Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 12(24)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38137235

RESUMEN

Water-in-oil-in-water (W/O/W) emulsions with high-melting diacylglycerol (DAG) crystals incorporated in the oil droplets were fabricated and the compositions were optimized to achieve the best physical stability. The stability against osmotic pressure, encapsulation efficiency and in vitro release profiles of both water- and oil-soluble bioactives were investigated. The presence of interfacial crystallized DAG shells increased the emulsion stability by reducing the swelling and shrinkage of emulsions against osmotic pressure and heating treatment. DAG crystals located at the inner water/oil (W1/O) interface and the gelation of the inner phase by gelatin helped reduce the oil droplet size and slow down the salt release rate. The DAG and gelatin-contained double emulsion showed improved encapsulation efficiency of bioactives, especially for the epigallocatechin gallate (EGCG) during storage. The double emulsions with DAG had a lower digestion rate but higher bioaccessibility of EGCG and curcumin after in vitro digestion. DAG-stabilized double emulsions with a gelled inner phase thus can be applied as controlled delivery systems for bioactives by forming robust interfacial crystalline shells.

2.
Food Chem ; 420: 136029, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37037111

RESUMEN

In this study, we reported a facile strategy to produce an interfacial crystallized oleogel emulsion for improved thermal stability. The interfacial crystallization of ceramide (non-interfacial active oleogelator) was achieved by addition of a surface active compound, which was demonstrated by interfacial rheology tests and polarized light microscopy. For successfully prepared interfacial crystallized emulsions, smaller particle size was observed when the gelator concentration was lower. However, better thermal stability was achieved when oleogelator concentration was higher than 1 wt%. Results from differential scanning calorimetry, X-ray diffraction and Fourier transform infrared spectroscopy suggested that the interfacial adsorption of ceramide was due to its co-crystallization with the emulsifier driven by hydrogen bonds formed by multiple sites. It provided appropriate crystallinity and steric repulsion for oleogel emulsions against oil droplet coalescence during heating process. This strategy greatly enriches oleogel emulsion formulations and their potential applications in food products involved with thermal treatment.


Asunto(s)
Emulsiones , Emulsiones/química , Temperatura , Cristalización , Reología , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
3.
Food Res Int ; 163: 112215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596144

RESUMEN

Sucrose palmitate (P170) and sucrose laurate (L195) were used as emulsifiers to control the crystallization behavior of AMF and to stabilize W/O emulsions. In this study, the P170 promoted crystallization and led to strong fat crystal networks with smaller AMF crystals (60-80 µm) in emulsions, retaining flocculation. Water droplets were squeezed into irregular shapes between the strong network but the P170 formed an interface layer with better strength to resist the aggregation. Contrarily, the L195 inhibited crystallization and formed larger AMF spherulites (more than 100 µm) resulting in a low strength of fat crystal networks and unstable emulsions. Meanwhile, the water droplets were easily fixed on the surface of AMF crystals because of the existence of sucrose esters. Protruding crystals on the surface of larger spherulites could pierce the water-oil interface, leading to a greater coalescence and forming larger water droplets. Therefore, a weak crystal network could not prevent the sedimentation and phase separation caused by gravity.


Asunto(s)
Agua , Emulsiones/química , Agua/química , Cristalización
4.
J Colloid Interface Sci ; 630(Pt B): 685-694, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36347095

RESUMEN

HYPOTHESIS: We hypothesized that interfacial crystallization occurring within evaporated polyhedral liquid marbles may be controlled by hydrophilization of the polymer plates coating the marbles. The hypothesis was tested with polyhedral marbles coated with hydrophobized and cold plasma-hydrophilized PET (Polyethylene terephthalate) plates. EXPERIMENTS: Interfacial crystallization within polyhedral liquid marbles was investigated experimentally. Two types of polyhedral marbles filled with saturated saline were prepared: i) liquid marbles coated with hydrophobized PET plates (Marbles A); ii) liquid marbles coated with Janus PET plates, one facet of which was plasma hydrophilized and the other hydrophobized (Marbles B). The hydrophobized side of the PET plate was in contact with the saline solution, whereas, the hydrophilized facet contacted air. Crystallization occurring within the marbles under their evaporation was monitored in situ. FINDINGS: It was established that for both kinds of marbles, NaCl crystallization was initiated at the edges of the plates. NaCl crystallization on the hydrophobized PET surfaces was not registered. When Marbles B were evaporated, the outer hydrophilic side of the PET plates was coated by the saline creep process. For both kinds of marbles the process resulted in the formation of hollow shells built of PET plates and NaCl crystals. The thermodynamic explanation of the observed phenomena is suggested.


