Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Med ; 30(1): 74, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831316

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage destruction and inflammation. CC chemokine receptor 1 (CCR1), a member of the chemokine family and its receptor family, plays a role in the autoimmune response. The impact of BX471, a specific small molecule inhibitor of CCR1, on CCR1 expression in cartilage and its effects on OA remain underexplored. METHODS: This study used immunohistochemistry (IHC) to assess CCR1 expression in IL-1ß-induced mouse chondrocytes and a medial meniscus mouse model of destabilization of the medial meniscus (DMM). Chondrocytes treated with varying concentrations of BX471 for 24 h were subjected to IL-1ß (10 ng/ml) treatment. The levels of the aging-related genes P16INK4a and P21CIP1 were analyzed via western blotting, and senescence-associated ß-galactosidase (SA-ß-gal) activity was measured. The expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), aggrecan (AGG), and the transcription factor SOX9 were determined through western blotting and RT‒qPCR. Collagen II, matrix metalloproteinase 13 (MMP13), and peroxisome proliferator-activated receptor (PPAR)-γ expression was analyzed via western blot, RT‒qPCR, and immunofluorescence. The impact of BX471 on inflammatory metabolism-related proteins under PPAR-γ inhibition conditions (using GW-9662) was examined through western blotting. The expression of MAPK signaling pathway-related molecules was assessed through western blotting. In vivo, various concentrations of BX471 or an equivalent medium were injected into DMM model joints. Cartilage destruction was evaluated through Safranin O/Fast green and hematoxylin-eosin (H&E) staining. RESULTS: This study revealed that inhibiting CCR1 mitigates IL-1ß-induced aging, downregulates the expression of iNOS, COX-2, and MMP13, and alleviates the IL-1ß-induced decrease in anabolic indices. Mechanistically, the MAPK signaling pathway and PPAR-γ may be involved in inhibiting the protective effect of CCR1 on chondrocytes. In vivo, BX471 protected cartilage in a DMM model. CONCLUSION: This study demonstrated the expression of CCR1 in chondrocytes. Inhibiting CCR1 reduced the inflammatory response, alleviated cartilage aging, and retarded degeneration through the MAPK signaling pathway and PPAR-γ, suggesting its potential therapeutic value for OA.


Asunto(s)
Condrocitos , Modelos Animales de Enfermedad , Osteoartritis , PPAR gamma , Receptores CCR1 , Animales , Ratones , Osteoartritis/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , PPAR gamma/metabolismo , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Receptores CCR1/metabolismo , Receptores CCR1/antagonistas & inhibidores , Masculino , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Ciclooxigenasa 2/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo
2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673922

RESUMEN

Parkinson's disease (PD) is recognized as the second most common neurodegenerative disease worldwide. Even if PD etiopathogenesis is not yet fully understood, in recent years, it has been advanced that a chronic state of inflammation could play a decisive role in the development of this pathology, establishing the close link between PD and neuroinflammation. In the broad panorama of inflammation and its several signaling pathways, the C-C chemokine receptor type 1 (CCR1) could play a key pathogenic role in PD progression, and could constitute a valuable target for the development of innovative anti-PD therapies. In this study, we probed the neuroprotective properties of the CCR1 antagonist BX471 compound in a mouse model of MPTP-induced nigrostriatal degeneration. BX471 treatments were performed intraperitoneally at a dose of 3 mg/kg, 10 mg/kg, and 30 mg/kg, starting 24 h after the last injection of MPTP and continuing for 7 days. From our data, BX471 treatment strongly blocked CCR1 and, as a result, decreased PD features, also reducing the neuroinflammatory state by regulating glial activation, NF-κB pathway, proinflammatory enzymes, and cytokines overexpression. Moreover, we showed that BX471's antagonistic action on CCR1 reduced the infiltration of immune cells, including mast cells and lymphocyte T activation. In addition, biochemical analyses carried out on serum revealed a considerable increase in circulating levels of CCR1 following MPTP-induced PD. In light of these findings, CCR1 could represent a useful pathological marker of PD, and its targeting could be a worthy candidate for the future development of new immunotherapies against PD.


