanos , Internalización del Virus
2.
Methods Mol Biol ; 2681: 175-212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405649

RESUMEN

The immune cell profiling capabilities of single-cell RNA sequencing (scRNA-seq) are powerful tools that can be applied to the design of theranostic monoclonal antibodies (mAbs). Using scRNA-seq to determine natively paired B-cell receptor (BCR) sequences of immunized mice as a starting point for design, this method outlines a simplified workflow to express single-chain antibody fragments (scFabs) on the surface of yeast for high-throughput characterization and further refinement with directed evolution experiments. While not extensively detailed in this chapter, this method easily accommodates the implementation of a growing body of in silico tools that improve affinity and stability among a range of other developability criteria (e.g., solubility and immunogenicity).


Asunto(s)
Anticuerpos Monoclonales , Saccharomyces cerevisiae , Ratones , Animales , Saccharomyces cerevisiae/metabolismo , Anticuerpos Monoclonales/metabolismo , Linfocitos B , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Análisis de la Célula Individual
3.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37204192

RESUMEN

Accurately predicting the antigen-binding specificity of adaptive immune receptors (AIRs), such as T-cell receptors (TCRs) and B-cell receptors (BCRs), is essential for discovering new immune therapies. However, the diversity of AIR chain sequences limits the accuracy of current prediction methods. This study introduces SC-AIR-BERT, a pre-trained model that learns comprehensive sequence representations of paired AIR chains to improve binding specificity prediction. SC-AIR-BERT first learns the 'language' of AIR sequences through self-supervised pre-training on a large cohort of paired AIR chains from multiple single-cell resources. The model is then fine-tuned with a multilayer perceptron head for binding specificity prediction, employing the K-mer strategy to enhance sequence representation learning. Extensive experiments demonstrate the superior AUC performance of SC-AIR-BERT compared with current methods for TCR- and BCR-binding specificity prediction.


Asunto(s)
Receptores de Antígenos de Linfocitos B , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos B/genética , Redes Neurales de la Computación , Especificidad de Anticuerpos
4.
Front Immunol ; 14: 1034978, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911681

RESUMEN

Neutralizing antibodies against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are being developed world over. We investigated the possibility of producing artificial antibodies from the formalin fixation and paraffin-embedding (FFPE) lung lobes of a patient who died by coronavirus disease 2019 (COVID-19). The B-cell receptors repertoire in the lung tissue where SARS-CoV-2 was detected were considered to have highly sensitive virus-neutralizing activity, and artificial antibodies were produced by combining the most frequently detected heavy and light chains. Some neutralizing effects against the SARS-CoV-2 were observed, and mixing two different artificial antibodies had a higher tendency to suppress the virus. The neutralizing effects were similar to the immunoglobulin G obtained from healthy donors who had received a COVID-19 mRNA vaccine. Therefore, the use of FFPE lung tissue, which preserves the condition of direct virus sensitization, to generate artificial antibodies may be useful against future unknown infectious diseases.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Vacunas contra la COVID-19 , Autopsia , Anticuerpos Neutralizantes , Formaldehído , Adhesión en Parafina , Receptores de Antígenos de Linfocitos B
5.
Adv Nanobiomed Res ; 2(7)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35937779

RESUMEN

High-affinity antigen-specific B cells are generated within specialized structures, germinal centers (GCs), inside lymphoid organs. In GCs, follicular dendritic cells (FDCs) present antigens on their membrane surface to cognate B cells, inducing rapid proliferation and differentiation of the B cells toward antibody-secreting cells. The FDC's fluid membrane surface allows B cells to "pull" the antigens into clusters and internalize them, a process that frequently involves tearing off and internalizing FDC membrane fragments. To study this process ex vivo, liposomal membranes are used as the antigen-presenting FDC-like fluid lipid surface to activate B cells. In a fully synthetic in vitro GC model (sGC), which uses the microbead-based presentation of the CD40 Ligand and a cytokine cocktail to mimic T follicular helper cell signals to B cells, liposomes presenting a model antigen mimic effectively engage B cell receptors (BCRs) and induce greater BCR clustering compared to soluble antigens, resulting in rapid antigen internalization and proliferation of the B cells. B cells showed GC-like reactions and undergo efficient IgG1 class-switching. Taken together, the results suggest that fluid membrane-bound antigen induces a strong GC response and provides a novel synthetic in vitro system for studying GC biology in health and diseases, and for expanding therapeutic B cells ex vivo.

