Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros












Intervalo de año de publicación
1.
Microorganisms ; 12(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38930554

RESUMEN

Malaria parasites increase their host erythrocyte's permeability to obtain essential nutrients from plasma and facilitate intracellular growth. In the human Plasmodium falciparum pathogen, this increase is mediated by the plasmodial surface anion channel (PSAC) and has been linked to CLAG3, a protein integral to the host erythrocyte membrane and encoded by a member of the conserved clag multigene family. Whether paralogs encoded by other clag genes also insert at the host membrane is unknown; their contributions to PSAC formation and other roles served are also unexplored. Here, we generated transfectant lines carrying epitope-tagged versions of each CLAG. Each paralog is colocalized with CLAG3, with concordant trafficking via merozoite rhoptries to the host erythrocyte membrane of newly invaded erythrocytes. Each also exists within infected cells in at least two forms: an alkaline-extractable soluble form and a form integral to the host membrane. Like CLAG3, CLAG2 has a variant region cleaved by extracellular proteases, but CLAG8 and CLAG9 are protease resistant. Paralog knockout lines, generated through CRISPR/Cas9 transfection, exhibited uncompromised growth in PGIM, a modified medium with higher physiological nutrient levels; this finding is in marked contrast to a recently reported CLAG3 knockout parasite. CLAG2 and CLAG8 knockout lines exhibited compensatory increases in the transcription of the remaining clags and associated rhoph genes, yielding increased PSAC-mediated uptake for specific solutes. We also report on the distinct transport properties of these knockout lines. Similar membrane topologies at the host membrane are consistent with each CLAG paralog contributing to PSAC, but other roles require further examination.

2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38649162

RESUMEN

Chemical senses, including olfaction, pheromones, and taste, are crucial for the survival of most animals. There has long been a debate about whether different types of senses might influence each other. For instance, primates with a strong sense of vision are thought to have weakened olfactory abilities, although the oversimplified trade-off theory is now being questioned. It is uncertain whether such interactions between different chemical senses occur during evolution. To address this question, we examined four receptor gene families related to olfaction, pheromones, and taste: olfactory receptor (OR), vomeronasal receptor type 1 and type 2 (V1R and V2R), and bitter taste receptor (T2R) genes in Hystricomorpha, which is morphologically and ecologically the most diverse group of rodents. We also sequenced and assembled the genome of the grasscutter, Thryonomys swinderianus. By examining 16 available genome assemblies alongside the grasscutter genome, we identified orthologous gene groups among hystricomorph rodents for these gene families to separate the gene gain and loss events in each phylogenetic branch of the Hystricomorpha evolutionary tree. Our analysis revealed that the expansion or contraction of the four gene families occurred synchronously, indicating that when one chemical sense develops or deteriorates, the others follow suit. The results also showed that V1R/V2R genes underwent the fastest evolution, followed by OR genes, and T2R genes were the most evolutionarily stable. This variation likely reflects the difference in ligands of V1R/V2Rs, ORs, and T2Rs: species-specific pheromones, environment-based scents, and toxic substances common to many animals, respectively.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Filogenia , Receptores Odorantes , Roedores , Órgano Vomeronasal , Animales , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Receptores de Feromonas/genética , Receptores de Feromonas/metabolismo , Roedores/genética , Olfato/genética , Gusto/genética , Órgano Vomeronasal/metabolismo
3.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481660

RESUMEN

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Parásitos , Vacunas Antiprotozoos , Trypanosoma cruzi , Vacunas , Humanos , Animales , Ratones , Baculoviridae/genética , Antígenos de Protozoos/genética , Enfermedad de Chagas/parasitología , Trypanosoma cruzi/genética , Vacunación , Vacunas Antiprotozoos/genética
4.
Proc Natl Acad Sci U S A ; 120(45): e2218499120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37910552