Asunto(s)
Enfermedad de Parkinson , Receptores CCR1 , Receptores CCR1/metabolismo , Receptores CCR1/antagonistas & inhibidores , Animales , Ratones , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Modelos Animales de Enfermedad , Biomarcadores , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos
3.
Heliyon ; 10(5): e26859, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434278

RESUMEN

Background: Gliomas, known for their complex and aggressive characteristics, are deeply influenced by the tumor microenvironment. Matrix metalloproteinases (MMPs) play a vital role in shaping this environment, presenting an opportunity for novel treatment strategies. Methods: We collected six bulk RNA datasets, one single-cell RNA sequencing (scRNA-seq) dataset, and gene sets related to Matrix Metalloproteinases (MMPs), Endothelial-Mesenchymal Transformation (EndMT), and sprouting angiogenesis. We computed enrichment scores using Gene Set Variation Analysis (GSVA) and Single-sample Gene Set Enrichment Analysis (ssGSEA). To analyze immune infiltration, we employed the CIBERSORT method. Data analysis techniques included the log-rank test, Cox regression, Kruskal-Wallis test, and Pearson correlation. For single-cell data, we utilized tools such as Seurat and CellChat for dimensionality reduction, clustering, and cell communication analysis. Results: 1. MMP14 was identified as an independent prognostic marker, highly expressed in myeloid cells in recurrent glioblastoma, highlighting these cells as functionally significant. 2. C-C Motif Chemokine Ligand (CCL) signaling from MMP14+ myeloid cells was identified as a critical immune regulatory pathway, with high C-C Motif Chemokine Receptor 1 (CCR1) expression correlating with increased M2 macrophage infiltration and PD-L1 expression. 3. Patients with high MMP14 expression showed better responses to bevacizumab combined chemotherapy. 4. Signaling pathways involving Visfatin, VEGF, and TGFb, emanating from myeloid cells, significantly impact endothelial cells. These pathways facilitate EndMT and angiogenesis in gliomas. 5. Nicotinamide Phosphoribosyltransferase (NAMPT) showed a strong link with angiogenesis and EndMT, and its association with chemotherapy resistance and differential sensitivity to bevacizumab was evident. Conclusions: MMP14+ myeloid cells are critical in promoting tumor angiogenesis via EndMT and in mediating immunosuppression through CCL signaling in glioblastoma. MMP14 and NAMPT serve as vital clinical indicators for selecting treatment regimens in recurrent glioma. The study suggests that a combined blockade of CCR1 and CD274 could be a promising therapeutic strategy.

4.
Monoclon Antib Immunodiagn Immunother ; 43(2): 67-74, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38512465

RESUMEN

C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.


Asunto(s)
Anticuerpos Monoclonales , Macrófagos , Animales , Cricetinae , Ratones , Ratas , Anticuerpos Monoclonales/farmacología , Células CHO , Cricetulus
5.
Phytomedicine ; 128: 155509, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38452403