6.
J Mol Neurosci ; 72(9): 2011-2019, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35896862

RESUMEN

Pediatric neuroblastoma (NBL) is one of the most common pediatric cancers, and it can often be aggressive. Genetic and demographic factors can correlate with the severity of NBL, but the variations in the B-cell receptors (BCRs) or immunoglobulin proteins present in the NBL tumors, and their relationships to survival, are not well understood. BCRs contain variations in their complementary determining region-3 (CDR3s) amino acid sequences, due to variable recombinations of the V- and J-gene segments. Accordingly, these variations in CDR3s may represent different antigen interactions and thereby different survival probabilities. Thus, we mined the TARGET project, NBL tumor RNAseq files for BCR recombination reads. Evaluations of the physicochemical properties of IGK, IGL, and IGH CDR3s from these tumors pointed to properties of IGK and IGL in particular as associated with survival distinctions, based on several independent bioinformatics approaches, including a novel homology grouping approach facilitated by a recently developed web tool, adaptivematch.com. In conclusion, tumor resident BCR chemical features are likely useful for better risk stratification and for guiding therapy, and the availability of a user-friendly web tool will likely facilitate using BCR chemical features to meet those goals.


Asunto(s)
Neuroblastoma , Receptores de Antígenos de Linfocitos B , Niño , Humanos , Neuroblastoma/genética , Receptores de Antígenos de Linfocitos B/genética
7.
Patterns (N Y) ; 3(7): 100513, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35845836

RESUMEN

An individual's B cell receptor (BCR) repertoire encodes information about past immune responses and potential for future disease protection. Deciphering the information stored in BCR sequence datasets will transform our understanding of disease and enable discovery of novel diagnostics and antibody therapeutics. A key challenge of BCR sequence analysis is the prediction of BCR properties from their amino acid sequence alone. Here, we present an antibody-specific language model, Antibody-specific Bidirectional Encoder Representation from Transformers (AntiBERTa), which provides a contextualized representation of BCR sequences. Following pre-training, we show that AntiBERTa embeddings capture biologically relevant information, generalizable to a range of applications. As a case study, we fine-tune AntiBERTa to predict paratope positions from an antibody sequence, outperforming public tools across multiple metrics. To our knowledge, AntiBERTa is the deepest protein-family-specific language model, providing a rich representation of BCRs. AntiBERTa embeddings are primed for multiple downstream tasks and can improve our understanding of the language of antibodies.

8.
Dev Comp Immunol ; 131: 104392, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35271860

RESUMEN

In pigs (Sus scrofa), the initial immunoglobulin rearrangement of the κ light chain is replaced by λ before the heavy chains rearrange, and the light chains may rearrange even later. This study investigates whether these developmental differences are reflected in the usage of IGK and IGL genes. We found large differences between peripheral B cells and those developing in the bone marrow, and between B cells in germ-free piglets and conventional pigs. During early B cell development in the bone marrow, more 3' V and 5' J gene segments for both light chains are used. However, in the peripheral naive repertoire, more 5' IGLV and 3' IGLJ genes are used. A similar shift toward the use of more 5' IGKV and 3' IGKJ genes is observed later after antigen exposure in conventional pigs. The expression profile showed that most λ+ B cells are generated earlier, while κ+ B cells develop from late precursors that already contain the λ rearrangement. The initial λ rearrangement is retained in both λ+ and κ+ B lymphocytes, and multiple λ transcripts can be found in individual cells. The overall pool of the IGLV repertoire is therefore much larger and more diversified than for IGKV. The κ repertoire is further restricted to the preferential use of only two major IGKV genes, reflecting the limitation for only two consecutive rearrangements. Tracing of silenced λ transcripts in κ+ B cells further confirmed the unconventional mechanism of differential rearrangements in pigs. Our results underline the diversity of the immune system among mammals.


Asunto(s)
Cadenas Ligeras de Inmunoglobulina , Cadenas kappa de Inmunoglobulina , Animales , Linfocitos B , Genes de Inmunoglobulinas , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Tejido Linfoide , Mamíferos/genética , Porcinos
9.
Front Immunol ; 13: 823145, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222402

RESUMEN

Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.


