Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 598: 217105, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971490

RESUMEN

Immune therapy has significantly improved the prognosis of hepatocellular carcinoma (HCC) patients, yet its efficacy remains limited, underscoring the urgency to identify new therapeutic targets and biomarkers. Here, we investigated the pathological and physiological roles of KIF20A and assess its potential in enhancing HCC treatment efficacy when combined with PD-1 inhibitors. We initially assess KIF20A's oncogenic function using liver-specific KIF20A knockout (Kif20a CKO) mouse models and orthotopic xenografts. Subsequently, we establish a regulatory axis involving KIF20A, FBXW7, and c-Myc, validated through construction of c-Myc splicing mutants. Large-scale clinical immunohistochemistry (IHC) analyses confirm the pathological relevance of the KIF20A-FBXW7-c-Myc axis in HCC. We demonstrate that KIF20A overexpression correlates with poor prognosis in HCC by competitively inhibiting FBXW7-mediated degradation of c-Myc, thereby promoting glycolysis and enhancing tumor proliferation. Conversely, KIF20A downregulation suppresses these effects, impairing tumor growth through c-Myc downregulation. Notably, KIF20A inhibition attenuates c-Myc-induced MMR expression, associated with improved prognosis in HCC patients receiving PD-1 inhibitor therapy. Furthermore, in Kif20a CKO HCC mouse models, we observe synergistic effects between Kif20a knockout and anti-PD-1 antibodies, significantly enhancing immunotherapeutic efficacy against HCC. Our findings suggest that targeting the KIF20A-c-Myc axis could identify HCC patients likely to benefit from anti-PD-1 therapy. In conclusion, we propose that combining KIF20A inhibitors with anti-PD-1 treatment represents a promising therapeutic strategy for HCC, offering new avenues for clinical development and patient stratification.


Asunto(s)
Carcinoma Hepatocelular , Proteína 7 que Contiene Repeticiones F-Box-WD , Cinesinas , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Ubiquitinación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Animales , Humanos , Ratones , Cinesinas/genética , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Inmunoterapia/métodos , Masculino , Pronóstico , Regulación Neoplásica de la Expresión Génica
2.
J Ginseng Res ; 48(1): 40-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38223825

RESUMEN

Background: Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-κB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway. Materials and methods: A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining. Results: KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (ß-TrCP1), a substrate recognition subunit for SCFß-TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation. Conclusion: This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.

3.
Am J Chin Med ; 52(1): 275-289, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38291583

RESUMEN

This study intends to explore the effects of Cucurbitacin B (CuB) and KIF20A on esophageal carcinoma (ESCA). Data were downloaded from the Cancer Genome Atlas (TCGA) database. The expression properties of KIF20A have been confirmed by GEPIA and ualcan from TCGA. The expression of KIF20A was determined using western blotting in ECA109 and KYSE150 cells after transfection with KIF20A, KIF20A siRNA, or numerical control siRNA (si-NC). Then, different concentrations of CuB were used to treat ECA109 and KYSE150 cells. CCK-8 and colony formation assays were used to measure cell viability, and a Transwell assay was utilized to assess cell migration and invasion ability. N-cadherin, E-cadherin, snail, p-Janus kinase 2 (JAK2), JAK2, p-signal transducer and activator of transcription 3 (STAT3), and STAT3 expression levels were evaluated using western blot. KIF20A was higher expressed in ESCA than in normal cells, and its overexpression was associated with squamous cell carcinoma, TNM stage, and lymph nodal metastasis of ESCA patients. In ECA109 and KYSE150 cells, increased KIF20A facilitated cell proliferation, migration, and invasion, whereas the knockdown of KIF20A can reverse these effects with N-cadherin. Snail expression diminished and E-cadherin increased. Similarly, CuB treatment could inhibit cell proliferation, migration, and invasion concentration dependently. Furthermore, KIF20A accelerated the expression of p-JAK2 and p-STAT3, while the application of CuB inhibited KIF20A expression and attenuated the activation of the JAK/STAT3 pathway. These findings revealed that CuB could inhibit the growth, migration, and invasion of ESCA through downregulating the KIF20A/JAK/STAT3 signaling pathway, and CuB could serve as an essential medicine for therapeutic intervention.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Triterpenos , Humanos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Línea Celular Tumoral , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Transducción de Señal/genética , Carcinoma de Células Escamosas/genética , Proliferación Celular/genética , Movimiento Celular/genética , ARN Interferente Pequeño/farmacología , ARN Interferente Pequeño/uso terapéutico , Cadherinas/genética , Cadherinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo , Cinesinas/farmacología
4.
Protein Pept Lett ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037834