Asunto(s)
Polímeros , Cloruro de Sodio , Cristalización , Interacciones Hidrofóbicas e Hidrofílicas , Polímeros/química , Carbonato de Calcio
5.
ACS Appl Mater Interfaces ; 14(3): 4739-4749, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35015497

RESUMEN

Gas-liquid (G-L) reactive crystallization is a major technology for advanced materials construction, which requires a short diffusion path on the interface to ensure the reactant supply and stable crystal nucleation under ultrahigh supersaturation. Herein, a covalent organic framework (COF) membrane with homo hierarchical pore structures was proposed as an effective interfacial material for the regulation of confined reactive crystallization. By combining the ordered nanopores of COFs and micropores of anodic aluminum oxide (AAO), the COF membrane simultaneously provided an excellent nanoscale diffusion-reaction regulation network as the molecular-level confined G-L reactive interface and adjustable submicrometer gas mass transfer channels. The highly selective construction of CaCO3 superstructures was then achieved. When the submicrometer primary pore size rp of the constructed COF membrane ranged from 120 to 1.6 nm, the diffusion mechanism of CO2 varied from viscous flow diffusion to Knudsen diffusion. The growth orientation of CaCO3 crystals was well confined to obtain spindle-shaped crystals with high selectivity. Meanwhile, the crystal selectivity factor (cube/sphere) increased from 0 to 3.53 under the low interfacial nuclear barrier. Thus, the COF membrane with coupled micro-nanostructures successfully screened the directional preparation conditions for diverse CaCO3 superstructures, which also paved a meaningful path for the functional application of COFs in accurate mass transfer control and confined chemical reactions.

6.
Biomater Res ; 26(1): 2, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057863

RESUMEN

BACKGROUND: The reinforcement effect of fiber-reinforced polymer composites is usually limited because of the poor interfacial interaction between fiber and polymer, though fiber reinforcement is regarded as an effective method to enhance the mechanical properties of polymer. METHODS: In this study, nano-SiO2 particles grafted by 3-Glycidoxypropyltrimethoxysilane (KH560) were introduced onto the surface of 3-Aminopropyltriethoxysilane (KH550) modified carbon fiber (CF) by a self-assembly strategy to improve the interfacial bonding between CF and biopolymer poly (lactic acid) (PLLA). RESULTS: The results indicated that PLLA chains preferred to anchor at the surface of nano-SiO2 particles and then formed high order crystalline structures. Subsequently, PLLA spherulites could epitaxially grow on the surface of functionalized CF, forming a transcrystalline structure at the CF/PLLA interface. Meanwhile, the nano-SiO2 particles were fixed in the transcrystalline structure, which induced a stronger mechanical locking effect between CF and PLLA matrix. The results of tensile experiments indicated that the PLLA/CF-SiO2 scaffold with a ratio of CF to SiO2 of 9:3 possessed the optimal strength and modulus of 10.11 MPa and 1.18 GPa, respectively. In addition, in vitro tests including cell adhesion and fluorescence indicated that the scaffold had no toxicity and could provide a suitable microenvironment for the growth and proliferation of cell. CONCLUSION: In short, the PLLA/CF-SiO2 scaffold with good mechanical properties and cytocompatibility had great potential in the application of bone tissue engineering.