RESUMEN

BACKGROUND: Chronic intestinal inflammatory diseases play a crucial role in the onset of colorectal cancer (CRC). Effectively impeding the progression of colitis-associated colorectal cancer (CAC) can be instrumental in hindering CRC development. Wu-Mei-Pill (WMP), a formulation comprising various herbal extracts, is clinically employed for CAC treatment, yet the underlying mechanism of WMP's efficacy in CAC remains unclear. Our study firstly demonstrated the effects and mechanisms of WMP on transcriptional and metabolic levels based on integrated transcriptomics and untargeted metabolomics and relative experimental validations. MATERIALS AND METHODS: A CAC mouse model was established through a single injection of azoxymethane (AOM) followed by intermittent dextran sodium sulfate (DSS) intervention, with subsequent WMP administration. Initially, the therapeutic impact of WMP on the CAC model was assessed by observing survival rate, body weight change, colon length, tumor number, tumor load, and pathological changes in the colon tissue of CAC mice post-WMP intervention. Subsequently, differential genes and metabolites in the colorectal tissue of CAC mice following WMP intervention were identified through transcriptomics and non-targeted metabolomics. Finally, the influence of WMP on the peroxisome proliferator activated receptor (PPAR) pathway, Wnt pathway, and CC motif chemokine ligand 3 (CCL3)/ CC motif chemokine receptor 1 (CCR1) axis in CAC mice was verified through western blot, immunofluorescence, and ELISA based on the results of transcriptomics and non-targeted metabolomics. RESULTS: WMP intervention enhanced survival, alleviated body weight loss, shortened colon length, tumor occurrence, and pathological changes in the colorectal tissue of CAC mice, such as glandular damage, tumourigenesis, and inflammatory cell infiltration. Transcriptomic and non-targeted metabolomic results revealed that WMP intervention up-regulated the expression of key regulatory mechanisms of fatty acid oxidation PPAR pathway-related genes (Pparg, Ppara, Cpt1a, and Acadm) and metabolites (L-carnitine and L-palmitoylcarnitine). Additionally, it down-regulated Wnt pathway-related genes (Wnt3, Axin2, Tcf7, Mmp7, Lgr5, Wnt5a, Fzd6, Wnt7b, Lef1, and Fzd10 etc.) and pro-inflammatory related genes (Il1b, Il6, Il17a, Ccl3, and Ccr1 etc.). Experimental validation demonstrated that WMP up-regulated PPAR pathway-related proteins [PPARγ, PPARα, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase medium chain (ACADM)] in the colorectal tissue of CAC mice. It also down-regulated Wnt pathway-related proteins [ß-catenin, T-cell factor (TCF), lymphoid enhancer-binding factor (LEF), and matrix metallopeptidase 7 (MMP7)], inhibited the nuclear translocation of the key transcription factor ß-catenin in the Wnt pathway, and suppressed epithelial-to-mesenchymal transition (EMT) activation induced by the Wnt pathway (up-regulated E-cadherin and down-regulated Vimentin). Furthermore, WMP intervention reduced pro-inflammatory factors [interleukin (IL)-6, IL-1ß, and IL-17A] and decreased CCL3/CCR1 axis factors, including CCL3 protein levels and diminished F4/80+CCR1+ positive expressed cells. CONCLUSION: WMP significantly inhibits CAC tumorigenesis by up-regulating PPARα-mediated fatty acid oxidation, inhibiting the Wnt signaling pathway-mediated EMT, and suppressing CCL3/CCR1-mediated inflammatory responses.


Asunto(s)
Azoximetano , Neoplasias Asociadas a Colitis , Sulfato de Dextran , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Metabolómica , Transcriptoma , Animales , Medicamentos Herbarios Chinos/farmacología , Ratones , Masculino , Neoplasias Colorrectales , Ratones Endogámicos C57BL , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colitis/inducido químicamente
6.
Leuk Res ; 139: 107469, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479337

RESUMEN

BACKGROUND: The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS: In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS: Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS: Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.


Asunto(s)
Mieloma Múltiple , Humanos , Animales , Ratones , Bortezomib/farmacología , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Línea Celular Tumoral , Receptores de Quimiocina , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Receptores CCR1/genética , Receptores CCR1/metabolismo
7.
Cell Signal ; 117: 111122, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417634

RESUMEN

BACKGROUND: This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD: We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1ß, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS: CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION: LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Animales , Ratones , FN-kappa B , Células Endoteliales , Hemodinámica/fisiología , Inflamación , Citocinas , Proteínas Recombinantes
8.
J Pathol ; 262(4): 495-504, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38287901