RESUMEN

A hyperdiverse class of pathogens of humans and wildlife, including the malaria parasite Plasmodium falciparum, relies on multigene families to encode antigenic variation. As a result, high (asymptomatic) prevalence is observed despite high immunity in local populations under high-transmission settings. The vast diversity of "strains" and genes encoding this variation challenges the application of established models for the population dynamics of such infectious diseases. Agent-based models have been formulated to address theory on strain coexistence and structure, but their complexity can limit application to gain insights into population dynamics. Motivated by P. falciparum malaria, we develop an alternative formulation in the form of a structured susceptible-infected-susceptible population model in continuous time, where individuals are classified not only by age, as is standard, but also by the diversity of parasites they have been exposed to and retain in their specific immune memory. We analyze the population dynamics and bifurcation structure of this system of partial-differential equations, showing the existence of alternative steady states and an associated tipping point with transmission intensity. We attribute the critical transition to the positive feedback between parasite genetic diversity and force of infection. Basins of attraction show that intervention must drastically reduce diversity to prevent a rebound to high infection levels. Results emphasize the importance of explicitly considering pathogen diversity and associated specific immune memory in the population dynamics of hyperdiverse epidemiological systems. This statement is discussed in a more general context for ecological competition systems with hyperdiverse trait spaces.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Modelos Epidemiológicos , Memoria Inmunológica , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Variación Genética
5.
J Mol Evol ; 91(6): 897-911, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38017120

RESUMEN

Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.


Asunto(s)
Parásitos , Theileria parva , Theileria , Animales , Theileria/genética , Parásitos/genética , Theileria parva/genética , Familia de Multigenes/genética , Cromosomas
6.
Viruses ; 15(8)2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37632010

RESUMEN

African swine fever (ASF), a viral disease caused by the African swine fever virus (ASFV), is associated with high mortality rates in domestic pigs and wild boars. ASF has been spreading since its discovery in wild boars in Korea in October 2019. Genomic analyses have provided insights into the genetic diversity of the ASFV isolated from various regions, enabling a better understanding of the virus origin and transmission patterns. We conducted a genome analysis to evaluate the diversity and mutations of ASFV spreading among wild boars in Korea during 2019-2022. We compared the genomes of ASFV strains isolated from Korean wild boars and publicly available ASFV genomes. Genomic analysis revealed several single-nucleotide polymorphisms within multigene families (MGFs) 360-1La and 360-4L in Korean ASFV. MGF 360-1La and 360-4L variations were not observed in other ASFV strains, including those of genotype II. Finally, we partially analyzed MGFs 360-1La and 360-4L in ASFV-positive samples between 2019 and 2022, confirming the geographical distribution of the variants. Our findings can help identify new genetic markers for epidemiological ASFV analysis and provide essential information for effective disease management.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/epidemiología , Prevalencia , República de Corea/epidemiología , Sus scrofa
7.
BMC Res Notes ; 16(1): 56, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076932

RESUMEN

OBJECTIVE: To analyse the transcriptional profiles of the pir multigene family of Plasmodium chabaudi chabaudi in male and female gametocytes isolated from the blood of infected mice. RESULTS: Infected red blood cells containing female and male P. chabaudi gametocytes transcribe a distinct set of genes encoded by the multigene family pir. The overall patterns are similar to what has been observed in the close relative P. berghei, but here we show that gametocyte-associated pir genes are distinct from those involved in chronic blood-stage infection and highlight a male-associated pir gene which should be the focus of future studies.


Asunto(s)
Malaria , Parásitos , Plasmodium chabaudi , Masculino , Femenino , Animales , Ratones , Plasmodium chabaudi/genética , Malaria/parasitología
8.
Viruses ; 15(2)2023 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-36851524