Asunto(s)
Genes de Inmunoglobulinas , Cadenas kappa de Inmunoglobulina , Alelos , Animales , Linfocitos B , Inmunoglobulina de Cadenas Ligeras Subrogadas/genética , Cadenas kappa de Inmunoglobulina/genética , Ratones , Porcinos
10.
Cells ; 11(2)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053310

RESUMEN

It is well known that the most important feature of adaptive immunity is the specificity that provides highly precise recognition of the self, altered-self, and non-self. Due to the high specificity of antigen recognition, the adaptive immune system participates in the maintenance of genetic homeostasis, supports multicellularity, and protects an organism from different pathogens at a qualitatively different level than innate immunity. This seemingly simple property is based on millions of years of evolution that led to the formation of diversification mechanisms of antigen-recognizing receptors and later to the emergence of a system of presentation of the self and non-self antigens. The latter could have a crucial significance because the presentation of nearly complete diversity of auto-antigens in the thymus allows for the "calibration" of the forming repertoires of T-cells for the recognition of self, altered-self, and non-self antigens that are presented on the periphery. The central role in this process belongs to promiscuous gene expression by the thymic epithelial cells that express nearly the whole spectrum of proteins encoded in the genome, meanwhile maintaining their cellular identity. This complex mechanism requires strict control that is executed by several transcription factors. One of the most important of them is AIRE. This noncanonical transcription factor not only regulates the processes of differentiation and expression of peripheral tissue-specific antigens in the thymic medullar epithelial cells but also controls intercellular interactions in the thymus. Besides, it participates in an increase in the diversity and transfer of presented antigens and thus influences the formation of repertoires of maturing thymocytes. Due to these complex effects, AIRE is also called a transcriptional regulator. In this review, we briefly described the history of AIRE discovery, its structure, functions, and role in the formation of antigen-recognizing receptor repertoires, along with other transcription factors. We focused on the phylogenetic prerequisites for the development of modern adaptive immunity and emphasized the importance of the antigen presentation system.


Asunto(s)
Filogenia , Subgrupos de Linfocitos T/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Evolución Molecular , Humanos , Péptidos/metabolismo , Factores de Transcripción/clasificación , Transcriptoma/genética
11.
Dev Comp Immunol ; 126: 104196, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34242678

RESUMEN

Swine use a reverse order of immunoglobulin chain rearrangement compared to humans and mice, and this altered and modified order should have measurable consequences. Here we perform new and defining experiments with developing and mature B cells, characterizing the B cell populations that do not exist in other species. First, we have finally confirmed that light chains κ and λ are rearranged and expressed on the surface before any heavy chain rearrangements using western-blot. And second, we have analyzed a pool of mature B cells on the single-cell level to demonstrate that many κ+ mature B cells carry λ transcripts. According to these findings, we believe that there may be more groups of mammals; one of which uses a pre-BCR-driven developmental pathway for B cell generation (like mice and humans), the second group uses a pre-BCR-independent one (like swine), and some may be even intermediate.


Asunto(s)
Genes de Inmunoglobulinas , Cadenas kappa de Inmunoglobulina , Animales , Linfocitos B , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Mamíferos/genética , Ratones , Porcinos/genética
12.
Theranostics ; 11(18): 8945-8963, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34522220

RESUMEN

The adaptive immune response is a powerful tool, capable of recognizing, binding to, and neutralizing a vast number of internal and external threats via T or B lymphatic receptors with widespread sets of antigen specificities. The emergence of high-throughput sequencing technology and bioinformatics provides opportunities for research in the fields of life sciences and medicine. The analysis and annotation for immune repertoire data can reveal biologically meaningful information, including immune prediction, target antigens, and effective evaluation. Continuous improvements of the immunological repertoire sequencing methods and analysis tools will help to minimize the experimental and calculation errors and realize the immunological information to meet the clinical requirements. That said, the clinical application of adaptive immune repertoire sequencing requires appropriate experimental methods and standard analytical tools. At the population cell level, we can acquire the overview of cell groups, but the information about a single cell is not obtained accurately. The information that is ignored may be crucial for understanding the heterogeneity of each cell, gene expression and drug response. The combination of high-throughput sequencing and single-cell technology allows us to obtain single-cell information with low-cost and high-throughput. In this review, we summarized the current methods and progress in this area.