7.
Adv Colloid Interface Sci ; 296: 102510, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34478938

RESUMEN

Interfacial crystallization appears as a crucial stage in the numeral natural phenomena and technological applications, such as industry of semi-conductors and manufacturing of nano-whiskers. Interfacial aspects of heterogeneous crystallization are surveyed. The review is focused on the interplay of thermodynamic and geometric aspects of the interfacial crystallization. Thermodynamic considerations leading to the Wulff construction are discussed. Equilibrium shape of the crystallized particle in the contact with a foreign substrate giving rise to the Winterbottom construction is treated. The concept of equivalent equilibrium contact angle θeq is introduced. The equivalent contact angle θeq applicable for isotropic crystals does not depend neither on the volume of the crystallized particles nor on the external fields. Bulk contributions to the free energy of the particle such as the bulk heat release in the case of reactive contact or latent heat of crystallization do not influence the equivalent contact angle θeq. Application of the Winterbottom constructions for prediction of the shape of nanoparticles grown on solid substrates is treated. Thermodynamics of interfacial crystallization is discussed. The thermodynamic condition predicting when surface crystallization is thermodynamically favored over homogeneous (bulk) crystallization is supplied. This thermodynamic relation coincides with the condition prescribing the partial wetting of a solid by its melt. Interfacial crystallization in its relation to the "coffee-stain" effect, salt creeping and development of anti-icing surfaces is addressed. Interfacial aspects of epitaxial growth of crystals are considered. The current state-of-art in the field is reviewed.

8.
Polymers (Basel) ; 13(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34067958

RESUMEN

Interest in carbon and clay-based nanofillers has grown in recent years. The crystallization behavior of low-density polyethylene (LDPE) was studied using a variety of notable nanofillers used in engineering applications and prepared using a solution crystallization method. Carbon nanotubes (CNTs), graphene oxide nano-platelets, clay (montmorillonite), and modified clay (surface-modified with trimethyl stearyl ammonium) were used to induce heterogeneous crystallization of LDPE. The crystallized LDPE samples, imaged using scanning and transmission electron microscopy, revealed different microstructures for each nanohybrid system, indicating these various nanofillers induce LDPE lamellae ordering. The underlying interactions between polymer and nanofiller were investigated using FTIR spectroscopy. X-ray diffraction (XRD) was used to determine crystallinity. This work examines how the differences in morphology and chemical structure of the nanofillers induce changes in the nucleation and growth of polymer crystals. These results will provide guidance on functional design of nano-devices with controlled properties.

9.
Food Chem ; 327: 127014, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32434126

RESUMEN

The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.


Asunto(s)
Diglicéridos/química , Emulsiones/química , Cristalización , Congelación , Glicerol/análogos & derivados , Glicerol/química , Aceite de Palma/química , Aceite de Brassica napus/química , Ácidos Ricinoleicos/química , Viscosidad , Agua/química
10.
Food Chem ; 312: 126047, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31884300

RESUMEN

Formation of foams is critical for tailoring the texture and mouthfeel of fat-based products. Diacylglycerol (DAG) is regarded as a preferable alternative structurant to hydrogenated lipid. Effect of DAG concentration (2-10 wt%) on the characteristics of oleogels and foams including crystal polymorphisms, size and distribution, rheological and thermodynamic properties was investigated. Oleogel prepared with 10 wt% DAG had comparable whipping and foaming stability to that of 6 wt% fully hydrogenated palm oil (FHPO). DAG formed small plate-crystals which tend to occur at the bubble surface, whereas FHPO showed needle-like crystals that were formed mainly in the continuous phase. For the 2 wt% FHPO-8 wt% DAG-based oil foams, interfacial templating crystallization effect contributed to the smaller bubble size and improved rheological properties whereby less oil drainage and foam breakdown occurred. Hence, the non-aqueous foam formed by DAG has broad application prospect because of the thermoresponsive properties and the desirable health benefits.


Asunto(s)
Diglicéridos/química , Aerosoles/química , Cristalización , Compuestos Orgánicos/química
11.
J Colloid Interface Sci ; 500: 304-314, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411435

RESUMEN

Partial coalescence is a ubiquitous instability in emulsions whose dispersed phase is partially crystallized. When emulsions are stabilized with proteins, interfacial stiffness and long-range repulsive surface forces hinder this type of instability. The addition of low molecular weight surfactants modifies the interfacial properties and surface forces, generally promoting partial coalescence. In the present work, various surfactants (Tween® 80, palmitic acid and monoglycerides) differing in their crystallization temperature were probed for their ability to induce partial coalescence in model O/W emulsions stabilized by sodium caseinate. The initially fluid emulsions were submitted to a tempering cycle leading to the gelation of the system. The extent of partial coalescence was evaluated by measuring the bulk storage modulus. DSC was used to determine the melting range of the oil phase and surfactants, while polarized microscopy, Raman imaging, and surface rheology measurements were performed to characterize the oil/water interface. The experimental conditions in terms of droplet size, surfactant-to-protein molar ratio and tempering history favoring partial coalescence were first explored in presence of Tween® 80. We show that partial coalescence is rather marginal when crystallizable surfactants are added, and pronounced with liquid surfactants. The phenomena underlying this result, especially interfacial crystallization of surfactants, are evidenced and discussed.