RESUMEN

African swine fever (ASF) is an infectious Suidae disease caused by the ASF virus (ASFV). Adaptation to less susceptible, non-target host cells is one of the most common techniques used to attenuate virulent viruses. However, this may induce many mutations and large-scale rearrangements in the viral genome, resulting in immunostimulatory potential loss of the virus in vivo. This study continuously maintained the virulent ASFV strain, Armenia2007 (Arm07), to establish an attenuated ASFV strain with minimum genetic alteration in a susceptible host cell line, immortalized porcine kidney macrophage (IPKM). A mutant strain was successfully isolated via repeated plaque purification in combination with next-generation sequencing analysis. The isolated strain, Arm07ΔMGF, which was obtained from a viral fluid at a passage level of 20, lacked 11 genes in total in the MGF300 and MGF360 regions and showed marked reduction in virulence against pigs. Moreover, all the pigs survived the challenge with the parental strain when pigs were immunized twice with 105 TCID50 of Arm07ΔMGF, although viremia and fever were not completely prevented after the challenge infection. These findings suggest that this naturally attenuated, spontaneously occurring ASFV strain may provide a novel platform for ASF vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Eliminación de Gen , Línea Celular , Fiebre
9.
Microorganisms ; 10(12)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36557632

RESUMEN

Paramecium is a free-living ciliate that undergoes antigenic variation and still the functions of these variable surface antigen coats in this non-pathogenic ciliate remain elusive. Only a few surface antigen genes have been described, mainly in the two model species P. tetraurelia strain 51 and P. primaurelia strain 156. Given the lack of suitable sequence data to allow for phylogenetics and deeper sequence comparisons, we screened the genomes of six different Paramecium species for serotype genes and isolated 548 candidates. Our approach identified the subfamilies of the isogenes of individual serotypes that were mostly represented by intrachromosomal gene duplicates. These showed different duplication levels, and chromosome synteny suggested rather young duplication events after the emergence of the P. aurelia species complex, indicating a rapid evolution of surface antigen genes. We were able to identify the different subfamilies of the surface antigen genes with internal tandem repeats, which showed consensus motifs across species. The individual isogene families showed additional consensus motifs, indicating that the selection pressure holds individual amino acids constant in these repeats. This may be a hint of the receptor function of these antigens rather than a presentation of random epitopes, generating the variability of these surface molecules.

10.
Viruses ; 14(10)2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-36298673

RESUMEN

African swine fever (ASF) is a widespread hemorrhagic and highly contagious infectious disease caused by African swine fever virus (ASFV), currently threatening the pig industry worldwide. Here, we demonstrated that the cell-adapted strain ASFV-P121 with a 24.5-kb deletion in the left variable region (LVR) lost the ability to replicate in primary porcine alveolar macrophages (PAMs). To explore whether this deletion determines the inability of ASFV-P121 replication in PAMs, a mutant virus (ASFV-ΔLVR) with the same LVR deletion as ASFV-P121 was constructed based on the wild-type ASFV HLJ/18 (ASFV-WT). However, the growth titer of ASFV-ΔLVR only reduced 10-fold compared with ASFV-WT in PAMs. Furthermore, we found that the large deletion of the LVR does not affect the formation of virus factories and virion morphogenesis. These findings reveal important implications for analyzing the molecular mechanism of ASFV cell tropism change.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Macrófagos Alveolares , Virulencia , Células Cultivadas
11.
Epigenomes ; 6(3)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36135316

RESUMEN

Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.

12.
Primates ; 63(6): 611-625, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36114442

RESUMEN

Immunoglobulin G (IgG) is one of the five antibody classes produced in mammals as part of the humoral responses accountable for protecting the organisms from infection. Its antibody heavy chain constant region is encoded by the Ig heavy-chain gamma gene (IGHG). In humans, there are four IGHG genes which encode the four subclasses, each with a specialized effector function. Although four subclasses of IgG proteins have also been reported in macaques, this does not appear to be the rule for all primates. In Platyrrhini, IgG has been stated to be encoded by a single-copy gene. To date, it remains unknown how the IGHG has expanded or contracted in the primate order; consequently, we have analyzed data from 38 primate genome sequences to identify IGHG genes and describe the evolution of IGHG genes in primate order. IGHG belongs to a multigene family that evolves by the birth-death evolutionary model in primates. Whereas Strepsirrhini and Platyrrhini have a single-copy gene, in Catarrhini, it has expanded to several paralogs in their genomes; some deleted and others pseudogenized. Furthermore, episodic positive selection may have promoted a species-specific IgG effector function. We propose that IgG evolved to reach an optimal number of copies per genome to adapt their humoral immune responses to different environmental conditions. This study has implications for biomedical trials using non-human primates.