Asunto(s)
Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Análisis de la Célula Individual/métodos , Inmunidad Adaptativa/fisiología , Linfocitos B/metabolismo , Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Receptores Inmunológicos/genética , Linfocitos T/metabolismo
13.
Front Immunol ; 12: 706136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394106

RESUMEN

In this review, we described the structure and organization of antigen-recognizing repertoires of B and T cells from the standpoint of modern immunology. We summarized the latest advances in bioinformatics analysis of sequencing data from T and B cell repertoires and also presented contemporary ideas about the mechanisms of clonal diversity formation at different stages of organism development. At the same time, we focused on the importance of the allelic variants of the HLA genes and spectra of presented antigens for the formation of T-cell receptors (TCR) landscapes. The main idea of this review is that immune equilibrium and proper functioning of immunity are highly dependent on the interaction between the recognition and the presentation landscapes of antigens. Certain changes in these landscapes can occur during life, which can affect the protective function of adaptive immunity. We described some mechanisms associated with these changes, for example, the conversion of effector cells into regulatory cells and vice versa due to the trans-differentiation or bystander effect, changes in the clonal organization of the general TCR repertoire due to homeostatic proliferation or aging, and the background for the altered presentation of some antigens due to SNP mutations of MHC, or the alteration of the presenting antigens due to post-translational modifications. The authors suggest that such alterations can lead to an increase in the risk of the development of oncological and autoimmune diseases and influence the sensitivity of the organism to different infectious agents.


Asunto(s)
Inmunidad Adaptativa/inmunología , Presentación de Antígeno/inmunología , Linfocitos B/inmunología , Linfocitos T/inmunología , Animales , Humanos
14.
Immunity ; 53(4): 840-851.e6, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33053332

RESUMEN

Activating precursor B cell receptors of HIV-1 broadly neutralizing antibodies requires specifically designed immunogens. Here, we compared the abilities of three such germline-targeting immunogens against the VRC01-class receptors to activate the targeted B cells in transgenic mice expressing the germline VH of the VRC01 antibody but diverse mouse light chains. Immunogen-specific VRC01-like B cells were isolated at different time points after immunization, their VH and VL genes were sequenced, and the corresponding antibodies characterized. VRC01 B cell sub-populations with distinct cross-reactivity properties were activated by each immunogen, and these differences correlated with distinct biophysical and biochemical features of the germline-targeting immunogens. Our study indicates that the design of effective immunogens to activate B cell receptors leading to protective HIV-1 antibodies will require a better understanding of how the biophysical properties of the epitope and its surrounding surface on the germline-targeting immunogen influence its interaction with the available receptor variants in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Antígenos/inmunología , Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Epítopos de Linfocito B/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Línea Celular , Femenino , Células Germinativas/inmunología , Células HEK293 , Infecciones por VIH/inmunología , Humanos , Masculino , Ratones Transgénicos
15.
Dev Comp Immunol ; 111: 103751, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32454063

RESUMEN

Developmental pathways for B cell lymphogenesis are sufficiently known only in mice and humans. However, both of these species rearrange immunoglobulin heavy chains (IgH) before light chains (IgL) while IgL precedes IgH rearrangement in swine. We demonstrate here that this reversed order of rearrangements have some concealed consequences: (1) we confirmed that although IgLκ rearrangement is initial, most IgLλ+ B cells are generated earlier and before IgH rearrangements, while most IgLκ+ B cells later and after IgH rearrangements, (2) the second IgLκ rearrangement can occur after IgLλ rearrangement, (3) early formed B cells bear only single in-frame IgH rearrangements, (4) many IgLκ+ B cells carry IgLλ rearrangements that can be productive and occurring on both alleles in one cell, and (5) although VpreB and λ5 genes are present in swine, they are preferentially expressed in non-B cells. In summary, our findings reveal that swine use an alternative B cell developmental pathway as compared to mice and humans.


Asunto(s)
Linfocitos B/fisiología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Receptores de Antígenos de Linfocitos B/genética , Porcinos/inmunología , Animales , Diferenciación Celular , Células Cultivadas , Reordenamiento Génico de Linfocito B , Humanos , Ratones , Transcriptoma
16.
Vaccines (Basel) ; 8(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906351

RESUMEN

The human antibody repertoire is generated by the recombination of different gene segments as well as by processes of somatic mutation. Together these mechanisms result in a tremendous diversity of antibodies that are able to combat various pathogens including viruses and bacteria, or malignant cells. In this review, we summarize the opportunities and challenges that are associated with the analyses of the B cell receptor repertoire and the antigen-specific B cell response. We will discuss how recent advances have increased our understanding of the antibody response and how repertoire analyses can be exploited to inform on vaccine strategies, particularly against HIV-1.