RESUMEN

During cancer evolution, tumor cells attract and dynamically interact with monocytes/macrophages. To find biomarkers of disease progression in human melanoma, we used unbiased RNA sequencing and secretome analyses of tumor-macrophage co-cultures. Pathway analysis of genes differentially modulated in human macrophages exposed to melanoma cells revealed a general upregulation of inflammatory hallmark gene sets, particularly chemokines. A selective group of chemokines, including CCL8, CCL15, and CCL20, was actively secreted upon melanoma-macrophage co-culture. Because we previously described the role of CCL20 in melanoma, we focused our study on CCL8 and CCL15 and confirmed that in vitro both chemokines contributed to melanoma survival, proliferation, and 3D invasion through CCR1 signaling. In vivo, both chemokines enhanced primary tumor growth, spontaneous lung metastasis, and circulating tumor cell survival and lung colonization in mouse xenograft models. Finally, we explored the clinical significance of CCL8 and CCL15 expression in human skin melanoma, screening a collection of 67 primary melanoma samples, using multicolor fluorescence and quantitative image analysis of chemokine-chemokine receptor content at the single-cell level. Primary skin melanomas displayed high CCR1 expression, but there was no difference in its level of expression between metastatic and nonmetastatic cases. By contrast, comparative analysis of these two clinically divergent groups showed a highly significant difference in the cancer cell content of CCL8 (p = 0.025) and CCL15 (p < 0.0001). Kaplan-Meier curves showed that a high content of CCL8 or CCL15 in cancer cells correlated with shorter disease-free and overall survival (log-rank test, p < 0.001). Our results highlight the role of CCL8 and CCL15, which are highly induced by melanoma-macrophage interactions in biologically aggressive primary melanomas and could be clinically applicable biomarkers for patient profiling. © 2024 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Ratones , Animales , Melanoma/genética , Pronóstico , Neoplasias Cutáneas/genética , Quimiocinas/metabolismo , Macrófagos/metabolismo , Biomarcadores , Quimiocina CCL8/genética , Quimiocina CCL8/metabolismo , Proteínas Inflamatorias de Macrófagos , Quimiocinas CC/genética
9.
Metabolism ; 151: 155758, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38070823

RESUMEN

BACKGROUND AND AIMS: Chemokine (CC motif) receptor 1 (CCR1) promotes liver fibrosis in mice. However, its effects on nonalcoholic steatohepatitis (NASH) remain unclear. Therefore, the present study aimed to investigate the role of CCR1 in the progression of NASH. METHODS: Human serum and liver tissues were obtained from patients with NASH and controls. Systemic (Ccr1-/-) and liver macrophage-knockout Ccr1 (Ccr1LKD) mice were fed a high-cholesterol and high-fat (CL) diet for 12 weeks or a methionine/choline-deficient (MCD) diet for 4 weeks. BX471 was used to pharmacologically inhibit CCR1 in CL-fed mice. RESULTS: CCR1 was significantly upregulated in liver samples from patients with NASH and in animal models of dietary-induced NASH. In the livers of mice fed a CL diet for 12 weeks, the CCR1 protein colocalized with F4/80+ macrophages rather than with hepatic stellate cells. Compared to their wild-type littermates, Ccr1-/- mice fed with the CL or MCD diet showed inhibition of NASH-associated hepatic steatosis, inflammation, and fibrosis. Mechanistically, Ccr1 deficiency suppressed macrophage infiltration and activation by attenuating the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Similar results were observed in Ccr1LKD mice administered the CL diet. Moreover, CCR1 inhibition by BX471 effectively suppressed NASH progression in CL-fed mice. CONCLUSIONS: Ccr1 deficiency mitigated macrophage activity by inhibiting mTORC1 signaling, thereby preventing the development of NASH. Notably, the CCR1 inhibitor BX471 protected against NASH. These findings would help in developing novel strategies for the treatment of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Compuestos de Fenilurea , Piperidinas , Animales , Humanos , Ratones , Colina/metabolismo , Colina/farmacología , Modelos Animales de Enfermedad , Hígado/metabolismo , Cirrosis Hepática/patología , Activación de Macrófagos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina/metabolismo , Metionina/farmacología , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores CCR1/genética , Receptores CCR1/metabolismo , Receptores de Quimiocina/metabolismo
10.
Elife ; 122023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903056