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a prevalent form of cancer globally, characterized by a high mortality rate. Therefore, discovering effective therapeutic approaches for CRC treatment is critical. METHODS: The levels of KIF20A in CRC clinical samples were determined using Western Blot and immunofluorescence assay. SW480 cells were transfected with siRNA targeting KIF20A, while HT-29 cells were transfected with a KIF20A overexpression vector. Cell viability and apoptosis of CRC cells were assessed using CCK-8 and TUNEL analysis. Migration ability was investigated using Transwell. The levels of pyruvate, lactate and ATP were determined through corresponding assay kits. Western Blot was applied to confirm the level of proteins associated with glycolysis, cMyc, HIF-1α, PKM2 and LDHA. Subsequently, functional rescue experiments were conducted to investigate further the regulatory relationship between KIF20A, c-Myc, and HIF-1α in colorectal cancer (CRC), employing the c-Myc inhibitor 10058-F4 and c-Myc overexpression plasmids. RESULTS: KIF20A was up-regulated in vivo and in vitro in CRC. KIF20A knockdown inhibited cell viability and migration while promoting cell apoptosis in SW480 cells. Conversely, overexpression of KIF20A yielded contrasting effects in HT-29 cells. Moreover, inhibition of KIF20A restrained the pyruvate, lactate production and ATP level, whereas overexpression of KIF20A enhanced the Warburg effect. Western Blot indicated that knockdown KIF20A attenuated the levels of c-Myc, HIF-1α, PKM2 and LDHA. In addition, rescue experiments further verified that KIF20A enhanced the Warburg effect by the KIF20A/c-Myc/HIF-1α axis in CRC. CONCLUSION: KIF20A, being a crucial regulator in the progression of CRC, has the potential to be a promising therapeutic target for the treatment of CRC.

5.
Heliyon ; 9(12): e22734, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38125441

RESUMEN

Background: The correlation between FOXM1 and KIF20A has not been revealed in clear cell renal cell carcinoma (ccRCC). Methods: Public data was downloaded from The Cancer Genome Atlas (TCGA) database. R software was utilized for the execution of bioinformatic analysis. The expression levels of specific molecules (mRNA and protein) were detected using real-time quantitative PCR (qRT-PCR) and Western blot assays. The capacity of cell growth was assessed by employing CCK8 and colony formation assay. Cell invasion and migration ability were assessed using transwell assay. Results: In our study, we illustrated the association between FOXM1 and KIF20A. Our results indicated that both FOXM1 and KIF20A were associated with poor prognosis and clinical performance. The malignant characteristics of ccRCC cells can be significantly suppressed by inhibiting FOXM1 and KIF20A, as demonstrated by in vitro experiments. Moreover, we found that FOXM1 can upregulate KIF20A. Then, EMT signaling was identified as the underlying pathway FOXM1 and KIF20A are involved. WB results indicated that FOXM1/KIF20A axis can activate EMT signaling. Moreover, we noticed that FOXM1 and KIF20A can affect the immunotherapy response and immune microenvironment of ccRCC patients. Conclusions: Our results identified the role of the FOXM1/KIF20A axis in ccRCC progression and immunotherapy, making it the underlying target for ccRCC.

6.
Open Biol ; 13(9): 230122, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37726093

RESUMEN

KIF20A is a critical kinesin for cell division and a promising anti-cancer drug target. The mechanisms underlying its cellular roles remain elusive. Interestingly, unusual coupling between the nucleotide- and microtubule-binding sites of this kinesin-6 has been reported, but little is known about how its divergent sequence leads to atypical motility properties. We present here the first high-resolution structure of its motor domain that delineates the highly unusual structural features of this motor, including a long L6 insertion that integrates into the core of the motor domain and that drastically affects allostery and ATPase activity. Together with the high-resolution cryo-electron microscopy microtubule-bound KIF20A structure that reveals the microtubule-binding interface, we dissect the peculiarities of the KIF20A sequence that influence its mechanochemistry, leading to low motility compared to other kinesins. Structural and functional insights from the KIF20A pre-power stroke conformation highlight the role of extended insertions in shaping the motor's mechanochemical cycle. Essential for force production and processivity is the length of the neck linker in kinesins. We highlight here the role of the sequence preceding the neck linker in controlling its backward docking and show that a neck linker four times longer than that in kinesin-1 is required for the activity of this motor.