12.
ACS Appl Mater Interfaces ; 8(33): 21750-61, 2016 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-27525496

RESUMEN

We report a method to achieve highly uniform inkjet-printed silver nitrate (AgNO3) and a reactive silver precursor patterns on rigid and flexible substrates functionalized with polydopamine (PDA) coatings. The printed AgNO3 patterns on PDA-coated substrates (glass and polyethylene terephthalate (PET)) exhibit a narrow thickness distribution ranging between 0.9 and 1 µm in the line transverse direction and uniform deposition profiles in the line axial direction. The deposited reactive silver precursor patterns on PDA-functionalized substrates also show "dome-shaped" morphology without "edge-thickened" structure due to "coffee-stain" effect. We posit that the highly uniform functional ink deposits formed on PDA-coated substrates are attributable to the strong binding interaction between the abundant catecholamine moieties at the PDA surface and the metallic silver cations (Ag(+) or Ag(NH3)(2+)) in the solutal inks. During printing of the ink rivulet and solvent evaporation, the substrate-liquid ink (S-L) interface is enriched with the silver-based cations and a solidification at the S/L interface is induced. The preferential solidification initiated at the S-L interface is further verified by the in situ visualization of the dynamic solidification process during solvent evaporation, and results suggest an enhanced crystal nucleation and growth localized at the S-L interface on PDA functionalized substrates. This interfacial interaction mediates solute transport in the liquid phase, resulting in the controlled enrichment of solute at the S-L interface and mitigated solute precipitation in both the contact line region and the liquid ink-vapor (L-V) interface due to evaporation. This mediated transport contributes to the final uniform solid deposition for both types of ink systems. This technique provides a complementary strategy for achieving highly uniform inkjet-printed crystalline structures, and can serve as an innovative foundation for high-precision additive delivery of functional materials.

13.
J Colloid Interface Sci ; 460: 247-57, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26343977

RESUMEN

The impact of cooling rate and mixing on the long-term kinetic stability of wax-stabilized water-in-oil emulsions was investigated. Four cooling/mixing protocols were investigated: cooling from 45°C to either 25°C or 4°C with/without stirring and two cooling rates - slow (1°C/min) and fast (5°C/min). The sedimentation behaviour of the emulsions was significantly affected by cooling protocol. Stirring was critical to the stability of all emulsions, with statically-cooled (no stirring) emulsions suffering from extensive aqueous phase separation. Emulsions stirred while cooling showed sedimentation of a waxy emulsion layer leaving a clear oil layer at the top, with a smaller separation and droplet size distribution at 4°C compared to 25°C, indicating the importance of the amount of crystallized wax on emulsion stability. Light microscopy revealed that crystallized wax appeared both on the droplet surface and in the continuous phase, suggesting that stirring ensured dispersibility of the water droplets during cooling as the wax was crystallizing. Wax crystallization on the droplet surface provided stability against droplet coalescence while continuous phase wax crystals minimized inter-droplet collisions. The key novel aspect of this research is in the simplicity to tailor the spatial distribution of wax crystals, i.e., either at the droplet surface or in the continuous phase via use of a surfactant and judicious stirring and/or cooling. Knowledge gained from this research can be applied to develop strategies for long-term storage stability of crystal-stabilized W/O emulsions.


Asunto(s)
Emulsiones/química , Aceites/química , Agua/química , Cromatografía , Cromatografía de Gases , Cristalización , Almacenaje de Medicamentos , Cinética , Espectroscopía de Resonancia Magnética , Microscopía , Parafina , Tamaño de la Partícula , Tensoactivos , Temperatura , Ceras , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...