RESUMEN

Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Animales , Degeneración Retiniana/patología , Células Ependimogliales/metabolismo , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismo , Muerte Celular , Modelos Animales de Enfermedad , Receptores CCR1/genética , Receptores CCR1/metabolismo
11.
Sci Bull (Beijing) ; 68(21): 2607-2619, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37798178

RESUMEN

Epstein-Barr virus (EBV) is the oncogenic driver of multiple cancers. However, the underlying mechanism of virus-cancer immunological interaction during disease pathogenesis remains largely elusive. Here we reported the first comprehensive proteogenomic characterization of natural killer/T-cell lymphoma (NKTCL), a representative disease model to study EBV-induced lymphomagenesis, incorporating genomic, transcriptomic, and in-depth proteomic data. Our multi-omics analysis of NKTCL revealed that EBV gene pattern correlated with immune-related oncogenic signaling. Single-cell transcriptome further delineated the tumor microenvironment as immune-inflamed, -deficient, and -desert phenotypes, in association with different setpoints of cancer-immunity cycle. EBV interacted with transcriptional factors to provoke GPCR interactome (GPCRome) reprogramming. Enhanced expression of chemokine receptor-1 (CCR1) on malignant and immunosuppressive cells modulated virus-cancer interaction on microenvironment. Therapeutic targeting CCR1 showed promising efficacy with EBV eradication, T-cell activation, and lymphoma cell killing in NKTCL organoid. Collectively, our study identified a previously unknown GPCR-mediated malignant progression and translated sensors of viral molecules into EBV-specific anti-cancer therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Linfoma , Células T Asesinas Naturales , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Proteómica , Linfoma/complicaciones , Células T Asesinas Naturales/patología , Microambiente Tumoral/genética
12.
Cell Rep Med ; 4(7): 101110, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467717

RESUMEN

Multiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.


Asunto(s)
Mieloma Múltiple , Animales , Ratones , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Inmunoterapia/métodos , Linfocitos T , Células Plasmáticas/metabolismo
13.
Int Immunopharmacol ; 121: 110509, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37369160

RESUMEN

Mucosal healing is essential for treating ulcerative colitis (UC), which results from imbalanced macrophage polarization and dysregulated inflammatory responses. However, the mechanisms of cellular communication and signal transduction that regulate mucosal healing among macrophage subtypes require further investigation. We use bulk and single-cell RNA sequencing analysis to reveal that macrophage subtypes vary in different UC states. At the same time, chemokine and angiogenesis signaling is strongly associated with M2 macrophage's infiltrated proportion. To get more insight into subtypes of macrophages in mucosal healing, we divided macrophages into M1, M2b, and M2d macrophages. Based on the differentially expressed genes (DEGs) between M2d and M1 macrophages, KEGG and GO analysis highlights M2d macrophages' ability to alleviate inflammation and promote epithelial healing. Trajectory analysis revealed opposite differentiation of macrophage subsets between UC and healthy groups, with M1 and M2d macrophages coexisting in the same differentiation branch under UC conditions. Along the pseudotime axis, CCL3 and VEGFA expression increased in UC, while IL10RA remained stable in UC but increased in healthy controls. CellChat identified CCL3-CCR1 has strong communication between M1 and M2d macrophages, while the IL10 signaling pathway is activated explicitly in M2d macrophages to mitigate inflammation and promote epithelial healing. We also speculate that high levels of VEGFA activate endothelial cells expressing VEGFR and worsen inflammation. To conclude, we suggested IL10 and VEGF signaling in M2d macrophages as potential therapeutic targets for mucosal healing. However, it is necessary to establish reliable methods for isolating and purifying M2d macrophages before these targets can be effectively utilized.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/metabolismo , Interleucina-10/metabolismo , Células Endoteliales , Transcriptoma , Macrófagos/metabolismo , Inflamación/metabolismo
14.
Curr Issues Mol Biol ; 45(4): 3446-3461, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37185750