Asunto(s)
Cinesinas , Microtúbulos , Microscopía por Crioelectrón , Cinesinas/genética , Sitios de Unión , División Celular
7.
Genomics ; 115(5): 110705, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37703933

RESUMEN

OBJECTIVE: Pulmonary artery hypertension (PAH) is a complex, fatal disease with limited treatments. This study aimed to investigate possible key targets in PAH through bioinformatics. METHODS: GSE144274 were obtained from Gene Expression Omnibus (GEO) database. Then, differentially expressed genes (DEGs) between idiopathic pulmonary hypertension (IPAH) and healthy subjects were identified and analyzed. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) were analyzed, and a protein-protein interaction (PPI) network was constructed using STRING. The hub genes were identified by MCODE method. The expression levels of hub genes were validated in vitro and in vivo models. Finally, the ROC analysis was performed based on the level of hub genes in clinical plasma samples. RESULTS: A total of 363 DEGs were identified. GO analysis on these DEGs were mainly enriched in cell division, inflammatory response, among others. In the KEGG pathways analysis, DEGs mainly involved in cytokine-cytokine receptor interaction, rheumatoid arthritis, and IL-17 signaling pathways were enriched. The DEGs were analyzed with the STRING for PPI network analysis, and 62 hub genes were identified by MCODE. Finally, 6 central genes, KIF18B, SPC25, DLGAP5, KIF20A, CEP55 and ANLN, were screened out due to their novelty role in PAH. The expression of KIF20A was validated to be significantly upregulated both in the lung tissue of hypoxia-induced pulmonary hypertension (HPH) mice and proliferative PASMCs. Additionally, KIF20A levels is evelated in PAH plasma and the area under the curve (AUC) to identify PAH was 0.8591 for KIF20A. CONCLUSION: The level of KIF20A elevates during the progression of PAH, which suggestes it could be a potential diagnostic and therapeutic target for the PAH.

8.
PeerJ ; 11: e16066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744243

RESUMEN

Background: Glycolysis is closely associated with cancer progression and treatment outcomes. However, the role of glycolysis in the immune microenvironment, prognosis, and immunotherapy of glioma remains unclear. Methods: This study investigated the role of glycolysis on prognosis and its relationship with the tumor microenvironment (TME). Subsequently, we developed and validated the glycolysis-related gene signature (GRS)-TME classifier using multiple independent cohorts. Furthermore, we also examined the prognostic value, somatic alterations, molecular characteristics, and potential benefits of immunotherapy based on GRS-TME classifier. Lastly, the effect of kinesin family member 20A (KIF20A) on the proliferation and migration of glioma cells was evaluated in vitro. Results: Glycolysis was identified as a significant prognostic risk factor in glioma, and closely associated with an immunosuppressive microenvironment characterized by altered distribution of immune cells. Furthermore, a personalized GRS-TME classifier was developed and validated by combining the glycolysis (18 genes) and TME (seven immune cells) scores. Patients in the GRSlow/TMEhigh subgroup exhibited a more favorable prognosis compared to other subgroups. Distinct genomic alterations and signaling pathways were observed among different subgroups, which are closely associated with cell cycle, epithelial-mesenchymal transition, p53 signaling pathway, and interferon-alpha response. Additionally, we found that patients in the GRSlow/TMEhigh subgroup exhibit a higher response rate to immunotherapy, and the GRS-TME classifier can serve as a novel biomarker for predicting immunotherapy outcomes. Finally, high expression of KIF20A is associated with an unfavorable prognosis in glioma, and its knockdown can inhibit the proliferation and migration of glioma cells. Conclusions: Our study developed a GRS-TME classifier for predicting the prognosis and potential benefits of immunotherapy in glioma patients. Additionally, we identified KIF20A as a prognostic and therapeutic biomarker for glioma.