17.
Dev Comp Immunol ; 99: 103396, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31125574

RESUMEN

Porcine thymus contains three independent populations of cells that have rearranged immunoglobulin heavy chain VDJH genes. The first population can be found exclusively in medulla and it consists of existing mature B cells and plasma cells. The second consists of developing B cells characterized by the presence of selected VDJH rearrangement, similar to B cell lymphogenesis in the bone marrow. The third population is entirely unaffected by selection mechanism for productive VDJH rearrangement and represents T lineage cells that rearrange immunoglobulin genes. Transcription of unselected VDJH repertoire is not allowed in T cells. Sequence analysis of unselected VDJH repertoire from T cells also revealed important consequences for B cell lymphogenesis and selection of B cell repertoire. As far as we know, this is the first evidence that some species completely rearrange VDJH genes in T cells. Our results also support the finding that B cells actively develop in the thymus.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Subgrupos Linfocitarios/inmunología , Porcinos/inmunología , Linfocitos T/inmunología , Animales , Linfocitos B/inmunología , Feto/inmunología , Humanos , Especificidad de la Especie , Porcinos/genética , Porcinos/crecimiento & desarrollo , Timo/crecimiento & desarrollo , Timo/inmunología , Recombinación V(D)J/genética
18.
Immunity ; 50(3): 668-676.e5, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30824324

RESUMEN

Human polyomaviruses cause a common childhood infection worldwide and typically elicit a neutralizing antibody and cellular immune response, while establishing a dormant infection in the kidney with minimal clinical manifestations. However, viral reactivation can cause severe pathology in immunocompromised individuals. We developed a high-throughput, functional antibody screen to examine the humoral response to BK polyomavirus. This approach enabled the isolation of antibodies from all peripheral B cell subsets and revealed the anti-BK virus antibody repertoire as clonally complex with respect to immunoglobulin sequences and isotypes (both IgM and IgG), including a high frequency of monoclonal antibodies that broadly neutralize BK virus subtypes and the related JC polyomavirus. Cryo-electron microscopy of a broadly neutralizing IgG single-chain variable fragment complexed with BK virus-like particles revealed the quaternary nature of a conserved viral epitope at the junction between capsid pentamers. These features unravel a potent modality for inhibiting polyomavirus infection in kidney transplant recipients and other immunocompromised patients.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Linfocitos B/inmunología , Virus BK/inmunología , Memoria Inmunológica/inmunología , Virus JC/inmunología , Infecciones por Polyomavirus/inmunología , Poliomavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Cápside/inmunología , Línea Celular , Epítopos/inmunología , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Riñón/inmunología
20.
Front Immunol ; 9: 2194, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319643

RESUMEN

The exploitation of various human immunodeficiency virus type-1 (HIV-1) vaccines has posed great challenges for the researchers in precisely evaluating the vaccine-induced immune responses, however, the understanding of vaccination response suffers from the lack of unbiased characterization of the immune landscape. The rapid development of high throughput sequencing (HTS) makes it possible to scrutinize the extremely complicated immunological responses during vaccination. In the current study, three vaccines, namely N36, N51, and 5-Helix based on the HIV-1 gp41 pre-hairpin fusion intermediate were applied in rhesus macaques. We assessed the longitudinal vaccine responses using HTS, which delineated the evolutionary features of both T cell and B cell receptor repertoires with extreme diversities. Upon vaccination, we unexpectedly found significant discrepancies in the landscapes of T-cell and B-cell repertoires, together with the detection of significant class switching and the lineage expansion of the B cell receptor or immunoglobulin heavy chain (IGH) repertoire. The vaccine-induced expansions of lineages were further evaluated for mutation rate, lineage abundance, and lineage size features in their IGH repertoires. Collectively, these findings conclude that the N51 vaccine displayed superior performance in inducing the class-switch of B cell isotypes and promoting mutations of IgM B cells. In addition, the systematic HTS analysis of the immune repertoires demonstrates its wide applicability in enhancing the understanding of immunologic changes during pathogen challenge, and will guide the development, evaluation, and exploitation of new generation of diagnostic markers, immunotherapies, and vaccine strategies.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos B/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Linfocitos T/inmunología , Vacunas contra el SIDA/administración & dosificación , Animales , Linfocitos B/metabolismo , Modelos Animales de Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenicidad Vacunal , Inmunoglobulina M/genética , Inmunoglobulina M/inmunología , Macaca mulatta , Masculino , Mutación , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...