Asunto(s)
Regiones Constantes de Inmunoglobulina , Cadenas Pesadas de Inmunoglobulina , Animales , Regiones Constantes de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/genética , Inmunoglobulina G/genética , Evolución Molecular , Platirrinos , Filogenia , Mamíferos
13.
Biochem Cell Biol ; 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35580352

RESUMEN

The discovery of radically different antifreeze proteins (AFPs) in fishes during the 1970s and 1980s suggested that these proteins had recently and independently evolved to protect teleosts from freezing in icy seawater. Early forays into the isolation and characterization of AFP genes in these fish showed they were massively amplified, often in long tandem repeats. The work of many labs in the 1980s onward led to the discovery and characterization of AFPs in other kingdoms, such as insects, plants, and many different microorganisms. The distinct ice-binding property that these ice-binding proteins (IBPs) share has facilitated their purification through adsorption to ice, and the ability to produce recombinant versions of IBPs has enabled their structural characterization and the mapping of their ice-binding sites (IBSs) using site-directed mutagenesis. One hypothesis for their ice affinity is that the IBS organizes surface waters into an ice-like pattern that freezes the protein onto ice. With access now to a rapidly expanding database of genomic sequences, it has been possible to trace the origins of some fish AFPs through the process of gene duplication and divergence, and to even show the horizontal transfer of an AFP gene from one species to another.

14.
Front Immunol ; 13: 752186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222365

RESUMEN

Guanylate binding proteins (GBPs) are paramount in the host immunity by providing defense against invading pathogens. Multigene families related to the immune system usually show that the duplicated genes can either undergo deletion, gain new functions, or become non-functional. Here, we show that in muroids, the Gbp genes followed an unusual pattern of gain and loss of genes. Muroids present a high diversity and plasticity regarding Gbp synteny, with most species presenting two Gbp gene clusters. The phylogenetic analyses revealed seven different Gbps groups. Three of them clustered with GBP2, GBP5 and GBP6 of primates. Four new Gbp genes that appear to be exclusive to muroids were identified as Gbpa, b, c and d. A duplication event occurred in the Gbpa group in the common ancestor of Muridae and Cricetidae (~20 Mya), but both copies were deleted from the genome of Mus musculus, M. caroli and Cricetulus griseus. The Gbpb gene emerged in the ancestor of Muridae and Cricetidae and evolved independently originating Gbpb1 in Muridae, Gbpb2 and Gbpb3 in Cricetidae. Since Gbpc appears only in three species, we hypothesize that it was present in the common ancestor and deleted from most muroid genomes. The second Gbp gene cluster, Gbp6, is widespread across all muroids, indicating that this cluster emerged before the Muridae and Cricetidae radiation. An expansion of Gbp6 occurred in M. musculus and M. caroli probably to compensate the loss of Gbpa and b. Gbpd is divided in three groups and is present in most muroids suggesting that a duplication event occurred in the common ancestor of Muridae and Cricetidae. However, in Grammomys surdaster and Mus caroli, Gbpd2 is absent, and in Arvicanthis niloticus, Gbpd1 appears to have been deleted. Our results further demonstrated that primate GBP1, GBP3 and GBP7 are absent from the genome of muroids and showed that the Gbp gene annotations in muroids were incorrect. We propose a new classification based on the phylogenetic analyses and the divergence between the groups. Extrapolations to humans based on functional studies of muroid Gbps should be re-evaluated. The evolutionary analyses of muroid Gbp genes provided new insights about the evolution and function of these genes.