Asunto(s)
Glioma , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Pronóstico , Inmunoterapia , Glioma/genética , Glucólisis/genética
9.
Int J Gen Med ; 16: 3623-3635, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637711

RESUMEN

Purpose: Our aim was to verify whether KIF20A has the potential to serve as a prognostic marker for female patients with estrogen receptor (ER)-positive breast cancer (BC) and treated with tamoxifen (TAM). Patients and Methods: Online tools were used to investigate the potential correlation between KIF20A gene expression and survival of patients with ER-positive BC and TAM treatment. Furthermore, immunohistochemistry (IHC) was conducted to assess the expression levels of KIF20A in patients included from our center. The prognostic value of KIF20A for disease-free survival (DFS) and overall survival (OS) was further evaluated using Cox regression analysis. Results: According to the results obtained from online tools, it was found that patients with low KIF20A expression exhibited significantly better survival outcomes in terms of relapse-free survival (RFS), distant metastasis-free survival (DMFS), and OS compared to those with high KIF20A expression (P < 0.001, P < 0.001, and P = 0.008, respectively). Additionally, significantly lower gene expression of KIF20A was found in patients who responded to TAM than in those who did not respond to TAM (P < 0.001). We further included 203 patients with adjuvant TAM therapy, and IHC for KIF20A was performed on sections from paraffin-embedded blocks. Patients with low KIF20A expression had significantly better DFS and OS (P = 0.001 and 0.002, respectively, log rank test), and the expression of KIF20A was identified as an independent factor for predicting both DFS and OS (P = 0.001 and 0.008, respectively). Conclusion: KIF20A expression is an independent prognostic factor for survival in patients with ER-positive BC who received adjuvant TAM therapy. In clinical practice, IHC evaluation of KIF20A expression in surgical samples before administering tamoxifen may assist in predicting the treatment outcomes of these patients.

10.
J Cancer Res Clin Oncol ; 149(15): 14081-14100, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37548770

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) were linked to cancer aggressiveness and poor prognosis in patients with hepatocellular carcinoma (HCC). METHODS: We integrated two external HCC cohorts to develop the stem cell subtypes according to unsupervised clustering with 26 stem cell gene sets. Between the subtypes, differences in prognosis, clinical characteristics, recognized HCC subtypes, metabolic profile, immune-related features, somatic mutation, and drug sensitivity were examined. The prognostic signature was created, and validated by numerous cohorts, and used to assess the efficacy of immunotherapy and transcatheter arterial chemoembolization (TACE) treatment. The nomogram was developed based on the signature and clinical features. We further examined the function of KIF20A in HCC and proved that KIF20A had the potential to regulate the stemness of HCC cells through western blot. RESULTS: Low stem cell patterns, a good prognosis, positive clinical features, specific molecular subtypes, low metastatic characteristics, and an abundance of metabolic and immunological aspects were associated with Cluster 1, whereas Cluster 2 was the reverse. Chemotherapy and immunotherapy were more effective in Cluster 1. Cluster 1 and CTNNB1 and ALB mutation were more closely. Additionally, the prognosis, immunotherapeutic, and TACE therapy responses were all worse in the high-risk group. The nomogram could predict the survival probability of HCC patients. KIF20A was discovered to be overexpressed in HCC and was revealed to be connected to the stemness of the HepG2 cell line. CONCLUSIONS: Two stem cell subgroups with different prognoses, metabolic, and immunological characteristics in HCC patients were identified. We also created a 7-gene prognostic signature and a nomogram to estimate the survival probability. The function of KIF20A in HCC stemness was initially examined.

11.
Aging (Albany NY) ; 15(11): 4714-4733, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37310408

RESUMEN

BACKGROUND: Bladder cancer (BC) is a malignant tumor that occurs in the bladder wall and often appears in elderly individuals. Renal cancer (RC) arises from the renal tubular epithelium, but its molecular mechanism remains unclear. METHODS: We downloaded RC datasets (GSE14762 and GSE53757) and a BC dataset (GSE121711) to screen differentially expressed genes (DEGs). We also performed weighted gene coexpression network analysis (WGCNA). We created a protein-protein interaction (PPI) network and performed functional enrichment analysis, such as gene set enrichment analysis (GSEA). Heatmaps were made for gene expression. Survival analysis and immunoinfiltration analysis were performed. Comparative toxicogenomics database (CTD) analysis was performed to find the relationship between disease and hub genes. Western blotting was performed to verify the role of KIF20A in apoptosis. RESULTS: A total of 764 DEGs were identified. The GSEA showed that the DEGs were mainly enriched in organic acid metabolism, drug metabolism, mitochondria, and metabolism of cysteine and methionine. The PPI network in GSE121711 showed that KIF20A was a hub gene of renal clear cell carcinoma. Where the expression level of KIF20A was higher, the prognosis of patients was worse. CTD analysis showed that KIF20A was associated with inflammation, proliferation, and apoptosis. KIF20A expression in the RC group was upregulated, as shown by western blotting. The core proteins (including pRB Ser 780, CyclinA, E2F1, CCNE1, and CCNE2) in the pRB Ser 780/CyclinA signaling pathway were also upregulated in the RC group. CONCLUSIONS: KIF20A might be a novel biomarker for researching renal and bladder cancers.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias de la Vejiga Urinaria , Humanos , Anciano , Mapas de Interacción de Proteínas/genética , Neoplasias Renales/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Cinesinas/genética , Cinesinas/metabolismo
12.
Drug Dev Res ; 84(5): 907-921, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37070571