RESUMEN

Colorectal cancer is the third most frequently diagnosed cancer in the world. Despite extensive studies and apparent progress in modern strategies for disease control, the treatment options are still not sufficient and effective, mostly due to frequently encountered resistance to immunotherapy of colon cancer patients in common clinical practice. In our study, we aimed to uncover the CCL9 chemokine action employing the murine model of colon cancer to seek new, potential molecular targets that could be promising in the development of colon cancer therapy. Mouse CT26.CL25 colon cancer cell line was used for introducing lentivirus-mediated CCL9 overexpression. The blank control cell line contained an empty vector, while the cell line marked as CCL9+ carried the CCL9-overexpressing vector. Next, cancer cells with empty vector (control) or CCL9-overexpressing cells were injected subcutaneously, and the growing tumors were measured within 2 weeks. Surprisingly, CCL9 contributed to a decline in tumor growth in vivo but had no effect on CT26.CL25 cell proliferation or migration in vitro. Microarray analysis of the collected tumor tissues revealed upregulation of the immune system-related genes in the CCL9 group. Obtained results suggest that CCL9 reveals its anti-proliferative functions by interplay with host immune cells and mediators that were absent in the isolated, in vitro system. Under specific study conditions, we determined unknown features of the murine CCL9 that have so far bee reported to be predominantly pro-oncogenic.

15.
Brain Sci ; 13(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37190544

RESUMEN

Neuropathic pain pathophysiology is not fully understood, but it was recently shown that MIP-1 family members (CCL3, CCL4, and CCL9) have strong pronociceptive properties. Our goal was to examine how pharmacological modulation of these chemokines and their receptors (CCR1 and CCR5) influence hypersensitivity after nerve injury in Albino Swiss male mice. The spinal changes in the mRNA/protein levels of the abovementioned chemokines and their receptors were measured using RT-qPCR and ELISA/Western blot techniques in a mouse model of chronic constriction injury of the sciatic nerve. Behavioral studies were performed using the von Frey and cold plate tests after pharmacological treatment with neutralizing antibodies (nAbs) against chemokines or antagonists (CCR1-J113863, CCR5-TAK-220/AZD-5672) alone and in coadministration with morphine on Day 7, when the hypersensitivity was fully developed. Our results showed enhanced protein levels of CCL3 and CCL9 1 and 7 days after nerve injury. The single intrathecal administration of CCL3 or CCL9 nAb, J113863, TAK-220, or AZD-5672 diminished neuropathic pain symptoms and enhanced morphine analgesia. These findings highlight the important roles of CCL3 and CCL9 in neuropathic pain and additionally indicate that these chemokines play essential roles in opioid analgesia. The obtained results suggest CCR1 and CCR5 as new, interesting targets in neuropathy treatment.

16.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108638

RESUMEN

Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Preescolar , Interleucina-17/metabolismo , Regulación hacia Arriba , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Citocinas/metabolismo , Receptores de Quimiocina/metabolismo , Factores de Transcripción/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , ARN Mensajero/metabolismo
17.
J Clin Med ; 12(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36983384