Asunto(s)
Arvicolinae , Proteínas Portadoras , Animales , Murinae , Filogenia , Primates
15.
J Virol ; 96(6): e0189921, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35044212

RESUMEN

African swine fever virus multigene family (MGF) 360 and 505 genes have roles in suppressing the type I interferon response and in virulence in pigs. The role of the individual genes is poorly understood. Different combinations of these genes were deleted from the virulent genotype II Georgia 2007/1 isolate. Deletion of five copies of MGF 360 genes, MGF360-10L, -11L, -12L, -13L, and -14L, and three copies of MGF505-1R, -2R, and -3R reduced virus replication in macrophages and attenuated virus in pigs. However, only 25% of the immunized pigs were protected against challenge. Deletion of MGF360-12L, -13L, and -14L and MGF505-1R in combination with a negative serology marker, K145R (GeorgiaΔK145RΔMGF(A)), reduced virus replication in macrophages and virulence in pigs, since no clinical signs or virus genome in blood were observed following immunization. Four of six pigs were protected after challenge. In contrast, deletion of MGF360-13L and -14L, MGF505-2R and -3R, and K145R (GeorgiaΔK145RΔMGF(B)) did not reduce virus replication in macrophages. Following immunization of pigs, clinical signs were delayed, but all pigs reached the humane endpoint. Deletion of genes MGF360-12L, MGF505-1R, and K145R reduced replication in macrophages and attenuated virulence in pigs since no clinical signs or virus genome in blood were observed following immunization. Thus, the deletion of MGF360-12L and MGF505-1R, in combination with K145R, was sufficient to dramatically attenuate virus infection in pigs. However, only two of six pigs were protected, suggesting that deletion of additional MGF genes is required to induce a protective immune response. Deletion of MGF360-12L, but not MGF505-1R, from the GeorgiaΔK145R virus reduced virus replication in macrophages, indicating that MGF360-12L was most critical for maintaining high levels of virus replication in macrophages. IMPORTANCE African swine fever has a high socioeconomic impact and no vaccines to aid control. The African swine fever virus (ASFV) has many genes that inhibit the host's interferon response. These include related genes that are grouped into multigene families, including MGF360 and 505. Here, we investigated which MGF360 and 505 genes were most important for viral attenuation and protection against genotype II strains circulating in Europe and Asia. We compared viruses with deletions of MGF genes. Deletion of just two MGF genes in combination with a third gene, K145R, a possible marker for vaccination, is sufficient for virus attenuation in pigs. Deletion of additional MGF360 genes was required to induce higher levels of protection. Furthermore, we showed that the deletion of MGF360-12L, combined with K145R, impairs virus replication in macrophages in culture. Our results have important implications for understanding the roles of the ASFV MGF genes and for vaccine development.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Proteínas Virales , Vacunas Virales , Virulencia , Replicación Viral , Fiebre Porcina Africana/prevención & control , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Animales , Eliminación de Gen , Genotipo , Macrófagos/virología , Familia de Multigenes/genética , Porcinos , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia/genética , Replicación Viral/genética
16.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34888634

RESUMEN

Procellariiform seabirds rely on their sense of smell for foraging and homing. Both genomes and transcriptomes yield important clues about how olfactory receptor (OR) subgenomes are shaped by natural and sexual selection, yet no transcriptomes have been made of any olfactory epithelium of any bird species thus far. Here, we assembled a high-quality genome and nasal epithelium transcriptome of the Leach's storm-petrel (Oceanodroma leucorhoa) to extensively characterize their OR repertoire. Using a depth-of-coverage-assisted counting method, we estimated over 160 intact OR genes (∼500 including OR fragments). This method reveals the highest number of intact OR genes and the lowest proportion of pseudogenes compared to other waterbirds studied, and suggests that rates of OR gene duplication vary between major clades of birds, with particularly high rates in passerines. OR expression patterns reveal two OR genes (OR6-6 and OR5-11) highly expressed in adults, and four OR genes (OR14-14, OR14-12, OR10-2, and OR14-9) differentially expressed between age classes of storm-petrels. All four genes differentially expressed between age classes were more highly expressed in chicks compared to adults, suggesting that OR genes may exhibit ontogenetic specializations. Three highly differentially expressed OR genes also had high copy number ratios, suggesting that expression variation may be linked to copy number in the genome. We provide better estimates of OR gene number by using a copy number-assisted counting method, and document ontogenetic changes in OR gene expression that may be linked to olfactory specialization. These results provide valuable insight into the expression, development, and macroevolution of olfaction in seabirds.