RESUMEN

BACKGROUND: Nonsmall cell lung cancer (NSCLC) is the main type of lung cancer, accounting for approximately 85%. Berberine (BBR), a commonly used traditional Chinese medicine, has been reported to exhibit a potential antitumor effect in various cancers. In this research, we explored the function of BBR and its underlying mechanisms in the development of NSCLC. METHODS: Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), colony formation assays, flow cytometry, and transwell invasion assay were employed to determine cell growth, the apoptotic rate, cell invasion of NSCLC cells, respectively. Western blot was applied for detecting the protein expression of c-Myc, matrix metalloprotease 9 (MMP9), kinesin family member 20A (KIF20A), cyclin E2 (CCNE2), and phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway-related proteins. Glycolysis was evaluated by detecting glucose consumption, lactate production, and adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio with the matched kits. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to analyze the level of KIF20A and CCNE2. Tumor model was established to evaluate the function of BBR on tumor growth in NSCLC in vivo. In addition, immunohistochemistry assay was employed to detect the level of KIF20A, CCNE2, c-Myc, and MMP9 in mice tissues. RESULTS: BBR exhibited suppressive effects on the progression of NSCLC, as evidenced by inhibiting cell growth, invasion, glycolysis, and facilitating cell apoptosis in H1299 and A549 cells. KIF20A and CCNE2 were upregulated in NSCLC tissues and cells. Moreover, BBR treatment significantly decreased the expression of KIF20A and CCNE2. KIF20A or CCNE2 downregulation could repress cell proliferation, invasion, glycolysis, and induce cell apoptosis in both H1299 and A549 cells. The inhibition effects of BBR treatment on cell proliferation, invasion, glycolysis, and promotion effect on cell apoptosis were rescued by KIF20A or CCNE2 overexpression in NSCLC cells. The inactivation of PI3K/AKT pathway caused by BBR treatment in H1299 and A549 cells was restored by KIF20A or CCNE2 upregulation. In vivo experiments also demonstrated that BBR treatment could repress tumor growth by regulating KIF20A and CCNE2 and inactivating the PI3K/AKT pathway. CONCLUSION: BBR treatment showed the suppressive impact on the progression of NSCLC by targeting KIF20A and CCNE2, thereby inhibiting the activation of the PI3K/AKT pathway.


Asunto(s)
Berberina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Berberina/farmacología , Metaloproteinasa 9 de la Matriz , Transducción de Señal , Proliferación Celular , Apoptosis , Ciclinas/metabolismo , Ciclinas/farmacología , Línea Celular Tumoral , Movimiento Celular
13.
Cancers (Basel) ; 15(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980610

RESUMEN

Breast cancer is considered the solid tumor most sensitive to chemotherapy. However, it can become resistant to various chemotherapeutic drugs, including doxorubicin, which triggers cell death by intercalation between DNA bases, free radical formation, and topoisomerase II inhibition. When drug resistance develops, several miRNAs are dysregulated, suggesting that miRNAs may play a significant role in resistance formation. In the current study, we investigated how doxorubicin sensitivity of breast cancer cells is affected by miR-153-3p and its target gene. The MTT method was used to determine the chemo-sensitizing effect of miR-153-3p on doxorubicin in MCF-7 and MDA-MB-231 cell lines. Results of Western blot and dual luciferase confirmed that miR-153-3p targets KIF20A and decreases its expression. Transwell and flow cytometry experiments showed that miR-153-3p and doxorubicin together had higher effects on MCF-7 and MDA-MB-231 cell proliferation, migration, and invasion, as well as increasing apoptosis and arresting cells in the G1 phase. Proteins related to apoptosis and the cell cycle exhibited the same tendency. Intracellular vesicle formation was inhibited and RAB26 was also downregulated by treatment with miR-153-3p alone or in combination with doxorubicin. Doxorubicin's ability to suppress tumors may be enhanced by miR-153-3p, according to in vivo studies. According to our findings, miR-153-3p has a direct effect on KIF20A and may regulate the formation of intracellular vesicles, which in turn makes breast cancer cells more susceptible to doxorubicin.