RESUMEN

(1) Background: Chemokines and chemokine receptors play an important role in tumor development. The aim of this study was to check the significance of CCL5 and CCR1 variants with response rate, survival, and the level of regulated on activation, normal T cells expressed and secreted (RANTES/CCL5) in multiple myeloma (MM) patients; (2) Methods: Genomic DNA from 101 newly diagnosed MM patients and 100 healthy blood donors were analyzed by Real-time PCR method (for CCL5 and CCR1 genotyping). In a subgroup of 70 MM patients, serum samples were collected to determine the level of RANTES; (3) Results: multivariate Cox regression showed increased risk of disease relapse or progression (HR = 4.77; p = 0.01) in MM patients with CG + CC genotypes of CCL5 rs2280788. In contrast, CT + TT genotypes of CCL5 rs2107538 were associated withdecreased risk of death (HR = 0.18; p = 0.028) and disease relapse or progression (HR = 0.26; p = 0.01). In MM patients with major genotypes of rs2280789, rs2280788, and rs2107538, higher survival rates were observed in response to treatment with thalidomide and bortezomib. Statistically significant lower RANTES levels were seen in minor genotypes and heterozygotes of CCL5 and CCR1 variants; (4) Conclusions: Major genotypes of CCL5 variants may be independent positive prognostic factors in MM.

18.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982211

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive form of adult brain tumor which is highly resistant to conventional treatment and therapy. Glioma cells are highly motile resulting in infiltrative tumors with poorly defined borders. Another hallmark of GBM is a high degree of tumor macrophage/microglia infiltration. The level of these tumor-associated macrophages/microglia (TAMs) correlates with higher malignancy and poorer prognosis. We previously demonstrated that inhibition of TAM infiltration into glioma tumors with the CSF-1R antagonist pexidartinib (PLX3397) can inhibit glioma cell invasion in-vitro and in-vivo. In this study, we demonstrate an important role for the chemokine receptor CCR1 in mediating microglia/TAM stimulated glioma invasion. Using two structurally distinct CCR1 antagonists, including a novel inhibitor "MG-1-5", we were able to block microglial activated GL261 glioma cell invasion in a dose dependent manner. Interestingly, treatment of a murine microglia cell line with glioma conditioned media resulted in a strong induction of CCR1 gene and protein expression. This induction was attenuated by inhibition of CSF-1R. In addition, glioma conditioned media treatment of microglia resulted in a rapid upregulation of gene expression of several CCR1 ligands including CCL3, CCL5, CCL6 and CCL9. These data support the existence of tumor stimulated autocrine loop within TAMs which ultimately mediates tumor cell invasion.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Ratones , Animales , Microglía/metabolismo , Receptores de Quimiocina/metabolismo , Medios de Cultivo Condicionados/metabolismo , Glioma/metabolismo , Glioblastoma/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Receptores CCR1/metabolismo
19.
Elife ; 122023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763080

RESUMEN

Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.


Asunto(s)
COVID-19 , Hombre de Neandertal , Virosis , Humanos , Animales , COVID-19/genética , Hombre de Neandertal/genética , SARS-CoV-2/genética , Genética de Población
20.
Dev Comp Immunol ; 139: 104561, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36183838

RESUMEN

The C-C chemokine receptors (CCRs) family is involved in diverse pathophysiological processes in mammals, such as immune regulation and cancer, but their functions in invertebrates remain enigmatic. Here, two CCR homologs in Penaeus vannamei (designated PvCCR1 and PvCCR5) were characterized and found to share sequence homology with other CCRs and contain the conserved 7TM functional domain. Both PvCCR1 and PvCCR5 were constitutively expressed in healthy shrimp tissues, while their mRNA transcript levels were induced in hepatopancreas and hemocytes by Vibrio parahaemolyticus, Streptococcus iniae, and white spot syndrome virus. Notably, shrimp survival increased after knockdown of PvCCR1 and PvCCR5 followed by V. parahaemolyticus infection, indicating that PvCCR1 and PvCCR5 are annexed by the bacteria for their benefit, the absence of which attenuates the effects of the pathogen on shrimp survival. The present data indicate that PvCCR1 and PvCCR5 play key roles in the antimicrobial immune response and therefore vital for shrimp survival.


Asunto(s)
Bacterias , Receptores CCR5 , Animales , Receptores CCR5/genética , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...