Asunto(s)
Receptores Odorantes , Olfato , Genoma , Receptores Odorantes/genética , Olfato/genética
18.
Crit Rev Biotechnol ; 41(8): 1194-1208, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33980085

RESUMEN

Chalcones and the subsequently generated flavonoids, as well as flavonoid derivatives, have been proven to have a variety of physiological activities and are widely used in: the pharmaceutical, food, feed, and cosmetic industries. As the content of chalcones and downstream products in native plants is low, the production of these compounds by microorganisms has gained the attention of many researchers and has a history of more than 20 years. The mining and engineering of chalcone synthase (CHS) could be one of the most important ways to achieve more efficient production of chalcones and downstream products in microorganisms. CHS has a broad spectrum of substrates, and its enzyme activity and expression level can significantly affect the efficiency of the biosynthesis of flavonoids. This review summarizes the recent advances in the: structure, mechanism, evolution, substrate spectrum, transformation, and expression regulation in the flavonoid biosynthesis of this vital enzyme. Future development directions were also suggested. The findings may further promote the research and development of flavonoids and health products, making them vital in the fields of human diet and health.


Asunto(s)
Aciltransferasas , Flavonoides , Aciltransferasas/genética , Humanos , Plantas
19.
G3 (Bethesda) ; 11(1)2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561227

RESUMEN

The zinc finger-associated domain (ZAD) is present in over 90 C2H2 zinc finger (ZNF) proteins. Despite their abundance, only a few ZAD-ZNF genes have been characterized to date. Here, we systematically analyze the function of 68 ZAD-ZNF genes in Drosophila female germ cells by performing an in vivo RNA-interference screen. We identified eight ZAD-ZNF genes required for oogenesis, and based on further characterization of the knockdown phenotypes, we uncovered defects broadly consistent with functions in germ cell specification and/or survival, early differentiation, and egg chamber maturation. These results provide a candidate pool for future studies aimed at functionalization of this large but poorly characterized gene family.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Proteínas de Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Células Germinativas/metabolismo , ARN , Dedos de Zinc
20.
Antioxidants (Basel) ; 10(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546486

RESUMEN

Three distinct superoxide dismutases (SODs)-copper/zinc-SOD (SOD1), manganese-SOD (SOD2), and extracellular copper/zinc-SOD (SOD3)-were identified from a primitive chondrostean fish, Acipenser baerii, enabling the comparison of their transcriptional regulation patterns during development, prelarval ontogeny, and immune stimulation. Each A. baerii SOD isoform (AbSOD) shared conserved structural features with its vertebrate orthologs; however, phylogenetic analyses hypothesized a different evolutionary history for AbSOD3 relative to AbSOD1 and AbSOD2 in the vertebrate lineage. The AbSOD isoforms showed different tissue distribution patterns; AbSOD1 was predominantly expressed in most tissues. The expression of the AbSOD isoforms showed isoform-dependent dynamic modulation according to embryonic development and prelarval ontogenic behaviors. Prelarval microinjections revealed that lipopolysaccharide only induced AbSOD3 expression, while Aeromonas hydrophila induced the expression of AbSOD2 and AbSOD3. In fingerlings, the transcriptional response of each AbSOD isoform to bacterial infection was highly tissue-specific, and the three isoforms exhibited different response patterns within a given tissue type; AbSOD3 was induced the most sensitively, and its induction was the most pronounced in the kidneys and skin. Collectively, these findings suggest isoform-dependent roles for the multigene SOD family in antioxidant defenses against the oxidative stress associated with development and immune responses in these endangered sturgeon fish.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...