14.
Biochem Genet ; 61(5): 1727-1744, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36763221

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the major gastrointestinal malignancies threatening human health. More and more studies indicate that circular RNAs (circRNAs) are important regulatory factors of CRC, but the mechanism is still indistinct. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were used to detect the expression of circ_0084188, microRNA-769-5p (miR-769-5p), and kinesin family member 20A (KIF20A) in CRC tissues. Kaplan-Meier curve was used to analyze the relationship between circ_0084188 expression and the survival rate of CRC patients. Cell proliferation, viability, apoptosis, migration, and invasion were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound-healing, and transwell assays, respectively. The relationship between miR-769-5p and circ_0084188 or KIF20A was detected by a dual-luciferase reporter and RNA pull-down. The effect of circ_0084188 on tumor growth was verified by xenograft studies in vivo. RESULTS: Circ_0084188 and KIF20A were upregulated and miR-769-5p was downregulated in CRC. Circ_0084188 knockdown repressed the proliferation, migration, and invasion of CRC cells, as well as enhanced apoptosis in vitro. Mechanistically, circ_0084188 targeted miR-769-5p, and the reduction of miR-769-5p reversed the effects of circ_0084188 knockdown on cell functional behaviors. KLF20A was a direct miR-769-5p target, and circ_0084188 acted as a sponge for miR-769-5p to regulate the KIF20A level. Moreover, miR-769-5p regulated the functional behaviors of CRC cells by targeting KIF20A. In addition, circ_0084188 knockdown confined the growth of xenograft tumors in vivo. CONCLUSION: Circ_0084188 upregulated the expression of KIF20A to promote the tumorigenesis of CRC through miR-769-5p, providing a new therapeutic target for CRC.


Asunto(s)
Neoplasias Colorrectales , Cinesinas , MicroARNs , ARN Circular , Humanos , Apoptosis , Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales/genética , Cinesinas/genética , MicroARNs/genética , ARN Circular/genética
15.
Heliyon ; 9(2): e13195, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36798768

RESUMEN

Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.

16.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768616

RESUMEN

Adoptive T cell-receptor therapy (ACT) could represent a promising approach in the targeted treatment of epithelial ovarian cancer (EOC). However, the identification of suitable tumor-associated antigens (TAAs) as targets is challenging. We identified and prioritized TAAs for ACT and other immunotherapeutic interventions in EOC. A comprehensive list of pre-described TAAs was created and candidates were prioritized, using predefined weighted criteria. Highly ranked TAAs were immunohistochemically stained in a tissue microarray of 58 EOC samples to identify associations of TAA expression with grade, stage, response to platinum, and prognosis. Preselection based on expression data resulted in 38 TAAs, which were prioritized. Along with already published Cyclin A1, the TAAs KIF20A, CT45, and LY6K emerged as most promising targets, with high expression in EOC samples and several identified peptides in ligandome analysis. Expression of these TAAs showed prognostic relevance independent of molecular subtypes. By using a systematic vetting algorithm, we identified KIF20A, CT45, and LY6K to be promising candidates for immunotherapy in EOC. Results are supported by IHC and HLA-ligandome data. The described method might be helpful for the prioritization of TAAs in other tumor entities.


Asunto(s)
Autoantígenos , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/terapia , Autoantígenos/uso terapéutico , Antígenos de Neoplasias , Neoplasias Ováricas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
17.
J Biochem ; 173(5): 383-392, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36689741

RESUMEN

Jaw1/LRMP is a membrane protein that is localized to the endoplasmic reticulum and outer nuclear membrane. Previously, we revealed that Jaw1 functions to maintain nuclear shape by interacting with microtubules as a Klarsicht/ANC-1/Syne/homology (KASH) protein. The loss of several KASH proteins causes defects in the position and shape of the Golgi apparatus as well as the nucleus, but the effects of Jaw1 depletion on the Golgi apparatus were poorly understood. Here, we found that siRNA-mediated Jaw1 depletion causes Golgi fragmentation with disordered ribbon structure in the melanoma cell, accompanied by the change in the localization of the Golgi-derived microtubule network. Thus, we suggest that Jaw1 is a novel protein to maintain the Golgi ribbon structure, associated with the microtubule network.


Asunto(s)
Núcleo Celular , Aparato de Golgi , Membrana Nuclear , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos , Membrana Nuclear/metabolismo
18.
J Microbiol ; 60(11): 1113-1121, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36318360

RESUMEN

The influenza A virus (IAV) has caused several pandemics, and therefore there are many ongoing efforts to identify novel antiviral therapeutic strategies including vaccines and antiviral drugs. However, influenza viruses continuously undergo antigenic drift and shift, resulting in the emergence of mutated viruses. In turn, this decreases the efficiency of existing vaccines and antiviral drugs to control IAV infection. Therefore, this study sought to identify alternative therapeutic strategies targeting host cell factors rather than viruses to avoid infection by mutated viruses. Particularly, we investigated the role of KIF20A that is one of kinesin superfamily proteins in the replication of IAV. The KIF20A increased viral protein levels in IAV-infected cells by regulating the initial entry stage during viral infection. Furthermore, the KIF20A inhibitor significantly suppressed viral replication, which protected mice from morbidity and mortality. Therefore, our findings demonstrated that KIF20A is highly involved in the viral replication process and viral propagation both in vitro and in vivo, and could thus be used as a target for the development of novel antiviral drugs.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Ratones , Animales , Humanos , Internalización del Virus , Replicación Viral , Antivirales/farmacología
19.
Front Pharmacol ; 13: 1007429, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225575

RESUMEN

Gemcitabine (GEM), an antimetabolite that terminates DNA synthesis, is commonly used in the treatment of cancers including lung adenocarcinoma (LUAD). However, downregulation of sensitivity limits the therapeutic effect. Ferroptosis as the new form of regulated cell death has been shown to have great potential for cancer treatment with chemoresistance. Here, three genes with both ferroptosis and GEM-response-associated features were screened from RNA sequencing and public data for constructing an independent risk model. LUAD patients with different risk scores had differences in mutational landscape, gene enrichment pathways, and drug sensitivity. By Cell Counting Kit-8 assay, flow cytometry, and colony forming assay, we demonstrate that GEM and ferroptosis inducer (FIN) imidazole Ketone Erastin had a synergistic combined anti-proliferative effect on LUAD cells and knockdown of KIF20A (the core gene of our model) further enhanced cell death in vitro by inducing ferroptosis. In conclusion, we identified a link between ferroptosis and GEM response in LUAD cells and developed a robust signature that can effectively classify LUAD patients into subgroups with different overall survival. For LUAD, the combined treatment modality of GEM and FIN is potentially effective and KIF20A may be a new therapeutic target.

20.
Acta Pharm Sin B ; 12(10): 3861-3876, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36213538

RESUMEN

Conjunctival melanoma (CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B (CuB). We found that CuB remarkably inhibited the proliferation of CM cells including CM-AS16, CRMM1, CRMM2 and CM2005.1, without toxicity to normal cells. CuB can also induce CM cells G2/M cell cycle arrest. RNA-seq screening identified KIF20A, a key downstream effector of FOXM1 pathway, was abolished by CuB treatment. Further target identification by activity-based protein profiling chemoproteomic approach revealed that GRP78 is a potential target of CuB. Several lines of evidence demonstrated that CuB interacted with GRP78 and bound with a K d value of 0.11 µmol/L. Furthermore, ATPase activity evaluation showed that CuB suppressed GRP78 both in human recombinant GRP78 protein and cellular lysates. Knockdown of the GRP78 gene significantly induced the downregulation of FOXM1 and related pathway proteins including KIF20A, underlying an interesting therapeutic perspective. Finally, CuB significantly inhibited tumor progression in NCG mice without causing obvious side effects in vivo. Taken together, our current work proved that GRP78-FOXM1-KIF20A as a promising pathway for CM therapy, and the traditional medicine CuB as a candidate drug to hinder this pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...